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Introduction - 1

I What is statistical inference?
I Statistical inference is about how we use data to infer the

underlying population that generates our data.
I This process often involves a statistical model.

I Given a data (sample), a statistical model is a probability
distribution that describes how this data is generated.

I Using the concept of statistical models, we can simply say that
statistical inference is how we use the observed data to infer
some characteristics of the unobserved (probability)
distribution.

2 / 56



Introduction - 1

I What is statistical inference?
I Statistical inference is about how we use data to infer the

underlying population that generates our data.
I This process often involves a statistical model.
I Given a data (sample), a statistical model is a probability

distribution that describes how this data is generated.
I Using the concept of statistical models, we can simply say that

statistical inference is how we use the observed data to infer
some characteristics of the unobserved (probability)
distribution.

2 / 56



Introduction - 2

I What will the data look like?
I Here is part of the data in the SDSS: It is about 100 galaxy’s

log stellar mass:
11.26 10.76 11.57 11.12 11.25 11.29 11.32 11.46 10.93 11.34 9.12 11.09 11.11
11.62 11.06 11.22 10.94 11.33 10.45 11.79 11.01 11.40 11.38 11.16 11.19 11.47
11.38 11.24 11.05 11.43 11.26 11.15 11.24 11.20 11.55 11.43 11.22 11.36 11.38
11.27 11.04 11.72 11.27 11.16 10.85 11.45 11.37 11.17 11.25 11.10 11.27 11.41
11.15 11.43 11.23 11.61 11.34 11.64 11.53 11.26 11.19 11.20 11.20 11.52 10.49
11.18 11.19 11.52 11.32 11.46 11.03 11.43 11.26 11.13 11.32 11.92 10.94 11.29
11.58 11.11 11.25 11.69 11.28 11.40 11.33 11.44 11.04 11.31 11.22 11.28 11.18
11.60 11.26 11.15 11.17 11.35 11.43 11.26 11.22 11.06

I Often our data is just a collection of numbers.
I A statistical model is a distribution that generates these

numbers.
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Introduction - 3

I In statistics, the values of our data are viewed as random
variables X1, · · · ,Xn (n : sample size) that are IID from a
distribution P(x).

I In most cases, we will further assume that such a distribution
P(x) has a probability density function p(x).

I The above procedure will often be simply written as

X1, · · · ,Xn ∼ P

or
X1, · · · ,Xn ∼ p.

4 / 56



Parameters and Statistics

I Parameters (of interest): numbers or quantities that are
features of the population distribution/density.

I Examples: mean, median, mode, standard deviation (SD),
regression coefficients, · · ·

I Parameters are often unknown quantities that we want to
know.

I Statistics: numbers or quantities that can be computed using
the data.

I Example: sample average, sample median, sample SD,
estimated regression coefficients, · · ·

I From a mathematical point of view, a statistic is a function of
random variables.

I Estimators: when a statistic is used to estimate a parameter,
then this statistic is called an estimator (of the corresponding
parameter).
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Big Picture of Statistical Inference

4

Population

Sample

Parameter

Statistic 
(Estimator)

Sampling
Estimation 
(Inference)

The world we DON’T know…

The world we DO know…
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Estimators and
Estimation Theory
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Estimating Basic Parameters

I Some parameters have a simple statistic that correspond to
each of them.

I If we are interested in estimating these parameters, we can use
these simple statistics.

I Example:

sample mean←→ population mean
sample median←→ population median

sample SD←→ population SD
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Parametric Model - 1

I In many cases, we assume that the population distribution can
be written in certain “parametric form".

I Namely, the density function (or distribution function) is

p(x) = p(x ; θ)

for some parameter θ.

I In parametric model, the parameter θ completely determines
the distribution so they are often the parameters of interest.
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Parametric Model - 2
Here are some examples of parametric models:

I Normal distribution (parameters: µ and σ):

p(x ;µ, σ) =
1√
2πσ2

e−
(x−µ)2

2σ .

I Exponential distribution (parameter: λ):

p(x ;λ) = λe−λx , x ≥ 0.

I Bernoulli distribution (parameter: p):

P(X = 1) = p, P(X = 0) = 1− p.

I Poisson distribution (parameter: λ):

P(X = k) =
λk

k!
e−λ, k = 0, 1, 2, · · · .
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Maximum Likelihood Estimator - 1

I When we specify a parametric model, we need to estimate the
parameter(s) from our data. How to estimate them?

I Here is a simple and classical method: maximum likelihood
estimator (MLE).

I To illustrate the idea of MLE, we consider the case where we
only have one observation. Assume that we observed a
number X1.

I For a given parameter θ, according to the parametric model
p(x) = p(x ; θ), the probability density generating X1 is
p(Xi ; θ).

I Then we ask a simple question: for all possible values of the
parameter θ, which value has the highest probability density of
generating X1?
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Maximum Likelihood Estimator - 2

I The MLE picks the parameter that has the highest density of
generating X1.

I In other words, we are viewing p(Xi ; θ) as a function of θ and
try to find the maximum.

I Thus, we often rewrite it as

L(θ|Xi ) = p(Xi ; θ)

and such a function is called a likelihood function.
I The MLE is then be written as

θ̂MLE = argmax
θ

L(θ|Xi ).
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Maximum Likelihood Estimator - 3

I In the case of observing n points, X1, · · · ,Xn, the likelihood
function is

L(θ|X1, · · · ,Xn) = p(X1,X2, · · · ,Xn; θ)

= p(X1; θ)× · · · × p(Xn; θ).

I The MLE is then be written as

θ̂MLE = argmax
θ

L(θ|X1, · · · ,Xn).

I Note that in the case where the random variables are discrete
random variables (such as the Bernoulli model or Poisson
model), we will replace the density function by the probability
mass function.
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Maximum Likelihood Estimator - 4

I In the case of normal distribution, you can find that the MLE
µ̂MLE and σ̂2

MLE are

µ̂MLE = X̄n =
1
n

n∑

i=1

, σ̂2
MLE =

1
n

n∑

i=1

(Xi − X̄n)2 =
n − 1
n

S2
n .

I The MLE of mean parameter is the sample mean and the MLE
of SD parameter is similar to the sample SD.

I Note that the parameter p in a Bernoulli distribution and the
parameter λ in a Poisson distribution both have the same form
of MLE: the sample mean.

I The MLE of an exponential distribution is a bit more
interesting.
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Maximum Likelihood Estimator - 5
I Recall that an exponential distribution has a probability density

function p(x ;λ) = λe−λx .
I Thus, after observing X1, · · · ,Xn, the likelihood function is

L(λ|X1, · · · ,Xn) =
n∏

i=1

λe−λXi = λne−λ
∑n

i=1 Xi .

I Because taking the logarithm will not affect the position of
maximum, we take the log of it. This leads to the
log-likelihood function:

`(λ|X1, · · · ,Xn) = log L(λ|X1, · · · ,Xn) = n log λ− λ
n∑

i=1

Xi .

I Taking derivative of it and equating it to 0, we obtain

λ̂MLE :
n

λ̂MLE

=
n∑

i=1

Xi .

I Thus, λ̂MLE = n∑n
i=1 Xi

= 1
X̄n
.

15 / 56



Maximum Likelihood Estimator - 5
I Recall that an exponential distribution has a probability density

function p(x ;λ) = λe−λx .
I Thus, after observing X1, · · · ,Xn, the likelihood function is

L(λ|X1, · · · ,Xn) =
n∏

i=1

λe−λXi = λne−λ
∑n

i=1 Xi .

I Because taking the logarithm will not affect the position of
maximum, we take the log of it. This leads to the
log-likelihood function:

`(λ|X1, · · · ,Xn) = log L(λ|X1, · · · ,Xn) = n log λ− λ
n∑

i=1

Xi .

I Taking derivative of it and equating it to 0, we obtain

λ̂MLE :
n

λ̂MLE

=
n∑

i=1

Xi .

I Thus, λ̂MLE = n∑n
i=1 Xi

= 1
X̄n
.

15 / 56



Maximum Likelihood Estimator - 5
I Recall that an exponential distribution has a probability density

function p(x ;λ) = λe−λx .
I Thus, after observing X1, · · · ,Xn, the likelihood function is

L(λ|X1, · · · ,Xn) =
n∏

i=1

λe−λXi = λne−λ
∑n

i=1 Xi .

I Because taking the logarithm will not affect the position of
maximum, we take the log of it. This leads to the
log-likelihood function:

`(λ|X1, · · · ,Xn) = log L(λ|X1, · · · ,Xn) = n log λ− λ
n∑

i=1

Xi .

I Taking derivative of it and equating it to 0, we obtain

λ̂MLE :
n

λ̂MLE

=
n∑

i=1

Xi .

I Thus, λ̂MLE = n∑n
i=1 Xi

= 1
X̄n
.

15 / 56



Maximum Likelihood Estimator - 5
I Recall that an exponential distribution has a probability density

function p(x ;λ) = λe−λx .
I Thus, after observing X1, · · · ,Xn, the likelihood function is

L(λ|X1, · · · ,Xn) =
n∏

i=1

λe−λXi = λne−λ
∑n

i=1 Xi .

I Because taking the logarithm will not affect the position of
maximum, we take the log of it. This leads to the
log-likelihood function:

`(λ|X1, · · · ,Xn) = log L(λ|X1, · · · ,Xn) = n log λ− λ
n∑

i=1

Xi .

I Taking derivative of it and equating it to 0, we obtain

λ̂MLE :
n

λ̂MLE

=
n∑

i=1

Xi .

I Thus, λ̂MLE = n∑n
i=1 Xi

= 1
X̄n
.

15 / 56



Estimation Theory: Bias and Variance - 1
I Let θ be the parameter of interest and θ̂n be an estimator for

it.
I How do we quantify the accuracy of the estimator?
I Beware: since the estimator is computed from the data, the

randomness of data will propagate to θ̂n. So θ̂n is often a
random quantity.

I To quantify the accuracy of θ̂n, we introduce two measures:
bias and variance.

I The bias of an estimator is the systematic deviation from its
target. Mathematically, we define it as

bias(θ̂n) = E(θ̂n)− θ.

I The variance describes the amount of randomness that an
estimator has. It is simply the quantity Var(θ̂n), variance of
the estimator.
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Estimation Theory: Bias and Variance - 2

I A: large bias, small variance.
I B: small bias, large variance.
I C: large bias, large variance.
I D: small bias, small variance.
I Ideally, we want an estimator

with small bias and small
variance (case D).

An illustration from a dart player
• Assume the cross is the target 

value or the parameter we are 
interested in. The points at 
which the dart lands is the value 
we obtain from one sample. 

• Match each board with a 
description given below: 
1. large bias, large variability 
2. large bias, small variability 
3. small bias, large variability 
4. small bias, small variability

11

A B

C D
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Estimation Theory: MSE

I An estimator is called consistent if when the sample size
n→∞, θ̂n converges to θ in probability.

I Both the bias and variance converges to 0 =⇒ it is a
consistent estimator.

I There is a simple error measurement that takes into account
both the bias and variance called the mean square error (MSE).

I The MSE is

MSE (θ̂n, θ) = E
(

(θ̂n − θ)2
)

= bias2(θ̂n) + Var(θ̂n).

I The last equality is also known as the bias-variance
decomposition.
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Estimation Theory: Some Remarks

I A good news: most MLE’s are consistent, so are the simple
estimators of basic parameters.

I The consistency of an estimator depends on the assumptions
about the population distribution.

I Even we are using the same estimator, it might be consistent
for one dataset but inconsistent for another.

I An inconsistent estimator may lead you to a wrong conclusion.
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Confidence Interval
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Confidence Interval

I Confidence interval (CI) is an approach that uses an interval to
infer the parameter of interest.

I Some people call it interval estimation as opposite to the point
estimation (the regular estimator we just described).

I A CI requires a number called confidence level, often denoted
as 1− α, and a CI is an interval Cα,n = [Lα,n,Uα,n] that can
be computed using the data with the following property:

P(θ ∈ Cα,n) = P(Lα,n ≤ θ ≤ Uα,n) ≈ 1− α.

I The randomness in the above probability comes from the
randomness of Lα,n,Uα,n not θ!

I The lower bound Lα,n and upper bound Uα,n are statistics
(numbers computed from the data).
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Confidence Interval: an Illustration

17

Population

Sample
Sampling

Sample

Sample

Sample

p

Sampling  
distribution of p̂

p̂ ± 2

r
p̂ · (1� p̂)

n
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Confidence Interval: Bernoulli Distribution

I The plot in the previous slide shows an example for a ≈ 95%
CI for inferring the parameter p in a Bernoulli distribution.

I The interval with

Ln = p̂ − 2

√
p̂(1− p̂)

n
,Un = p̂ + 2

√
p̂(1− p̂)

n
, p̂ =

1
n

n∑

i=1

Xi

is a ≈ 95% confidence interval for the parameter p.
I Note that p̂ = 1

n

∑n
i=1 Xi is the MLE for the parameter p.

I Common CIs have three components as indicated by the
colors:

I The estimator.
I Standard error (SE) of the estimator.
I Multiplier: determined by 1− α, the confidence.
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Standard Error of an Estimator
I SE is an estimator of the standard deviation of the estimator.
I SE is the rough size of the error of our estimator.
I When reading papers, people often report the estimated value

and its error – this error is the SE.

I For the estimator p̂ in the Bernoulli model, its variance

Var(p̂) = Var

(
1
n

n∑

i=1

Xi

)

=
1
n2

n∑

i=1

Var(Xi ) (independence)

=
1
n
Var(X1) (identical)

=
p(1− p)

n
.

I Thus, the SD of p̂ is
√

p(1−p)
n , which can be approximated by√

p̂(1−p̂)
n .
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Multiplier - 1
I A multiplier is a number depending on the distribution of the

estimator.
I Thanks to the central limit theorem, many estimators will be

normally distributed around their targeted parameters.
I Namely, if we use θ̂n to estimate θ, under good assumptions

we have
θ̂n ≈ N(θ,SE 2(θ̂n)).

I This implies
θ̂n − θ
SE (θ̂)

≈ N(0, 1).

I Let z1−α/2 be the number such that
P(|N(0, 1)| ≤ z1−α/2) = 1− α.

I Then we have:

P

(∣∣∣∣∣
θ̂n − θ
SE (θ̂)

∣∣∣∣∣ ≤ z1−α/2

)
≈ 1− α.
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I Namely, if we use θ̂n to estimate θ, under good assumptions

we have
θ̂n ≈ N(θ,SE 2(θ̂n)).

I This implies
θ̂n − θ
SE (θ̂)

≈ N(0, 1).
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Multiplier - 2

I This fact:

P

(∣∣∣∣∣
θ̂n − θ
SE (θ̂)

∣∣∣∣∣ ≤ z1−α/2

)
≈ 1− α.

implies that

P
(
θ̂n − z1−α/2 · SE (θ̂n) ≤ θ ≤ θ̂n + z1−α/2 · SE (θ̂n)

)
≈ 1−α.

I Namely, θ̂n ± z1−α/2 · SE (θ̂n) is a 1− α CI of θ.

I For a normal distribution, z0.975 ≈ 1.96 ≈ 2 (α = 0.05 = 5%).

I By identifying θ̂n = p̂ and SE (θ̂n) = SE (p̂) ≈
√

p̂(1−p̂)
n and

z0.975 ≈ 2, we conclude that p̂ ± 2
√

p̂(1−p̂)
n is a CI of the

parameter p in the Bernoulli distribution.
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Confidence Interval: Mean
I Assume that we observe X1, · · · ,Xn ∼ P and we are interested

in the population mean µ.
I A simple estimator of the mean is the sample mean

X̄n = 1
n

∑n
i=1 Xi .

I The SD of the sample mean is
√

Var(X̄n) =

√
σ2

n
,

where σ2 is the variance of the population distribution
(population variance).

I We can simply estimate the population variance by sample
variance S2

n = 1
n−1

∑n
i=1(Xi − X̄n)2.

I Thus, a 95% CI of the mean µ is
[
X̄n − 1.96 · Sn√

n
, X̄n + 1.96 · Sn√

n

]
.
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Confidence Interval: Example

I Now going back to the galaxy example mentioned at the
beginning. We have n = 100 galaxies.

I After computation, we found that the sample mean of log
stellar mass X̄n = 11.25 and sample SD is 0.31.

I Thus, the SE of the sample mean is about 0.31√
100

= 0.031

I A 95% CI of the mean log stellar mass is

[11.25− 1.96 · 0.031, 11.25 + 1.96 · 0.031] = [11.19, 11.31].
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Confidence Interval: Some Remarks

I The significance level is often chosen by the researcher.
I Common choices are 95%, 90%, and 99%

(α = 0.05, 0.1, 0.01).
I The corresponding number z1−α/2 will be

z0.975 ≈ 1.96, z0.95 ≈ 1.64, z0.996 ≈ 2.58.

I Note that a CI can also be one-sided. Namely, it can also be
an interval like (−∞, c] or [c ,∞) for some constant c .

I Often the construction of CIs depends on the
(asymptotic/limiting) distribution of the estimator. Normal
distribution is a common case but sometimes people will use
other distributions such as t-distribution, χ2-distribution,
F -distribution, etc.
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Hypothesis Test
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Hypothesis Test - 1

I Hypothesis test is a statistical procedure to make inference.
I Actually, many scientific discoveries implicitly or explicitly used

the hypothesis test.
I In hypothesis test, we are comparing two hypothesis:

I Null hypothesis (H0): a statement we are testing its validity.
I Alternative hypothesis (Ha): a statement against to the null

hypothesis.

I In scientific research, the alternative hypothesis is often
something we want to prove (using data) – we will explain this
later.
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Hypothesis Test - 2

I How do we carry out a test?
I Here is a brief description of the testing procedure.

1. We design a test statistic Tn (can be computed from the data).
2. We study the distribution of such a test statistic assuming H0

is true.
3. Using the data, we then compute the value of the observed

test statistics Tn.
4. Using the distribution of test statistic, we compute the

probability of observing an event that is more extreme than our
observed test statistic. This probability is called the P-value.

5. We reject H0 if P-value is smaller than the significance level α.
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Hypothesis Test: Example - 1
I Again we use the galaxy stellar mass data as an example.
I Assume that the previous literature suggested that the log

stellar mass is
H0 : µ = 11.15.

We want to test if this statement is reasonable using our data.
Note that in this case, the alternative hypothesis is

Ha : µ 6= 11.15.

I First we need to choose a test statistic. Here we simply use a
rescaled sample average as the test statistic:

Tn =
X̄n − µ
SE

=
X̄n − 11.15

SE
.

I Then we need to find the distribution of this test statistic.
And it turns out that such a test statistic Tn, under H0, has a
nice distribution:

Tn ≈ N(0, 1).

33 / 56



Hypothesis Test: Example - 1
I Again we use the galaxy stellar mass data as an example.
I Assume that the previous literature suggested that the log

stellar mass is
H0 : µ = 11.15.

We want to test if this statement is reasonable using our data.
Note that in this case, the alternative hypothesis is

Ha : µ 6= 11.15.

I First we need to choose a test statistic. Here we simply use a
rescaled sample average as the test statistic:

Tn =
X̄n − µ
SE

=
X̄n − 11.15

SE
.

I Then we need to find the distribution of this test statistic.
And it turns out that such a test statistic Tn, under H0, has a
nice distribution:

Tn ≈ N(0, 1).

33 / 56



Hypothesis Test: Example - 1
I Again we use the galaxy stellar mass data as an example.
I Assume that the previous literature suggested that the log

stellar mass is
H0 : µ = 11.15.

We want to test if this statement is reasonable using our data.
Note that in this case, the alternative hypothesis is

Ha : µ 6= 11.15.

I First we need to choose a test statistic. Here we simply use a
rescaled sample average as the test statistic:

Tn =
X̄n − µ
SE

=
X̄n − 11.15

SE
.

I Then we need to find the distribution of this test statistic.
And it turns out that such a test statistic Tn, under H0, has a
nice distribution:

Tn ≈ N(0, 1).

33 / 56



Hypothesis Test: Example - 2

I Using the data, we compute the observed value of test
statistic:

tn =
11.25− 11.15

0.031
= 3.23.

Note that sometimes people would interpret this as a signal of
3.23σ.

I The P-value is

pvalue = P(|N(0, 1)| ≥ tn) ≈ 1.24× 10−3.

I If we choose a significance level of 5%, 1%, we will all reject
H0. In this case, we will claim that we have strong evidence to
reject H0 : µ = 11.25 under a significance level of 5% (or 1%).
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Hypothesis Test: Significance Level

I The significance level can be interpreted as a tolerance level of
wrongly reject H0 (later we will call it type-1 error rate).

I If H0 is correct, then the distribution of P-value will be a
uniform distribution over 0 and 1 (you can try to prove this).

I So when H0 is correct, the chance of rejecting H0 under a
significance level α is α.

I A lower value of α requires a stronger evidence against H0 to
reject it.

I In our case, we can reject H0 under α = 5%, 1% but not 0.1%.
I Rejecting H0 implies that the claim µ = 11.15 is not

reasonable so we conclude µ 6= 11.15.
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Hypothesis Test: the Basic Idea
I What are we doing in hypothesis test?
I Actually, we are doing a generalization of proof by

contradiction.

I Proof by contradiction: if we want to prove a statement S, we
assume that statement to be incorrect first and then show that
this leads to a contradiction.

I In the case of hypothesis test, we are doing a very similar job:
we first assume H0 being correct and then show that H0
contradicts to our data.

I The P-value is a quantity that serves as a measure of
consistency between H0 and our data. Thus, a low P-value
means that H0 is not consistent with data (i.e., they
contradict to each other) so we reject the null hypothesis.

I Thus, you can easily see that the alternative hypothesis will be
something we want to prove (because it is the complement of
the null hypothesis).

36 / 56



Hypothesis Test: the Basic Idea
I What are we doing in hypothesis test?
I Actually, we are doing a generalization of proof by

contradiction.
I Proof by contradiction: if we want to prove a statement S, we

assume that statement to be incorrect first and then show that
this leads to a contradiction.

I In the case of hypothesis test, we are doing a very similar job:
we first assume H0 being correct and then show that H0
contradicts to our data.

I The P-value is a quantity that serves as a measure of
consistency between H0 and our data. Thus, a low P-value
means that H0 is not consistent with data (i.e., they
contradict to each other) so we reject the null hypothesis.

I Thus, you can easily see that the alternative hypothesis will be
something we want to prove (because it is the complement of
the null hypothesis).

36 / 56



Hypothesis Test: the Basic Idea
I What are we doing in hypothesis test?
I Actually, we are doing a generalization of proof by

contradiction.
I Proof by contradiction: if we want to prove a statement S, we

assume that statement to be incorrect first and then show that
this leads to a contradiction.

I In the case of hypothesis test, we are doing a very similar job:
we first assume H0 being correct and then show that H0
contradicts to our data.

I The P-value is a quantity that serves as a measure of
consistency between H0 and our data. Thus, a low P-value
means that H0 is not consistent with data (i.e., they
contradict to each other) so we reject the null hypothesis.

I Thus, you can easily see that the alternative hypothesis will be
something we want to prove (because it is the complement of
the null hypothesis).

36 / 56



Hypothesis Test: Type-1 and Type-2 Error

I In hypothesis testing, there are two types of errors.
I Type-1 error: the H0 is correct but we mistakenly reject H0.
I Type-2 error: the H0 is incorrect but we do not reject H0.

I If we reject H0 under significance level α, this implies that the
type-1 error rate is less than or equal to α.

I This implies: we are controlling type-1 error rate to be small in
hypothesis test framework.

I Why do we want to control type-1 error rate? → We are doing
a ‘proof by contradiction’ so we want to make sure we have
strong evidence to ‘prove’ that H0 is incorrect.

I Rejecting under a very small α. ⇔ Type-1 error rate is very
small. ⇔ We have very strong evidence.
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Hypothesis Test: Other Examples

I Sometimes the null hypothesis will be a one-sided case such as

H0 : µ ≤ 11.15.

In this case, the calculation of P-value will be slightly different
since the ‘more extreme’ case will be on the other side.

I When we assume the parametric model is correct, many null
hypothesis will be about the value of parameter. For instance,
X1, · · · ,Xm ∼ N(0, σ2) and

H0 : σ2 = 0.2, Ha : σ2 6= 0.2.

I The hypothesis test and CI have a close relationship. In some
cases, you can use one to compute the other.
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Two-Sample Test - 1

I Two-sample test is a very important topic in scientific research.
I The goal of a two-sample test is to see if we have strong

evidence that the two observed samples are from different
populations.

I For instance, in analyzing galaxies, we can separate galaxies
into two groups: elliptical galaxies and spiral galaxies. The
two-sample test can be used to check if the distributions of
stellar mass of the two populations are the same or not.
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Two-Sample Test - 2

I Let X1, · · · ,Xn and Y1, · · · ,Ym be the two samples we
observed.

I Using statistical models, we model that

X1, · · · ,Xn ∼ PX , Y1, · · · ,Ym ∼ PY ,

where PX and PY are the distributions generating the two
samples.

I The two-sample test examines the following hypothesis:

H0 : PX = PY

against
Ha : PX 6= PY .
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Two-Sample Test: Mean Test - 1

I A simple approach of the two-sample test is the mean test.
I Because

H0 : PX = PY

implies µX = µY (µi is the mean of Pi ), the mean test is to
test

H0 : µX = µY .

I Testing µX = µY is equivalent to testing

H0 : µX − µY = 0.

I So the test statistics is to use the difference between sample
means X̄n and Ȳm and rescale it by the variance.
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Two-Sample Test: Mean Test - 2
I The sample means have variance

Var(X̄n) =
σ2
X

n
, Var(Ȳm) =

σ2
Y

m
,

where σ2
X and σ2

Y are the variance of PX and PY .

I Thus, the quantity X̄n − Ȳm has variance σ2
X
n +

σ2
Y
m (because

they are independent).

I Because we do not know σ2
X and σ2

Y in practice, we will
replace them by the sample variance S2

X and S2
Y .

I Thus, our final test statistics is

Tn,m =
X̄n − Ȳm√
S2
X
n +

S2
Y
m

.

I Tn,m will follow asymptotically a standard normal distribution
(think about why) so we can compare Tn,m to the standard
normal to obtain a p-value.
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S2
X
n +

S2
Y
m

.

I Tn,m will follow asymptotically a standard normal distribution
(think about why) so we can compare Tn,m to the standard
normal to obtain a p-value.

42 / 56



Two-Sample Test: Mean Test - 3

I Sometimes people will compare Tn,m to a t-distribution rather
than the standard normal distribution. This is because when
both samples are from normal distributions (with different
means), Tn,m has an exact distribution that is the
t-distribution.

I When using t-distribution, such a test is called a T-test.
I When using a standard normal distribution, this test is called a

Z-test.
I In addition to testing the mean, one can also test other

parameters such as median and variance.
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Nonparametric Method: KS-test – 1

I Here we introduce a famous test that directly test
H0 : PX = PY – the KS-test.

I The KS-test (Kolmogorov-Smirnov test) is a classical approach
in nonparametric two-sample test.

I We can estimate the distribution function PX (x) by the
empirical distribution function (EDF):

P̂X (t) =
1
n

n∑

i=1

I (Xi ≤ t),

where I (x) is the indicator function such that if the input is
true, then it outputs 1 otherwise 0.

I Actually, P̂X (t) is the ratio of data points X1, · · · ,Xn whose
value is less than or equal to t.
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Nonparametric Method: KS-test – 2

Here is an example of the EDF of 5 observations of
1, 1.2, 1.5, 2, 2.5:

1.0 1.5 2.0 2.5
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Nonparametric Method: KS-test – 3
EDF (black curve) versus the true CDF of a standard normal
distribution:
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Nonparametric Method: KS-Test – 4

I The KS-test is to use the following test statistics:

Kn,m = sup
t
|P̂X (t)− P̂Y (t)|,

where supt is a mathematical generalization of maxt (you can
just view it as taking the maximum).

I After rescaling, the test statistics Kn,m has a known limiting
distribution called the Kolmogorov distribution.

I An appealing feature is that the Kolmogorov distribution does
not depend on the true distribution PX and PY .

I We then reject the null hypothesis when Kn,m is sufficiently
large.
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Two-Sample Test: Remarks

I The tests we mentioned previously are just common
approaches of two-sample test.

I There are many other approaches – if you are interested in,
you can search permutation test, rank test, signed-rank test.

I You can even use histogram to do a two-sample test.
I Keep in mind: there is no universal optimal test and every test

works under different assumptions.
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Goodness-of-fit Test: χ2-test - 1

I When we have a theoretical result and we want to compare
our data to the theoretical result, we can use the
goodness-of-fit test.

I A simple approach to achieve this is through the χ2 test1.

I For instance, after some computations, we may obtain the
following table (numbers inside parentheses are the SE’s):

Value (Errors) Case 1 Case 2 Case 3 Case 4 Case 5
Observed 16.5 (0.5) 22.1 (0.3) 27.7 (2.2) 25.5 (0.5) 13.2 (0.4)
Theory 15 23 31 25 10

I Can we make some conclusions about the theory using
observed data?

1here is a tutorial: http://maxwell.ucsc.edu/~drip/133/ch4.pdf
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Goodness-of-fit Test: χ2-test - 2

I In the above example, we have 5 statistics X1, · · · ,X5
(observed value) and each of them has error σ1, · · · , σ5.

I We use µ1, · · · , µ5 to denote the theoretical result.
I Goal: we want to see if our data fits to the theoretical

calculations.
I The χ2-test compute the test statistic

T =

(
X1 − µ1

σ1

)2

+ · · ·+
(
X5 − µ5

σ5

)2

.
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Goodness-of-fit Test: χ2-test - 3

I If the theory is correct and the noises are independent and
Gaussian, then the test statistic T follows a χ2

5, a
χ2-distribution with 5 degrees of freedom.

I The above example consider 5 statistics. You can generalize it
to other number of statistics being considered.

I When reporting the result, you need to state the test statistic
(also known as χ2 statistic) as well as the degree of freedom
(number of statistics being compared).

I After computing T = t from the data, the corresponding
P-value is P(χ2

ν ≥ t) for ν degrees of freedom.
I Note that the null hypothesis being test is

H0 : Xi ∼ N(µi , σ
2
i ), i = 1, · · · , ν.
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Goodness-of-fit Test: χ2-test - 4
I Recall the observed table:

Value (Errors) Case 1 Case 2 Case 3 Case 4 Case 5
Observed 16.5 (0.5) 22.1 (0.3) 27.7 (2.2) 25.5 (0.5) 13.2 (0.4)
Theory 15 23 31 25 10

I Thus, in this case, the χ2 statistic is

T =

(
X1 − µ1

σ1

)2
+ · · ·+

(
X5 − µ5

σ5

)2

=

(
16.5− 15

0.5

)2
+

(
22.1− 23

0.3

)2

+

(
27.7− 31

2.2

)2
+

(
25.5− 25

0.5

)2
+

(
13.2− 10

0.4

)2

= 32 + 32 + 1.52 + 12 + 82

= 85.25

I Thus, we should report that we observed a signal of a 85.25
χ2 statistic with 5 degrees of freedom.
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Goodness-of-fit Test: Remarks

I When the χ2 statistic is large, it means that the data
contradicts to the theory or the assumptions about the noises.

I When the χ2 statistic is small, it means that the data seems to
fit to the theory BUT this does NOT imply that the theory is
correct!

I Because the null hypothesis is the theory being true, the
goodness-of-fit test can be used to ‘prove’ that the theoretical
result is wrong but it CANNOT be used to prove that the
theory is correct!

I Just think about the proof by contradiction: if we cannot show
a statement contradicts to itself, this does not imply that
statement to be true.
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Correlation Test and Independence Test

I There are methods to test if two random variables are
correlated. Namely, testing

H0 : corr(X ,Y ) = 0,

where corr(X ,Y ) is the correlation between random variable
X and Y .

I Also, we can even test if two random variables are
independent. Namely, testing

H0 : X and Y are independent. (⇔ p(x , y) = p(x)p(y)).

One can use Energy statistics2 or the approach from
reproducing kernel Hilbert space3.

2
https://en.wikipedia.org/wiki/Energy_distance#Energy_statistics

3
http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/

NIPS2007-Gretton_%5b0%5d.pdf
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Testing Multiple Hypothesis

I Assume that we are doing hypothesis test 100 times with
type-1 errors all being 5%, then it is very likely we are going to
reject some H0’s even when they are correct!

I To avoid falsely rejecting some H0, we often try to control the
Familywise Error Rate (FWER): the chance of falsely rejecting
any H0.

I To make sure FWER is less than α, a classical approach is to
use the Bonferroni correction4: we only reject those H0 if their
individual p-value is less than α/K where K is the total
number of null hypothesis being tested.

I There is another criterion that many people commonly use:
instead of controlling the FWER, we control the False
Discovery Rate (FDR)5.

4
https://en.wikipedia.org/wiki/Bonferroni_correction

5
https://en.wikipedia.org/wiki/False_discovery_rate
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Useful References

I All of statistics: a concise course in statistical inference.
Larry Wasserman. Springer Science & Business Media, 2013.

I Statistical inference. George Casella and Roger L. Berger.
Pacific Grove, CA: Duxbury, 2002.

I Mathematical statistics and data analysis. John Rice.
Nelson Education, 2006.
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