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Here we review the ideas of nonparametric quantile regression via using the idea of reproducing kernel
Hilbert space (RKHS) H . One particular reason of using the RKHS is that it includes the popular spline
family. We will explain the quantile regression approach and study two special constraints: non-cross
quantile constraint and monotonicity constraint. At the end of this note, we will introduce another idea
using rearranging. Most of the contents are based on the following paper:

Takeuchi, I., Le, Q. V., Sears, T. D., & Smola, A. J. (2006). Nonparametric quantile estimation.
Journal of machine learning research, 7(Jul), 1231-1264.

Let Y ∈ R be the response variable and X ∈ R be the (univariate) covariate. The quantile regression aims
at finding the conditional quantiles of Y |X = x. Formally, given a quantile level τ ∈ [0,1], the quantile
regression aims at finding

m(x;τ) = F−1(τ|X = x),

where F(y|x) = P(Y ≤ y|X = x) is the cumulative distribution function.

The problem of quantile regression is: suppose we observe IID observations

(X1,Y1), · · · ,(Xn,Yn),

how can we estimate m(x;τ)?

Loss function of quantile regression. The quantile regression can be written as a risk minimization problem
via a particular loss function. For a random variable Y , its τ-quantile can be defined as

m(τ) = argminyE(Lτ(Y − y)), Lτ(y) =

{
τy, y≥ 0,
(τ−1)y, y < 0.

(1)

Namely, Lτ(y) is an asymmetric loss function and the quantile τ controls the slope of this loss. When τ= 0.5,
this reduces to the L1 loss function and the minimizer is the median. As a result, you can easily verify that
under suitable conditions (no probability mass at the quantile),

m(x;τ) = argminyE(Lτ(Y − f (X))|X = x).

Thus, many quantile regression approaches attempt to find the quantile curve by solving

m̂(x;τ) = argminm∈F
1
n

n

∑
i=1

Lτ(Yi− f (Xi))+λ ·pen( f ),

where pen( f ) is a penalty term on the (smoothness of) function f and F is some class of functions (such as
splines, RKHS, linear functions, etc) and λ > 0 is the tuning parameter on the penalty.
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1 Quantile regression with RKHS

We first consider the problem where τ is a given quantile. In the next section we will generalize it into
the case of multiple quantiles. The RKHS approach for quantile regression starts with decomposing m into
m = g+b, where b ∈ R is the intercept and g ∈H is a function in the RKHS space.

When using RKHS, a natural choice of penalty is the penalty in RKHS, so we rewrite our estimator as

m̂(x;τ) = ĝ(x)+ b̂

(ĝ, b̂) = argming∈H ,b∈R
1
n

n

∑
i=1

Lτ(Yi−g(Xi)−b)+λ‖g‖H ,
(2)

where ‖g‖H is the RKHS norm of g.

Recall that for any function g ∈H , it can always be represented as

g(x) = 〈ω,φ(x)〉,

where φ(x) is the basis function in H for each x and ω is the coefficient (function) such that the kernel
function K(x,y) = 〈φ(x),φ(y)〉.

As a result, we can rewrite the minimization problem of equation (2) as

minb∈R,ω
1
n

n

∑
i=1

Lτ(Yi−〈ω,φ(Xi)〉−b)+
λ

2
‖g‖2

H . (3)

Note that we set the tuning parameter to be λ

2 to simplify derivations later.

The fact that the loss function Lτ has two parts makes the analysis not simple. However, we can simplify
the problem by introducing two sets of slack variables ξ,ξ∗ ∈ Rn and rewrite the minimization problem in
equation (3) as

minω,ξ,ξ∗
1
2
‖ω‖2 +

1
λn

(
n

∑
i=1

τξi +(1− τ)ξ∗i

)
s.t. (Yi−〈ω,φ(Xi)〉−b)≤ ξi, −(Yi−〈ω,φ(Xi)〉−b)≤ ξ

∗
i , ξi,ξ

∗
i ≥ 0

(4)

for each i = 1, · · · ,n. You can easily verify that the two minimization problems are the same. The slack
variable can be interpreted as an activation version of the loss function Lτ(y). If the part y≥ 0 in Lτ(y), then
ξi will represents the loss and ξ∗i = 0 (and vice versa for y < 0).

To solve the problem of equation (4), we use Lagrangian multipliers. Let µ,µ∗,η,η∗ ∈Rn be the Lagrangian
multipliers. Then we can rewrite the above minimization problem as the Lagrangian

L =−1
2
‖ω‖2− 1

λn

(
n

∑
i=1

τξi +(1− τ)ξ∗i

)

+
n

∑
i=1

µi(ξi−Yi + 〈ω,φ(Xi)〉+b)+
n

∑
i=1

µ∗i (ξ
∗
i +Yi−〈ω,φ(Xi)〉−b)

+
n

∑
i=1

(ηiξi +η
∗
i ξ
∗
i ).

(5)
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with constraints that the multipliers are non-negative (KKT conditions). To find the minimal, we have to take
the derivative with respect to ω,ξ,ξ∗ and set them to be 0. This gives us a few useful equality constraints

∂

∂ξi
L = 0 =

τ

λn
−µi−ηi

∂

∂ξ∗i
L = 0 =

1− τ

λn
−µ∗i −η

∗
i

∂

∂ω
L = 0 = ω−

n

∑
i=1

(µi−µ∗i )φ(Xi)

∂

∂b
L = 0 =

n

∑
i=1

µi−µ∗i .

The third equation gives us a closed-form expression of ω:

ω =
n

∑
i=1

(µi−µ∗i )φ(Xi) =
n

∑
i=1

αiφ(Xi) = α
T

φn

and the first two equalities (with the multipliers being non-negative) show constraints on αi:

τ−1
λn
≤ αi ≤

τ

λn

and the last equality gives the constraint ∑i αi = 0. Note that φn = (φ(X1), · · · ,φ(Xn))
T ∈ Rn.

Thus, at the stationary point, the Lagrangian can be written as

L∗ =
1
2

α
T

φnφ
T
n α−YT

n α

subject to 1T
n α = 0 and τ−1

λn ≤ αi ≤ τ

λn and Yn = (Y1, · · · ,Yn)
T . The solution is α̂ that minimizes L∗ and we

can write φnφT
n = K as the Gram matrix so the solution is

α̂ = argminα∈Rn
1
2

α
T Kα−YT

n α

s.t. 1T
n α = 0,

τ−1
λn
≤ αi ≤

τ

λn
.

When we have α̂, we can compute ĝ(Xi) using

ĝ(Xi) = 〈ω̂,φ(Xi)〉= 〈α̂T
φn,φ(Xi)〉=

n

∑
j=1

α̂ j〈φ(X j),φ(Xi)〉=
n

∑
j=1

α̂ jK(X j,Xi).

Similar for the vector ĝn = (ĝ(X1), · · · , ĝ(Xn)), it can be written as

ĝn = Kα̂.

Note that for any arbitrary point x, ĝ(x) = ∑
n
i=1 α̂iK(Xi,x). The intercept can be estimated by plug-in ĝn and

minimizes the remaining empirical risk.
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2 Non-crossing constraint

In many scenarios, we will not just interested in a particular quantile. Instead, we may want to estimate
several quantile curves τ1 < τ2 < · · · < τK . If we apply the above procedure individually to each quantile
curve, estimated quantile curves may cross with each other, leading to an undesirable scenario. Here we
discuss how to incorporate the non-crossing constraint into the quantile regression problem.

In this case, each estimated quantile curve would be written as

m̂k(x) = m̂(x;τk) = ĝk(x)+ b̂k

for each k = 1, · · · ,K. The non-crossing constraint can be expressed as the constraint that m̂k(x)≥ m̂k−1(x)
which is equivalent to

〈ω̂k,φ(x)〉+ b̂k ≥ 〈ω̂k−1,φ(x)〉+ b̂k−1.

In RKHS space, it is not easy to impose such constraint for all point x. A relaxed version of the above
constraint is

〈ω̂k,φ(Xi)〉+ b̂k ≥ 〈ω̂k−1,φ(Xi)〉+ b̂k−1 (6)

for each i = 1, · · · ,n and k = 2, · · · ,n. Namely, we only place the non-crossing constraint at every observed
point.

We can easily incorporate equation (6) into equation (4). A complication here is that the optimization
problem of different quantiles are no longer separable. So we have to solve a joint optimization problem:

minω,ξ,ξ∗

K

∑
k=1

1
2
‖ωk‖2 +

1
λn

(
n

∑
i=1

τkξk,i +(1− τk)ξ
∗
k,i

)
s.t. (Yi−〈ωk,φ(Xi)〉−bk)≤ ξk,i, −(Yi−〈ωk,φ(Xi)〉−bk)≤ ξ

∗
k,i, ξk,i,ξ

∗
k,i ≥ 0,

〈ωk,φ(Xi)〉+bk ≥ 〈ωk−1,φ(Xi)〉+bk−1.

(7)

The additional constraint will introduce an additional Lagrangian multiplier θ. The Lagrangian form of the
above problem is

L =
K

∑
k=1

Lk

Lk =−
1
2
‖ωk‖2− 1

λn

(
n

∑
i=1

τkξk,i +(1− τk)ξ
∗
k,i

)

+
n

∑
i=1

µk,i(ξk,i−Yi + 〈ωk,φ(Xi)〉+bk)+
n

∑
i=1

µ∗k,i(ξ
∗
k,i +Yi−〈ωk,φ(Xi)〉−bk)

+
n

∑
i=1

(ηk,iξk,i +η
∗
k,iξ
∗
k,i)

+
n

∑
i=1

θk,i(〈ωk,φ(Xi)〉−〈ωk−1,φ(Xi)〉+bk−bk−1)

(8)

for k = 1,2, · · · ,K and L1 takes the same form as equation (5) and we set θ0 = 0.
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The derivative with respect to ξ and ξ∗ are the same–they provide constraints on the range of αk,i = µk,i−µ∗k,i.
The additional inequality changes the form of ωk:

∂

∂ωk
L = 0 = ωk−

n

∑
i=1

(µk,i−µ∗k,i +θk,i−θk+1,i)φ(Xi)

∂

∂bk
L = 0 =

n

∑
i=1

µk,i−µ∗k,i +θk,i−θk+1,i.

Using the notation αk = (αk,1, · · · ,αk,n)
T and θk = (θk,1, · · · ,θk,n), we can write

ωk = (αk +θk−θk+1)
T

φn.

Using the above stationary points conditions into the Lagrangian, we obtain the following criterion of finding
α and θ:

L∗ = ∑
k

L∗k

L∗k =
1
2
‖(αk +θk−θk+1)

T
φn‖2−YT

αk

=
1
2

α
T
k Kαk +α

T
k K(θk−θk+1)+(θk−θk+1)

T K(θk−θk+1)−YT
αk.

(9)

We solve the above minimization problem with constraints

1T
n (αk +θk−θk+1) = 0,

τk−1
λn

≤ αk,i ≤
τk

λn

to obtain α̂k and θ̂k for each k = 1, · · · ,K−1, which also gives us

ĝk(x) =
n

∑
i=1

(α̂k,i + θ̂k,i− θ̂k+1,i)K(Xi,x)

or
ĝk,n = K(α̂k + θ̂k− θ̂k+1) ∈ Rn.

Note that we can also requires the non-crossing constraint to any set of points x1, · · · ,xL that are not neces-
sarily the same as the observed covariates. The kernel matrix in equation (9) will change accordingly.

3 Monotonicity constraint

In addition to the non-crossing constraint, we can also incorporate the monotonicity constraint easily. To
simplify the problem, we consider a single quantile again. The same idea can also be applied to multiple
quantiles (even with non-crossing constraints). Suppose we want to constraint that quantile curve to be
non-decreasing, which translates into

g′(x)≥ 0

for all x. Again, enforcing this constraint for all points is not easy in the RKHS space. So we relax that
constraint by requiring it only on the observed data points, i.e.,

g′(Xi)≥ 0
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for all i = 1, · · · ,n.

Here is an interesting property of the derivative of g(x):

g′(x) =
d
dx
〈ω,φ(x)〉= 〈ω, d

dx
φ(x)〉= 〈ω,φ′(x)〉.

Thus, the monotonicity constraints becomes

〈ω,φ′(Xi)〉 ≥ 0

for each i = 1, · · · ,n. With this, we can rewrite equation (4) as

minω,ξ,ξ∗
1
2
‖ω‖2 +

1
λn

(
n

∑
i=1

τξi +(1− τ)ξ∗i

)
s.t. (Yi−〈ω,φ(Xi)〉−b)≤ ξi, −(Yi−〈ω,φ(Xi)〉−b)≤ ξ

∗
i , ξi,ξ

∗
i ≥ 0

〈ω,φ′(Xi)〉 ≥ 0.

(10)

The additional constraint introduces a new Lagrangian multiplier ζ and the Lagrangian will be

L =−1
2
‖ω‖2− 1

λn

(
n

∑
i=1

τξi +(1− τ)ξ∗i

)

+
n

∑
i=1

µi(ξi−Yi + 〈ω,φ(Xi)〉+b)+
n

∑
i=1

µ∗i (ξ
∗
i +Yi−〈ω,φ(Xi)〉−b)

+
n

∑
i=1

(ηiξi +η
∗
i ξ
∗
i )+

n

∑
i=1

ζi〈ω,φ′(Xi)〉.

(11)

Again, taking derivatives with respect to µ,η does not change here so they place constraints on αi = µi−µ∗i .
Also, the derivative of b is the same so we have constraint αT 1n = 0. What changes is the derivative with
respect to ω :

∂

∂ω
L = 0 = ω−

n

∑
i=1

αiφ(Xi)+ζiφ
′(Xi).

Recall that φn = (φ(X1), · · · ,φ(Xn)) and ψn = (φ′(X1), · · · ,φ′(Xn)). Then we can write

ω = α
T

φn +ζ
T

ψn.

Note that we use notation ψn instead of φ′n because φn itself is a function so people may thought that the
derivative φ′n is referring to the derivative of φn.

Putting the stationary points into equation (11), there are only 3 terms left:

L∗ =−1
2
‖ω‖2 +

n

∑
i=1

(µi−µ∗i )︸ ︷︷ ︸
=αi

〈ω,φ(Xi)〉+
n

∑
i=1

ζi〈ω,φ′(Xi)〉

=−1
2
‖ω‖2 + 〈ω,αT

φn〉+ 〈ω,ζT
ψn〉.
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Inserting ω = αT φn +ζT ψn into the above equation, then we obtain

L∗ =
1
2
(
α

T Kα+α
T D2Kζ+ζ

T D1Kα+ζ
T D1D2Kζ

)
−YT

α

=
1
2

[
α

ζ

]T [ K D2K
D1K D1D2K

][
α

ζ

]
−YT

α,

(12)

where D1K = ψT
n φn is the Gram matrix obtained by the partial derivative kernel d

dx1
K(x1,x2) and similarly

for D2K = φT
n ψn and D1D2K = ψT

n ψn.

The estimators α̂ and ζ̂ is obtained by minimizing equation (11) subject to the constraints on α and ζi ≥ 0.
With the estimators α̂ and ζ̂, we obtain

ĝ(x) =
n

∑
i=1

α̂iK(Xi,x)+ ζ̂iK1(Xi,x),

where K1(x1,x2) =
∂

∂x1
K(x1,x2).

4 Monotonicity constraint: rearrangement approach

Rearrangement provides an alternative approach to quantile regression (and other regression estimator) that
encourages monotonicity constraint. The idea of rearrangement comes from the following paper:

• Chernozhukov, V., Fernandez-Val, I., & Galichon, A. (2009). Improving point and interval estimators
of monotone functions by rearrangement. Biometrika, 96(3), 559-575.

It is a method that converts an estimated function to a function with a monotonicity constraint. For simplicity,
we assume that we want to fit a quantile regression function that is non-decreasing.

Suppose that the covariates are supported on the interval [0,1] and we have an initial quantile regression
estimator m̂τ(x) that is not necessarily non-decreasing. This estimator may be the one from Section 1.

For any function f : [0,1] 7→ R, its rearrangement is the function

f †(x) = inf
{

y :
∫

I( f (u)≤ y)du≥ x
}

= inf{y : Vol(Ly)≥ x} ,

where Ly = {z : f (z) ≤ y} is the lower-level set of f at the threshold y. It can be easily seen that f †(x) is a
non-decreasing function and has the same range as f . Moreover, for any threshold y > 0, the following level
sets

Ly = {z : f (z)≤ λ}, L†
y = {z : f †(z)≤ λ}

have the same volume
Vol(Ly) = Vol(L†

y)
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if f ′(x) > 0 and is differentiable everywhere on [0,1]. Namely, f † and f are similar in terms of the size of
regions below any threshold.

In Chernozhukov et al. (2009), the authors proved that if the true function f0 is non-decreasing, then for any
function f , its rearrangement satisfies(∫

| f †(x)− f0(x)|pdx
)1/p

≤
(∫
| f (x)− f0(x)|pdx

)1/p

for all p ∈ [1,∞]. Namely, the rearrangement may improve the accuracy of an initial estimator if the truth is
non-decreasing. Note that the authors also provided a strict inequality under additional conditions.

Thus, if we know that the true quantile regression mτ(x) is non-decreasing, we can always use rearrangement
to improve the accuracy.
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