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The concentration inequality of the kernel density estimator (KDE) from Giné and
Guillou (2002) suggests

P (‖p̂n − E(p̂n)‖∞ > ε) ≤ c1e−c2·nh
d·ε2

for some constants c1, c2 > 0. This seems to be inconsistent with other results (see,

e.g, Einmahl and Mason 2005; Genovese et al. 2014): ‖p̂n−E(p̂n)‖∞ = OP

(√
| log h|
nhd

)
.

We point out that this concentration inequality is consistent with others and the key

reason is that the concentration works only if ε ≥
√
| log h|
nhd . The lower bound on ε,

though converges to 0, enforces the convergence rate from the concentration inequality

to OP

(√
| log h|
nhd

)
, which is consistent with other findings.

1. Main Result

Let X1, · · · , Xn be an IID random sample from an unknown density function p with a
compact support K ⊂ Rd. The kernel density estimator of p is

p̂n(x) =
1

nhd

n∑
i=1

K

(
x−Xi

h

)
,

where K is a smooth function (known as the kernel function) such as the Gaussian and
h > 0 is the smoothing parameter that controls the amount of smoothing.

Here we focus on the uniform loss (L∞ error) of p̂n from its expectation:

∆n = sup
x
|p̂n(x)− E (p̂n(x)) | = ‖p̂n − E (p̂n) ‖∞

This quantity is the uniform deviation of p̂n from its expected value and it plays a key role
in constructing confidence bands of the density function p.

There are three important results about ∆n.

(LD) Limiting distribution. Bickel and Rosenblatt (1973); Rosenblatt et al. (1976)
proved that ∆n converges to an extreme value distribution after properly rescaling.
One can also use the KMT approximation (Komlós et al., 1975, 1976) to obtain a
similar result. Roughly speaking, they proved that (after rearranging) there exists a
constant A1 > 0 such that

√
nhd(∆n −

√
| log h|A1) = OP

(
1√
| log h|

)
,

which implies

∆n = O

(√
| log h|
nhd

)
+OP

(√
1

nhd · | log h|

)
. (1)
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(AS) Almost sure convergence rate. Another important result of ∆n is Giné and
Guillou (2002); Einmahl and Mason (2005), where the authors applied the Talagrand’s
inequality (Talagrand, 1994, 1996; Giné and Guillou, 2001) to the KDE and proved
that under weak conditions, there exists a constant C > 0 such that√

nhd

| log h|
∆n = C a.s.

This implies that

∆n = Oa.s.

(√
| log h|
nhd

)
. (2)

Note that the same OP rate has been derived in Yukich (1985).

(CI) Concentration inequality. When deriving the almost sure rate in Giné and Guillou
(2002), the authors have implicitly proved a concentration inequality of ∆n: when
h→ 0, there exists c1, c2 > 0 such that

P (∆n > ε) ≤ c1e−c2·nh
d·ε2 (3)

for every

ε ≥
√
| log h|
nhd

. (4)

Note that we use the version from the lecture note of CMU 36-702 (Statistical Machine
Learning)1, 2016 version.

Also note that because we often choose h to be a polynomial of n, O(| log h|) = O(log n).
So some literature (Genovese et al., 2014; Chen et al., 2015; Chen, 2016) replace | log h| by
log n. We now compare these three results.

(LD) and (AS): consistent. Intuitively, (AS) is consistent with (LD) because in (LD),

the dominating quantity is O

(√
| log h|
nhd

)
, a deterministic sequence and the randomness is

at rate OP

(√
1

nhd·| log h|

)
, which converges faster than the dominating one (though the rate

difference is very slow: OP (| log h|)). Thus, one would expect that
√

nhd

| log h|∆n converges to

a fixed quantity and the remaining stochastic fluctuation eventually die out.

(AS) and (CI): inconsistent (but this is incorrect!). When we compare (AS) to
(CI), the result does not seem to be consistent at the first glance because in equation (3),
the dependence of ε on n and h is through nhdε2. This seems to suggest that the rate will

be OP (
√

1
nhd

) by equating them to be a constant. However, this is incorrect ! The main

problem of the above derivation comes from the bound on ε. Equation (3) is correct only if

ε ≥
√
| log h|
nhd

(equation (4)).

1. http://www.stat.cmu.edu/~larry/=sml/
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(AS) and (CI): consistent. The restriction on ε actually constrains the rate to be

OP

(√
| log h|
nhd

)
. To see this, we first rewrite equation (3) using t2 = nhdε2:

P (∆n > ε) ≤ c1e−c2·nh
d·ε2

=⇒P (
√
nhd∆n >

√
nhdε) ≤ c1e−c2·nh

d·ε2

=⇒P (
√
nhd∆n > t) ≤ c1e−c2t

2
,

when t ≥
√
| log h|. Here you see that we cannot pick the right-hand-side arbitrarily small

because of the lower bound on t. The above result directly leads to a bound on E(
√
nhd∆n):

E(
√
nhd∆n) =

∫ ∞
0

P (
√
nhd∆n > t)dt

=

∫ ∞
√
| log h|

P (
√
nhd∆n > t)dt+

∫ √| log h|
0

P (
√
nhd∆n > t)dt

≤ O(h−c3) +

∫ √| log h|
0

1dt

= O(h−c3) +O(
√
| log h|) = O(

√
| log h|),

where c3 is a positive constant. Thus, E(∆n) = O

(√
| log h|
nhd

)
and by Markov’s inequality

∆n = OP

(√
| log h|
nhd

)
,

which agrees with the bounds from (LD) and (AS).
Take-home message. When using a concentration inequality to derive a convergence

rate, we have to be careful about the range where the concentration holds. The convergence
rate depends not only on how ε and n are associated but also on the valid range of ε.

References

PJ Bickel and M Rosenblatt. On some global measures of the deviations of density function
estimates. The Annals of Statistics, 1(6):1071–1095, 1973.

Yen-Chi Chen. Generalized cluster trees and singular measures. arXiv preprint
arXiv:1611.02762, 2016.

Yen-Chi Chen, Christopher R Genovese, and Larry Wasserman. Asymptotic theory for
density ridges. The Annals of Statistics, 43(5):1896–1928, 2015.

Uwe Einmahl and David M Mason. Uniform in bandwidth consistency of kernel-type func-
tion estimators. The Annals of Statistics, 33(3):1380–1403, 2005.

Christopher R Genovese, Marco Perone-Pacifico, Isabella Verdinelli, and Larry Wasserman.
Nonparametric ridge estimation. The Annals of Statistics, 42(4):1511–1545, 2014.

3
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J. Komlós, P. Major, and G. Tusnády. An approximation of partial sums of independent
rv’s, and the sample df. ii. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte
Gebiete, 1976.

M Rosenblatt et al. On the maximal deviation of k-dimensional density estimates. The
Annals of Probability, 4(6):1009–1015, 1976.

M Talagrand. Sharper bounds for gaussian and empirical processes. The Annals of Proba-
bility, 22(1):28–76, 1994.

Michel Talagrand. New concentration inequalities in product spaces. Inventiones mathe-
maticae, 126(3):505–563, 1996.

JE Yukich. Laws of large numbers for classes of functions. Journal of multivariate analysis,
17(3):245–260, 1985.

4


	Main Result

