
A note on density estimation via classification
Yen-Chi Chen

University of Washington
October 3, 2025

It is known that if we have a (multivariate) density estimator, we can turn it into a regression model or use it
for classification. More explicitly, suppose we want to estimate the regression function m(x) = E[Y |X = x]
and we have a joint density estimator p̂(x,y). We can then estimate m via

m̂(x) =
∫

yp̂(x,y)dy∫
p̂(x,y)dy

assuming that the evaluation of density and integration is easy.

Note that if evaluation is intractable but we are able to sample from p̂(x,y), we can still approximate m̂(x)
via Monte Carlo methods such that we generate:

(X̃1,Ỹ1), · · · ,(X̃M,ỸM)∼ p̂(x,y)

and then apply a nonparametric regressor using these M samples. Therefore, methods for density estimation
can be inverted into a regression estimator.

For classification, we consider a binary classification problem where Z ∈{0,1} is our class label and our goal
is to predict the label Z with the feature X . It is well-known that the Bayes classifier under the conventional
0-1 loss is

c(x) =

{
1, if P(Z = 1|X = x)≥ P(Z = 0|X = x)
0, if P(Z = 1|X = x)< P(Z = 0|X = x)

=

{
1, if p(x|Z = 1)P(Z = 1)≥ p(x|Z = 0)P(Z = 0)
0, if p(x|Z = 1)P(Z = 1)< p(x|Z = 0)P(Z = 0)

.

Thus, once we have density estimators p̂(x|Z = 0), p̂(x|Z = 1), we can convert it into a classifier

ĉ(x) =

{
1, if p̂(x|Z = 1)P̂(Z = 1)≥ p̂(x|Z = 0)P̂(Z = 0)
0, if p̂(x|Z = 1)P̂(Z = 1)< p̂(x|Z = 0)P̂(Z = 0)

,

where P̂(Z = z) = 1
n ∑

n
i=1 I(Zi = z).

The above result shows that once we have a new density estimation method, we can use it for regression
and classification. However, can we do the other way around that turns a density estimation problem into a
classification (or a regression problem)?

It turns out that the answer is yes and here is a very simple approach to achieve it.

1

1 Density estimation via simulation and classification

Suppose we have X1, · · · ,Xn ∼ p0 from some unknown PDF p0 that we want to estimate and Xi ∈ Rd . And
we have powerful machine that can do classification pretty well (think of the modern deep neural nets). We
assume that all Xi ∈ [0,1]d for simplicity.

We will utilize a simulation approach to turn the density estimation into a classification problem. We now
simulate another sample X ′1, · · · ,X ′m from a known density function q(x). For simplicity, we choose q(x) to
be the uniform distribution over the support [0,1]d . Now, we combine the two samples into a new sample

X̃1, · · · , X̃n, X̃n+1, · · · , X̃n+m

such that
X̃i = Xi, i = 1, · · · ,n

and
X̃n+i = X ′i , i = 1, · · · ,m.

Also, we add a ‘class label’ Zi to these new observations such that Zi = 0 for i = 1, · · · ,n and Zi = 1 for
i = n+ 1, · · · ,n+m. Clearly, the label Z indicates if the observation is a simulated (Zi = 1) or an actual
observation (Zi = 0).

Now we consider the conditional density of X̃ given Z. It is clear that

p(x̃|Z = 0) = p0(x̃), p(x̃|Z = 1) = q(x̃)

because when Z = 0, our data are real data so it is from p0 while when Z = 1, the data is from simulation,
so it has a PDF q (which is a constant if we use the uniform distribution).

Based on (X̃ ,Z), we can view it as a classification problem and the odds

O(x̃) =
P(Z = 1|x̃)
P(Z = 0|x̃)

=
p(x̃|Z = 1)P(Z = 1)
p(x̃|Z = 0)P(Z = 0)

=
q(x̃)
p0(x̃)

m
n
.

Thus,

p0(x̃) =
q(x̃)
O(x̃)

m
n

and if we choose m = n and use q to be the PDF of uniform distribution over [0,1]d , we obtain

p0(x̃) = O−1(x̃). (1)

Mimicking the idea of logistic regression, we model the log-odds as

logO(x̃) = fθ(x̃)

and using equation (1), we obtain a model

p0(x̃) = e− fθ(x̃). (2)

2

As a result, we can estimate p0 via
p̂0(x) = e− f

θ̂
(x). (3)

Equation (3) shows how we turn a classification problem (generative classifier) into a density estimator and it
also shows how the accuracy of classification influences the accuracy of density estimation. More explicitly,
suppose θ̂

P→ θ∗ for some θ∗ and let p∗(x) = e− fθ∗ (x) be the corresponding target. Then we immediately have∣∣∣∣ p̂0(x)− p∗(x)
p∗(x)

∣∣∣∣= ∣∣∣e−(f
θ̂
(x)− fθ∗ (x))−1

∣∣∣
≤ 2| f

θ̂
(x)− fθ∗(x)|

when f
θ̂
(x)− fθ∗(x)≈ 0. This provides a bound on the stochastic variation of p̂0(x). To get the rate toward

p0(x), we just need to control the bias (approximation error) |p∗(x)−p0(x)|
p0(x)

.

Estimation of θ can be done in a conventional logistic regression model procedure. Recall that O(x̃) = e fθ(x̃).
This implies that

P(Z = 1|x̃) = e fθ(x̃)

1+ e fθ(x̃)
, P(Z = 0|x̃) = 1

1+ e fθ(x̃)

Therefore, the log-likelihood of (x̃,z) is

`(θ|x̃,z) = z fθ(x̃)− log(1+ e fθ(x̃))

and our estimator is

θ̂ = argmaxθ

2n

∑
i=1

`(θ|X̃i,Zi).

This approach is particularly useful in modern age of AI because we have many powerful tools for training
a good classifier. As long as we can predict the odds/probability of the labels, we can then convert it into a
density estimator.

Note that this procedure is somewhat related to the generative adversarial networks (GANs). In GANs, we
adjust the sampling distribution q and consider all possible classifiers to estimate the odds. If all classifiers
are performing badly, i.e., the odds is 1 everywhere, then the distribution q = p0 and we obtain the true
generative model.

2 Conditional density estimation

The above simulation and classification method can be applied to estimate the conditional density as well.
The following paper provides a comprehensive analysis on this idea:

CINDES: Classification induced neural density estimator and simulator. Dehao Dai, Jianqing
Fan, Yihong Gu, Debarghya Mukherjee. arXiv: 2510.00367 https://www.arxiv.org/abs/

2510.00367.

3

https://www.arxiv.org/abs/2510.00367
https://www.arxiv.org/abs/2510.00367

Here is how this idea is applied to estimating a conditional density. Suppose we have two sets of variables

(X1,Y1), · · · ,(Xn,Yn)∼ p0(x,y)

such that (X ,Y) ∈ Rdx+dy . Our goal is to estimate the conditional PDF p0(y|x).

The idea in [CINDES] is that we simulate Y only. Namely, we generate

Y ′1, · · · ,Y ′n ∼ q(y)

from some known density q such as the uniform. Then our ‘simulated’ data is

(X1,Y ′1), · · · ,(Xn,Y ′n).

Note that in the simulated data, X and Y ′ are independent. This independence is useful in the later derivation.

Similar to what we have done in the previous section, we combine the two dataset and add a class label:

(X̃1,Ỹ1,Z1), · · · ,(X̃2n,Ỹ2n,Z2n),

where X̃i = Xi,Ỹi =Yi,Zi = 0 for i = 1, · · · ,n and X̃i = Xi−n,Ỹi =Y ′i−n,Zi = 1 for i = n+1, · · · ,2n. This leads
to an interesting density of X̃ ,Ỹ given Z. When Z = 0, we have

p(x̃, ỹ|Z = 0) = p0(x̃, ỹ) (4)

and when Z = 1, the independence between simulated Y ′ and X implies

p(x̃, ỹ|Z = 1) = p0(x̃)q(ỹ). (5)

Under this construction, the odds of Z versus X̃ ,Ỹ is

O(x̃, ỹ) =
P(Z = 1|X̃ = x̃,Ỹ = ỹ)

P(Z = 0|X̃ = x̃,Ỹ = ỹ)

=
P(X̃ = x̃,Ỹ = ỹ|Z = 1)P(Z = 1)

P(X̃ = x̃,Ỹ = ỹ|Z = 0)P(Z = 0)

=
p0(x̃)q(ỹ)
p0(x̃, ỹ)

=
∫

Y
dy/p0(ỹ|x̃)

when q is the uniform distribution over Y , the support of Y . Note that if Y has a support [0,1]dy , the above
integral

∫
Y dy = 1.

When Y is supported on [0,1]dy , we conclude that

p0(ỹ|x̃) = O−1(x̃, ỹ) (6)

and we can train a classifier using {(X̃i,Ỹi,Zi)} and convert it into a conditional density estimator. If Y is not
supported on the cube, we need to adjust it by the integral

∫
Y dy.

4

3 Tukey’s factorization

Here is an alternative view of this simulation and classification approach from the Tukey’s factorization.

Suppose we have two sets of observations X1,X2, · · · ,Xn∼ p0 and X ′1, · · · ,X ′m∼ q0 such that they are the same
variables but collected in different populations. We can then combine these observations into X̃1, · · · , X̃n+m

such that the first n observations are just X1, · · · ,Xn and the remaining observations are X ′1, · · · ,X ′m and
introduce a label Zi such that Zi = 0 for i = 1, · · · ,n and Zi = 1for i = n+1, · · · ,n+m.

Our goal is to estimate p0. Using the Bayes rule, one can easily see that

O(x̃) =
P(Z = 1|x̃)
P(Z = 0|x̃)

=
q0(x̃)P(Z = 1)
p0(x̃)P(Z = 0)

=
q0(x̃)
p0(x̃)

m
n
.

Therefore,
p0(x̃) =

m
n
·q0(x̃)O−1(x̃). (7)

Namely, we can represent the density p0 as the density q0 scaled by the inverse of odds. This result is known
as the Tukey’s factorization.

Note that this problem also occurs in transfer learning. In transfer learning, we often have m >> n and/or
have a pretty accurate estimator q̂0 (think of it as coming from pre-training on a large but public dataset). So
the question in transfer learning is how do we turn this accurate estimator into estimating the density of the
target population p0.

Clearly, equation (1) is the is a special case of the Tukey’s factorization in equation (7) when q0 is chosen to
be a uniform distribution and m = n. In fact, equation (7) can be viewed as a general form of equation (1)
where we are allowed to use other density function. One key requirement for q0 is that it has to cover the
support of p0 (which implies that the odds is bounded away from 0).

4 Sampling using Langevin dynamics

Suppose we have a density estimator using equation (3): p̂0(x) = e− f
θ̂
(x). Now we want to study the problem

of sampling from p̂0. It turns out that classification-based method introduced in previous sections offers a
nice way for sampling via the Langevin dynamics.

Since the density estimator has a interesting exponential form, we consider the log-density:

log p̂0(x) =− f
θ̂
(x).

If we can compute the gradient of the log-density, we can use the Stochastic Langevin dynamics to sam-
ple from p̂0(x). Starting at an initial point x(0), the Langevin dynamics is creating a random sequence of
variables x(0),x(1),x(2), · · · via

x(t+1) = x(t)+ γ∇xU(x(t))+
√

2γWt ,

where W1,W2, · · · ∼ N(0,I) are IID Gaussian noises and U(x) > 0 is a function guiding the dynamics.
In statistical mechanics, −U(x) is called the potential energy (function). When γ → 0, the sequence
{x(0),x(1),x(2), · · ·} has a stationary distribution proportional to eU(x).

5

To use this in our scenario, we choose U(x) = log p̂0(x), which leads to

x(t+1) = x(t)+ γ∇x log p̂0(x(t))+
√

2γWt .

And the resulting sequence will converge to elog p̂0(x) = p̂0(x).

This idea is particularly useful in our case because

∇x log p̂0(x) =−∇x f
θ̂
(x)

may be easily computed. In particular, if we use the simplest logistic regression, fθ(x) = θT x so ∇x f
θ̂
(x) = θ̂.

6

	Density estimation via simulation and classification
	Conditional density estimation
	Tukey's factorization
	Sampling using Langevin dynamics

