A note on constrained nonparametric quantile regression

Yen-Chi Chen University of Washington April 1, 2020

Here we review the ideas of nonparametric quantile regression via using the idea of reproducing kernel Hilbert space (RKHS) \mathcal{H} . One particular reason of using the RKHS is that it includes the popular spline family. We will explain the quantile regression approach and study two special constraints: non-cross quantile constraint and monotonicity constraint. At the end of this note, we will introduce another idea using rearranging. Most of the contents are based on the following paper:

Takeuchi, I., Le, Q. V., Sears, T. D., & Smola, A. J. (2006). Nonparametric quantile estimation. Journal of machine learning research, 7(Jul), 1231-1264.

Let $Y \in \mathbb{R}$ be the response variable and $X \in \mathbb{R}$ be the (univariate) covariate. The quantile regression aims at finding the conditional quantiles of Y|X = x. Formally, given a quantile level $\tau \in [0, 1]$, the quantile regression aims at finding

$$m(x; \mathbf{\tau}) = F^{-1}(\mathbf{\tau} | X = x),$$

where $F(y|x) = P(Y \le y|X = x)$ is the cumulative distribution function.

The problem of quantile regression is: suppose we observe IID observations

$$(X_1,Y_1),\cdots,(X_n,Y_n),$$

how can we estimate $m(x; \tau)$?

Loss function of quantile regression. The quantile regression can be written as a risk minimization problem via a particular loss function. For a random variable Y, its τ -quantile can be defined as

$$m(\tau) = \operatorname{argmin}_{y} \mathbb{E}(L_{\tau}(Y - y)), \quad L_{\tau}(y) = \begin{cases} \tau y, & y \ge 0, \\ (\tau - 1)y, & y < 0. \end{cases}$$
(1)

Namely, $L_{\tau}(y)$ is an asymmetric loss function and the quantile τ controls the slope of this loss. When $\tau = 0.5$, this reduces to the L_1 loss function and the minimizer is the median. As a result, you can easily verify that under suitable conditions (no probability mass at the quantile),

$$m(x;\tau) = \operatorname{argmin}_{v} \mathbb{E}(L_{\tau}(Y - f(X)) | X = x).$$

Thus, many quantile regression approaches attempt to find the quantile curve by solving

$$\widehat{m}(x;\tau) = \operatorname{argmin}_{m \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} L_{\tau}(Y_i - f(X_i)) + \lambda \cdot \operatorname{pen}(f),$$

where pen(*f*) is a penalty term on the (smoothness of) function *f* and \mathcal{F} is some class of functions (such as splines, RKHS, linear functions, etc) and $\lambda > 0$ is the tuning parameter on the penalty.

1 Quantile regression with RKHS

We first consider the problem where τ is a given quantile. In the next section we will generalize it into the case of multiple quantiles. The RKHS approach for quantile regression starts with decomposing *m* into m = g + b, where $b \in \mathbb{R}$ is the intercept and $g \in \mathcal{H}$ is a function in the RKHS space.

When using RKHS, a natural choice of penalty is the penalty in RKHS, so we rewrite our estimator as

$$\widehat{m}(x;\tau) = \widehat{g}(x) + \widehat{b}$$

$$(\widehat{g},\widehat{b}) = \operatorname{argmin}_{g \in \mathcal{H}, b \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} L_{\tau}(Y_i - g(X_i) - b) + \lambda \|g\|_{\mathcal{H}},$$
(2)

where $||g||_{\mathcal{H}}$ is the RKHS norm of *g*.

Recall that for any function $g \in \mathcal{H}$, it can always be represented as

$$g(x) = \langle \mathbf{\omega}, \mathbf{\phi}(x) \rangle$$

where $\phi(x)$ is the basis function in \mathcal{H} for each *x* and ω is the coefficient (function) such that the kernel function $K(x,y) = \langle \phi(x), \phi(y) \rangle$.

As a result, we can rewrite the minimization problem of equation (2) as

$$\min_{b\in\mathbb{R},\omega} \quad \frac{1}{n}\sum_{i=1}^{n}L_{\tau}(Y_{i}-\langle\omega,\phi(X_{i})\rangle-b)+\frac{\lambda}{2}\|g\|_{\mathcal{H}}^{2}.$$
(3)

Note that we set the tuning parameter to be $\frac{\lambda}{2}$ to simplify derivations later.

The fact that the loss function L_{τ} has two parts makes the analysis not simple. However, we can simplify the problem by introducing two sets of slack variables $\xi, \xi^* \in \mathbb{R}^n$ and rewrite the minimization problem in equation (3) as

$$\min_{\boldsymbol{\omega},\boldsymbol{\xi},\boldsymbol{\xi}^*} \quad \frac{1}{2} \|\boldsymbol{\omega}\|^2 + \frac{1}{\lambda n} \left(\sum_{i=1}^n \tau \boldsymbol{\xi}_i + (1-\tau) \boldsymbol{\xi}_i^* \right)$$
s.t. $(Y_i - \langle \boldsymbol{\omega}, \boldsymbol{\phi}(X_i) \rangle - b) \le \boldsymbol{\xi}_i, \quad -(Y_i - \langle \boldsymbol{\omega}, \boldsymbol{\phi}(X_i) \rangle - b) \le \boldsymbol{\xi}_i^*, \quad \boldsymbol{\xi}_i, \boldsymbol{\xi}_i^* \ge 0$

$$(4)$$

for each $i = 1, \dots, n$. You can easily verify that the two minimization problems are the same. The slack variable can be interpreted as an activation version of the loss function $L_{\tau}(y)$. If the part $y \ge 0$ in $L_{\tau}(y)$, then ξ_i will represents the loss and $\xi_i^* = 0$ (and vice versa for y < 0).

To solve the problem of equation (4), we use Lagrangian multipliers. Let $\mu, \mu^*, \eta, \eta^* \in \mathbb{R}^n$ be the Lagrangian multipliers. Then we can rewrite the above minimization problem as the Lagrangian

$$\mathcal{L} = -\frac{1}{2} \|\mathbf{\omega}\|^2 - \frac{1}{\lambda n} \left(\sum_{i=1}^n \tau \xi_i + (1 - \tau) \xi_i^* \right) + \sum_{i=1}^n \mu_i (\xi_i - Y_i + \langle \mathbf{\omega}, \phi(X_i) \rangle + b) + \sum_{i=1}^n \mu_i^* (\xi_i^* + Y_i - \langle \mathbf{\omega}, \phi(X_i) \rangle - b) + \sum_{i=1}^n (\eta_i \xi_i + \eta_i^* \xi_i^*).$$
(5)

with constraints that the multipliers are non-negative (KKT conditions). To find the minimal, we have to take the derivative with respect to ω, ξ, ξ^* and set them to be 0. This gives us a few useful equality constraints

$$\begin{aligned} \frac{\partial}{\partial \xi_i} \mathcal{L} &= 0 = \frac{\tau}{\lambda n} - \mu_i - \eta_i \\ \frac{\partial}{\partial \xi_i^*} \mathcal{L} &= 0 = \frac{1 - \tau}{\lambda n} - \mu_i^* - \eta_i^* \\ \frac{\partial}{\partial \omega} \mathcal{L} &= 0 = \omega - \sum_{i=1}^n (\mu_i - \mu_i^*) \phi(X_i) \\ \frac{\partial}{\partial b} \mathcal{L} &= 0 = \sum_{i=1}^n \mu_i - \mu_i^*. \end{aligned}$$

The third equation gives us a closed-form expression of ω :

$$\omega = \sum_{i=1}^{n} (\mu_i - \mu_i^*) \phi(X_i) = \sum_{i=1}^{n} \alpha_i \phi(X_i) = \alpha^T \phi_n$$

and the first two equalities (with the multipliers being non-negative) show constraints on α_i :

$$\frac{\tau-1}{\lambda n} \leq \alpha_i \leq \frac{\tau}{\lambda n}$$

and the last equality gives the constraint $\sum_i \alpha_i = 0$. Note that $\phi_n = (\phi(X_1), \dots, \phi(X_n))^T \in \mathbb{R}^n$. Thus, at the stationary point, the Lagrangian can be written as

$$\mathcal{L}^* = \frac{1}{2} \boldsymbol{\alpha}^T \boldsymbol{\phi}_n \boldsymbol{\phi}_n^T \boldsymbol{\alpha} - \boldsymbol{\mathbb{Y}}_n^T \boldsymbol{\alpha}$$

subject to $1_n^T \alpha = 0$ and $\frac{\tau - 1}{\lambda_n} \le \alpha_i \le \frac{\tau}{\lambda_n}$ and $\mathbb{Y}_n = (Y_1, \dots, Y_n)^T$. The solution is $\widehat{\alpha}$ that minimizes \mathcal{L}^* and we can write $\phi_n \phi_n^T = \mathbf{K}$ as the Gram matrix so the solution is

$$\begin{aligned} \widehat{\boldsymbol{\alpha}} &= \operatorname{argmin}_{\boldsymbol{\alpha} \in \mathbb{R}^n} \quad \frac{1}{2} \boldsymbol{\alpha}^T \mathbf{K} \boldsymbol{\alpha} - \mathbb{Y}_n^T \boldsymbol{\alpha} \\ \text{s.t.} \quad \mathbf{1}_n^T \boldsymbol{\alpha} &= \mathbf{0}, \quad \frac{\tau - 1}{\lambda n} \leq \boldsymbol{\alpha}_i \leq \frac{\tau}{\lambda n} \end{aligned}$$

When we have $\widehat{\alpha}$, we can compute $\widehat{g}(X_i)$ using

$$\widehat{g}(X_i) = \langle \widehat{\omega}, \phi(X_i) \rangle = \langle \widehat{\alpha}^T \phi_n, \phi(X_i) \rangle = \sum_{j=1}^n \widehat{\alpha}_j \langle \phi(X_j), \phi(X_i) \rangle = \sum_{j=1}^n \widehat{\alpha}_j K(X_j, X_i).$$

Similar for the vector $\widehat{g}_n = (\widehat{g}(X_1), \cdots, \widehat{g}(X_n))$, it can be written as

$$\widehat{g}_n = \mathbf{K}\widehat{\alpha}.$$

Note that for any arbitrary point *x*, $\hat{g}(x) = \sum_{i=1}^{n} \hat{\alpha}_i K(X_i, x)$. The intercept can be estimated by plug-in \hat{g}_n and minimizes the remaining empirical risk.

2 Non-crossing constraint

In many scenarios, we will not just interested in a particular quantile. Instead, we may want to estimate several quantile curves $\tau_1 < \tau_2 < \cdots < \tau_K$. If we apply the above procedure individually to each quantile curve, estimated quantile curves may cross with each other, leading to an undesirable scenario. Here we discuss how to incorporate the non-crossing constraint into the quantile regression problem.

In this case, each estimated quantile curve would be written as

$$\widehat{m}_k(x) = \widehat{m}(x; \mathbf{\tau}_k) = \widehat{g}_k(x) + \widehat{b}_k$$

for each $k = 1, \dots, K$. The non-crossing constraint can be expressed as the constraint that $\widehat{m}_k(x) \ge \widehat{m}_{k-1}(x)$ which is equivalent to

$$\langle \widehat{\boldsymbol{\omega}}_k, \boldsymbol{\phi}(x) \rangle + \widehat{\boldsymbol{b}}_k \geq \langle \widehat{\boldsymbol{\omega}}_{k-1}, \boldsymbol{\phi}(x) \rangle + \widehat{\boldsymbol{b}}_{k-1}.$$

In RKHS space, it is not easy to impose such constraint for all point x. A relaxed version of the above constraint is

$$\langle \widehat{\mathbf{\omega}}_k, \mathbf{\phi}(X_i) \rangle + \widehat{b}_k \ge \langle \widehat{\mathbf{\omega}}_{k-1}, \mathbf{\phi}(X_i) \rangle + \widehat{b}_{k-1} \tag{6}$$

for each $i = 1, \dots, n$ and $k = 2, \dots, n$. Namely, we only place the non-crossing constraint at every observed point.

We can easily incorporate equation (6) into equation (4). A complication here is that the optimization problem of different quantiles are no longer separable. So we have to solve a joint optimization problem:

$$\begin{aligned} \min_{\boldsymbol{\omega},\boldsymbol{\xi},\boldsymbol{\xi}^*} \quad & \sum_{k=1}^{K} \frac{1}{2} \|\boldsymbol{\omega}_k\|^2 + \frac{1}{\lambda n} \left(\sum_{i=1}^{n} \tau_k \boldsymbol{\xi}_{k,i} + (1 - \tau_k) \boldsymbol{\xi}_{k,i}^* \right) \\ \text{s.t.} \quad & (Y_i - \langle \boldsymbol{\omega}_k, \boldsymbol{\phi}(X_i) \rangle - b_k) \leq \boldsymbol{\xi}_{k,i}, \quad -(Y_i - \langle \boldsymbol{\omega}_k, \boldsymbol{\phi}(X_i) \rangle - b_k) \leq \boldsymbol{\xi}_{k,i}^*, \quad \boldsymbol{\xi}_{k,i}, \boldsymbol{\xi}_{k,i}^* \geq 0, \\ & \langle \boldsymbol{\omega}_k, \boldsymbol{\phi}(X_i) \rangle + b_k \geq \langle \boldsymbol{\omega}_{k-1}, \boldsymbol{\phi}(X_i) \rangle + b_{k-1}. \end{aligned}$$
(7)

The additional constraint will introduce an additional Lagrangian multiplier θ . The Lagrangian form of the above problem is

$$\mathcal{L} = \sum_{k=1}^{K} \mathcal{L}_{k}$$

$$\mathcal{L}_{k} = -\frac{1}{2} ||\omega_{k}||^{2} - \frac{1}{\lambda n} \left(\sum_{i=1}^{n} \tau_{k} \xi_{k,i} + (1 - \tau_{k}) \xi_{k,i}^{*} \right)$$

$$+ \sum_{i=1}^{n} \mu_{k,i} (\xi_{k,i} - Y_{i} + \langle \omega_{k}, \phi(X_{i}) \rangle + b_{k}) + \sum_{i=1}^{n} \mu_{k,i}^{*} (\xi_{k,i}^{*} + Y_{i} - \langle \omega_{k}, \phi(X_{i}) \rangle - b_{k})$$

$$+ \sum_{i=1}^{n} (\eta_{k,i} \xi_{k,i} + \eta_{k,i}^{*} \xi_{k,i}^{*})$$

$$+ \sum_{i=1}^{n} \theta_{k,i} (\langle \omega_{k}, \phi(X_{i}) \rangle - \langle \omega_{k-1}, \phi(X_{i}) \rangle + b_{k} - b_{k-1})$$
(8)

for $k = 1, 2, \dots, K$ and \mathcal{L}_1 takes the same form as equation (5) and we set $\theta_0 = 0$.

The derivative with respect to ξ and ξ^* are the same–they provide constraints on the range of $\alpha_{k,i} = \mu_{k,i} - \mu_{k,i}^*$. The additional inequality changes the form of ω_k :

$$\frac{\partial}{\partial \omega_k} \mathcal{L} = 0 = \omega_k - \sum_{i=1}^n (\mu_{k,i} - \mu_{k,i}^* + \theta_{k,i} - \theta_{k+1,i})\phi(X_i)$$
$$\frac{\partial}{\partial b_k} \mathcal{L} = 0 = \sum_{i=1}^n \mu_{k,i} - \mu_{k,i}^* + \theta_{k,i} - \theta_{k+1,i}.$$

Using the notation $\alpha_k = (\alpha_{k,1}, \cdots, \alpha_{k,n})^T$ and $\theta_k = (\theta_{k,1}, \cdots, \theta_{k,n})$, we can write

$$\boldsymbol{\omega}_k = (\boldsymbol{\alpha}_k + \boldsymbol{\theta}_k - \boldsymbol{\theta}_{k+1})^T \boldsymbol{\phi}_n.$$

Using the above stationary points conditions into the Lagrangian, we obtain the following criterion of finding α and θ :

$$\mathcal{L}^{*} = \sum_{k} \mathcal{L}_{k}^{*}$$

$$\mathcal{L}_{k}^{*} = \frac{1}{2} \| (\alpha_{k} + \theta_{k} - \theta_{k+1})^{T} \phi_{n} \|^{2} - \mathbb{Y}^{T} \alpha_{k}$$

$$= \frac{1}{2} \alpha_{k}^{T} \mathbf{K} \alpha_{k} + \alpha_{k}^{T} \mathbf{K} (\theta_{k} - \theta_{k+1}) + (\theta_{k} - \theta_{k+1})^{T} \mathbf{K} (\theta_{k} - \theta_{k+1}) - \mathbb{Y}^{T} \alpha_{k}.$$
(9)

We solve the above minimization problem with constraints

$$\mathbf{1}_n^T(\mathbf{\alpha}_k + \mathbf{\theta}_k - \mathbf{\theta}_{k+1}) = 0, \quad \frac{\mathbf{\tau}_k - 1}{\lambda n} \leq \mathbf{\alpha}_{k,i} \leq \frac{\mathbf{\tau}_k}{\lambda n}$$

to obtain $\widehat{\alpha}_k$ and $\widehat{\theta}_k$ for each $k = 1, \dots, K-1$, which also gives us

$$\widehat{g}_k(x) = \sum_{i=1}^n (\widehat{\alpha}_{k,i} + \widehat{\theta}_{k,i} - \widehat{\theta}_{k+1,i}) K(X_i, x)$$

or

$$\widehat{g}_{k,n} = \mathbf{K}(\widehat{\alpha}_k + \widehat{\theta}_k - \widehat{\theta}_{k+1}) \in \mathbf{R}^n.$$

Note that we can also requires the non-crossing constraint to any set of points x_1, \dots, x_L that are not necessarily the same as the observed covariates. The kernel matrix in equation (9) will change accordingly.

3 Monotonicity constraint

In addition to the non-crossing constraint, we can also incorporate the monotonicity constraint easily. To simplify the problem, we consider a single quantile again. The same idea can also be applied to multiple quantiles (even with non-crossing constraints). Suppose we want to constraint that quantile curve to be non-decreasing, which translates into

$$g'(x) \ge 0$$

for all *x*. Again, enforcing this constraint for all points is not easy in the RKHS space. So we relax that constraint by requiring it only on the observed data points, i.e.,

$$g'(X_i) \geq 0$$

for all $i = 1, \dots, n$.

Here is an interesting property of the derivative of g(x):

$$g'(x) = \frac{d}{dx} \langle \omega, \phi(x) \rangle = \langle \omega, \frac{d}{dx} \phi(x) \rangle = \langle \omega, \phi'(x) \rangle.$$

Thus, the monotonicity constraints becomes

$$\langle \boldsymbol{\omega}, \boldsymbol{\phi}'(X_i) \rangle \geq 0$$

for each $i = 1, \dots, n$. With this, we can rewrite equation (4) as

$$\begin{aligned} \min_{\boldsymbol{\omega},\boldsymbol{\xi},\boldsymbol{\xi}^*} \quad & \frac{1}{2} \|\boldsymbol{\omega}\|^2 + \frac{1}{\lambda n} \left(\sum_{i=1}^n \tau \boldsymbol{\xi}_i + (1-\tau) \boldsymbol{\xi}_i^* \right) \\ \text{s.t.} \quad & (Y_i - \langle \boldsymbol{\omega}, \boldsymbol{\phi}(X_i) \rangle - b) \le \boldsymbol{\xi}_i, \quad -(Y_i - \langle \boldsymbol{\omega}, \boldsymbol{\phi}(X_i) \rangle - b) \le \boldsymbol{\xi}_i^*, \quad \boldsymbol{\xi}_i, \boldsymbol{\xi}_i^* \ge 0 \\ & \langle \boldsymbol{\omega}, \boldsymbol{\phi}'(X_i) \rangle \ge 0. \end{aligned}$$
(10)

The additional constraint introduces a new Lagrangian multiplier ζ and the Lagrangian will be

$$\mathcal{L} = -\frac{1}{2} \|\omega\|^{2} - \frac{1}{\lambda n} \left(\sum_{i=1}^{n} \tau \xi_{i} + (1-\tau) \xi_{i}^{*} \right) + \sum_{i=1}^{n} \mu_{i} (\xi_{i} - Y_{i} + \langle \omega, \phi(X_{i}) \rangle + b) + \sum_{i=1}^{n} \mu_{i}^{*} (\xi_{i}^{*} + Y_{i} - \langle \omega, \phi(X_{i}) \rangle - b) + \sum_{i=1}^{n} (\eta_{i} \xi_{i} + \eta_{i}^{*} \xi_{i}^{*}) + \sum_{i=1}^{n} \zeta_{i} \langle \omega, \phi'(X_{i}) \rangle.$$
(11)

Again, taking derivatives with respect to μ , η does not change here so they place constraints on $\alpha_i = \mu_i - \mu_i^*$. Also, the derivative of *b* is the same so we have constraint $\alpha^T \mathbf{1}_n = 0$. What changes is the derivative with respect to ω :

$$\frac{\partial}{\partial \omega} \mathcal{L} = 0 = \omega - \sum_{i=1}^{n} \alpha_i \phi(X_i) + \zeta_i \phi'(X_i)$$

Recall that $\phi_n = (\phi(X_1), \dots, \phi(X_n))$ and $\psi_n = (\phi'(X_1), \dots, \phi'(X_n))$. Then we can write

$$\omega = \alpha^T \phi_n + \zeta^T \psi_n.$$

Note that we use notation ψ_n instead of ϕ'_n because ϕ_n itself is a function so people may thought that the derivative ϕ'_n is referring to the derivative of ϕ_n .

Putting the stationary points into equation (11), there are only 3 terms left:

$$\mathcal{L}^* = -\frac{1}{2} \|\omega\|^2 + \sum_{i=1}^n \underbrace{(\mu_i - \mu_i^*)}_{=\alpha_i} \langle \omega, \phi(X_i) \rangle + \sum_{i=1}^n \zeta_i \langle \omega, \phi'(X_i) \rangle$$
$$= -\frac{1}{2} \|\omega\|^2 + \langle \omega, \alpha^T \phi_n \rangle + \langle \omega, \zeta^T \psi_n \rangle.$$

Inserting $\omega = \alpha^T \phi_n + \zeta^T \psi_n$ into the above equation, then we obtain

$$\mathcal{L}^{*} = \frac{1}{2} \begin{pmatrix} \alpha^{T} \mathbf{K} \alpha + \alpha^{T} D_{2} \mathbf{K} \zeta + \zeta^{T} D_{1} \mathbf{K} \alpha + \zeta^{T} D_{1} D_{2} \mathbf{K} \zeta \end{pmatrix} - \mathbb{Y}^{T} \alpha$$

$$= \frac{1}{2} \begin{bmatrix} \alpha \\ \zeta \end{bmatrix}^{T} \begin{bmatrix} \mathbf{K} & D_{2} \mathbf{K} \\ D_{1} \mathbf{K} & D_{1} D_{2} \mathbf{K} \end{bmatrix} \begin{bmatrix} \alpha \\ \zeta \end{bmatrix} - \mathbb{Y}^{T} \alpha,$$
 (12)

where $D_1 \mathbf{K} = \Psi_n^T \phi_n$ is the Gram matrix obtained by the partial derivative kernel $\frac{d}{dx_1} K(x_1, x_2)$ and similarly for $D_2 \mathbf{K} = \phi_n^T \Psi_n$ and $D_1 D_2 \mathbf{K} = \Psi_n^T \Psi_n$.

The estimators $\hat{\alpha}$ and $\hat{\zeta}$ is obtained by minimizing equation (11) subject to the constraints on α and $\zeta_i \ge 0$. With the estimators $\hat{\alpha}$ and $\hat{\zeta}$, we obtain

$$\widehat{g}(x) = \sum_{i=1}^{n} \widehat{\alpha}_{i} K(X_{i}, x) + \widehat{\zeta}_{i} K_{1}(X_{i}, x),$$

where $K_1(x_1, x_2) = \frac{\partial}{\partial x_1} K(x_1, x_2)$.

4 Monotonicity constraint: rearrangement approach

Rearrangement provides an alternative approach to quantile regression (and other regression estimator) that encourages monotonicity constraint. The idea of rearrangement comes from the following paper:

• Chernozhukov, V., Fernandez-Val, I., & Galichon, A. (2009). Improving point and interval estimators of monotone functions by rearrangement. Biometrika, 96(3), 559-575.

It is a method that converts an estimated function to a function with a monotonicity constraint. For simplicity, we assume that we want to fit a quantile regression function that is non-decreasing.

Suppose that the covariates are supported on the interval [0,1] and we have an initial quantile regression estimator $\widehat{m}_{\tau}(x)$ that is not necessarily non-decreasing. This estimator may be the one from Section 1.

For any function $f : [0,1] \mapsto \mathbb{R}$, its rearrangement is the function

$$f^{\dagger}(x) = \inf \left\{ y : \int I(f(u) \le y) du \ge x \right\}$$
$$= \inf \left\{ y : \operatorname{Vol}(L_y) \ge x \right\},$$

where $L_y = \{z : f(z) \le y\}$ is the lower-level set of f at the threshold y. It can be easily seen that $f^{\dagger}(x)$ is a non-decreasing function and has the same range as f. Moreover, for any threshold y > 0, the following level sets

$$L_y = \{z : f(z) \le \lambda\}, \quad L_y^{\dagger} = \{z : f^{\dagger}(z) \le \lambda\}$$

have the same volume

$$\operatorname{Vol}(L_y) = \operatorname{Vol}(L_y^{\dagger})$$

if f'(x) > 0 and is differentiable everywhere on [0,1]. Namely, f^{\dagger} and f are similar in terms of the size of regions below any threshold.

In Chernozhukov et al. (2009), the authors proved that if the true function f_0 is non-decreasing, then for any function f, its rearrangement satisfies

$$\left(\int |f^{\dagger}(x) - f_0(x)|^p dx\right)^{1/p} \le \left(\int |f(x) - f_0(x)|^p dx\right)^{1/p}$$

for all $p \in [1,\infty]$. Namely, the rearrangement may improve the accuracy of an initial estimator if the truth is non-decreasing. Note that the authors also provided a strict inequality under additional conditions.

Thus, if we know that the true quantile regression $m_{\tau}(x)$ is non-decreasing, we can always use rearrangement to improve the accuracy.