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Density Estimation: Introduction

» Recall that a statistical model views the data as random
variables X1, -, X, from an unknown distribution function

P(x).
» We further assume that such a distribution function has a
probability density function (PDF) p(x).
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Density Estimation: Introduction

» Recall that a statistical model views the data as random
variables X1, -, X, from an unknown distribution function
P(x).

» We further assume that such a distribution function has a
probability density function (PDF) p(x).

» In most cases, we do not know the PDF p(x) but we want to
reconstruct it from the data.

» The goal of density estimation is to estimate p(x) using
X17 Tt 7Xn-
» In other words, the parameter of interest is the PDF p(x).
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Parametric Approach: Introduction

v

The PDF p(x) is a function. It may not be easily estimated.

v

A simple approach is to further assume that p(x) = p(x; 6) for
some parameter 6.

v

Then estimating p can be done by estimating 6.

v

Estimating a value is much easier than estimating the entire
function.
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Parametric Approach: MLE

» We can estimate the parameters by the MLE.

» Here is an example of assuming the data being normally
distributed: N(u,o?).

» |In this case, we only need to estimate the two parameters
2
1, 02,
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Parametric Approach: MLE

» We can estimate the parameters by the MLE.
» Here is an example of assuming the data being normally
distributed: N(u,o?).
» |In this case, we only need to estimate the two parameters
2
1, 02,
» The estimators are
R _ 1 _
pmee = Xn,  Ome = . Z (Xi — Xn)"~.
i=1
» Then the estimated density function is

1 _ =npie)?

p(x) = ————e 25 1E

[, ~2
27TO'MLE

» Note that MLE is not the only approach to estimate the
parameter; one can use method of moments or other
approaches.
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Parametric Approach: Mixture Model - 1

» Sometimes simple parametric models such as Gaussian,
exponential, Gamma distribution are too restrictive to capture
the complicated structure of the data.

» For instance, if the distribution has a bimodal density (two
local maxima), none of these traditional model is reasonable.

» In this case, the mixture model may be useful.
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Parametric Approach: Mixture Model - 2

» The idea of mixture model is to assume that the PDF can be
written as a mixture of several ‘simple’ parametric densities.
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Parametric Approach: Mixture Model - 2

» The idea of mixture model is to assume that the PDF can be
written as a mixture of several ‘simple’ parametric densities.

» For instance, Gaussian mixture model assumes

1 _ x=n)?

2 2
e 201 ++CUK76 2CTK

A/ 27raf<

1 (x=n1)

\/27‘(‘0’%

where w1 +---+wig =1 and wy > 0.
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Parametric Approach: Mixture Model - 2

» The idea of mixture model is to assume that the PDF can be
written as a mixture of several ‘simple’ parametric densities.
» For instance, Gaussian mixture model assumes
1 C x—ng)?
202 202
e 1 _|_ PR + (-“-)K —e K ,

2
1/27TJK

» The above model assumes that the PDF consists of K
components and each component is a Gaussian.

1 (x=n1)

[)()() = Q}l - —_—
\/2mo?

where w1 +---+wig =1 and wy > 0.

» The quantities w1, - - - ,wk are the mixing proportion of each
component.

7/52



Parametric Approach: Mixture Model - 2

>

The idea of mixture model is to assume that the PDF can be

written as a mixture of several ‘simple’ parametric densities.

For instance, Gaussian mixture model assumes

1 C x—ng)?
202 202

e 1 _|_ PR + (-“-)K —e K ,

2
1/27TJK

The above model assumes that the PDF consists of K
components and each component is a Gaussian.

1 (x=n1)

[)()() = Q}l - —_—
\/2mo?

where w1 +---+wig =1 and wy > 0.

The quantities w1, - -+ ,wk are the mixing proportion of each
component.

In this case, the parameters are

2 2
0= (wla,ulyo-lv"' ,UJK,,LLK,O'K).
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Parametric Approach: Mixture Model - 3

» We can estimate a mixture model using the MLE again.

» However, performing MLE in the mixture model is often
computationally difficult and in general, there is no closed
form solution to the MLE.

» People often use a method called EM algorithm to compute
the MLE.
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Parametric Approach: Mixture Model - 3

» We can estimate a mixture model using the MLE again.

» However, performing MLE in the mixture model is often
computationally difficult and in general, there is no closed
form solution to the MLE.

» People often use a method called EM algorithm to compute
the MLE.

» In additional to the computational challenges, the
identifiability is another issue of the mixture model (different
parameters lead to the same PDF).
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Nonparametric Approach: Introduction

» Parametric models only require estimating a few parameters to
estimate the PDF.

» However, they are either too restrictive to capture the intricate
structure of the PDF or computationally infeasible.
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Nonparametric Approach: Introduction

» Parametric models only require estimating a few parameters to
estimate the PDF.

» However, they are either too restrictive to capture the intricate
structure of the PDF or computationally infeasible.

» An alternative approach is to estimate the PDF
nonparametrically.

» Namely, we directly estimate the PDF without assuming a
parametric form of the PDF.
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Nonparametric Approach: Histogram

» A simple nonparametric approach is the histogram.

» A histogram first bins the entire range into equal width bins
and counts the number of observation within each bin.
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Nonparametric Approach: Histogram

v

v

A simple nonparametric approach is the histogram.

A histogram first bins the entire range into equal width bins
and counts the number of observation within each bin.

To make a histogram a density estimator, we need to rescale
the Y-axis a bit.

Instead of using the count of numbers observations within
each bin, we need to divide the count by the total number of
observations and the width of the bin.
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Nonparametric Approach: Histogram

>

>

A simple nonparametric approach is the histogram.

A histogram first bins the entire range into equal width bins
and counts the number of observation within each bin.

To make a histogram a density estimator, we need to rescale
the Y-axis a bit.

Instead of using the count of numbers observations within
each bin, we need to divide the count by the total number of
observations and the width of the bin.

Assume our histogram has bins By, - - - , Bk and all bins have
width L.
For a point x within the bin By, the density estimated by the

histogram is

N #of X1, -+, X, within By
Phist(x) = 0ol .
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Bias-Variance Tradeoff - 1

> |s the histogram a good estimator?
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> |s the histogram a good estimator?

» We can answer this question using the mean square error
(MSE).
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Bias-Variance Tradeoff - 1

> |s the histogram a good estimator?

» We can answer this question using the mean square error
(MSE).

» Given x being fixed, the quantity phis:(x) is a random variable
and it is the estimator of p(x).

» Therefore, we compute its bias and variance to obtain the

MSE.
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Bias-Variance Tradeoff - 1

> |s the histogram a good estimator?

» We can answer this question using the mean square error
(MSE).

» Given x being fixed, the quantity phis:(x) is a random variable
and it is the estimator of p(x).

» Therefore, we compute its bias and variance to obtain the

MSE.
» It terms outs that when the size of bin L ~ 0 and sample size
n is large,
PP ~ 1
bias(phist(x)) = O(L), Var(phist(x)) = O <nL> :

» Therefore, the MSE of the histogram estimator is

MSE(Bhist(x)) = O(L?) + O <nll_) '
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Bias-Variance Tradeoff - 2

MSE(Brse(x)) = O(L2) + O <1> .

nlL
Bias )
Variance

» The MSE shows a very important pattern: it can be
decomposed into the bias and the variance.
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Bias-Variance Tradeoff - 2

~ 1
MSE(Rri(x) = 0(12)+ 0 ().
—— nlL
B
188 Variance
» The MSE shows a very important pattern: it can be
decomposed into the bias and the variance.
» When the bin width L is small, the bias is small but the
variance is large.
» When the bin width L is large, the bias is large but the
variance is small.
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Bias-Variance Tradeoff - 2

MSE(Bhse(x)) = O(L2) + O <1> .
—— nL
Bias Variance
» The MSE shows a very important pattern: it can be
decomposed into the bias and the variance.
» When the bin width L is small, the bias is small but the
variance is large.
» When the bin width L is large, the bias is large but the
variance is small.
» Such a tradeoff between bias and variance is known as the
bias-variance tradeoff.
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Bias-Variance Tradeoff - 2

MSE(Bhse(x)) = O(L2) + O <1> .
—— nL
Bias Variance
» The MSE shows a very important pattern: it can be
decomposed into the bias and the variance.
» When the bin width L is small, the bias is small but the
variance is large.
» When the bin width L is large, the bias is large but the
variance is small.
» Such a tradeoff between bias and variance is known as the
bias-variance tradeoff.
» Moreover, it shows that we should choose L at the rate of
L =< n~1/3 to minimize the MSE.
» This choice leads to the optimal rate of histogram:
MSE* (Biise(x)) = O(n27%).
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Nonparametric Approach: Kernel Density Estimation - 1

» Here we introduce another nonparametric density estimation
approach: the kernel density estimation (KDE).
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» Here we introduce another nonparametric density estimation
approach: the kernel density estimation (KDE).

» The KDE estimate the PDF using the following form:

Pkpe(x) = hZK( >

where K(x) is a function called the kernel function and h > 0
is a quantity called smoothing bandwidth that controls the
amount of smoothing.
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» Here we introduce another nonparametric density estimation
approach: the kernel density estimation (KDE).

» The KDE estimate the PDF using the following form:

Pkpe(x) = hZK( >

where K(x) is a function called the kernel function and h > 0
is a quantity called smoothing bandwidth that controls the
amount of smoothing.

» Common choice of K(x) includes the Gaussian

2
K(x) = \/%e*?, uniform K(x) = /(-1 < x < 1).

13/52



Nonparametric Approach: Kernel Density Estimation - 1

» Here we introduce another nonparametric density estimation
approach: the kernel density estimation (KDE).

» The KDE estimate the PDF using the following form:

PkDE(x) = hZK( >

where K(x) is a function called the kernel function and h > 0
is a quantity called smoothing bandwidth that controls the
amount of smoothing.

» Common choice of K(x) includes the Gaussian

2
K(x) = \/%e*?, uniform K(x) = /(-1 < x < 1).

» The idea of KDE is: we smooth out each data point using the
kernel function into small bumps and then we sum over all
bumps to obtain a density estimate.
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Nonparametric Approach: Kernel Density Estimation - 2

Densit
1.oy

Black dots: locations of observations.
Purple bumps: the kernel function at each observation.

Brown curve: final density estimate from KDE.
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Nonparametric Approach: Kernel Density Estimation - 3
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Nonparametric Approach: Kernel Density Estimation - 4

0.04

0.03

Density

0.02

0.01

0.00
[

0 50 60 70 8 9 100
faithful$waiting

The smoothing bandwidth often has a much stronger effect on the
quality of estimation.

16 /52



Nonparametric Approach: Kernel Density Estimation - 5

» We can also analyze the MSE of the KDE.

» When the smoothing bandwidth h =~ 0 and sample size n is
large,

bias(ﬁKDE(x)) = O(hz), Var(ﬁKDE(X)) =0 (:h> .
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Nonparametric Approach: Kernel Density Estimation - 5

» We can also analyze the MSE of the KDE.

» When the smoothing bandwidth h =~ 0 and sample size n is
large,

bias(ﬁKDE(x)) = O(hz), Var(ﬁKDE(X)) =0 (:h> .

» Therefore, the MSE of the KDE is

1

MSE(Brpe (x)) = O(K*) + O (h) |
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Nonparametric Approach: Kernel Density Estimation - 5

» We can also analyze the MSE of the KDE.
» When the smoothing bandwidth h =~ 0 and sample size n is
large,
PPN ~ 1
bias(proe () = O(),  Ver(Aoe(x)) = O ( o)

v

Therefore, the MSE of the KDE is

MSE(Brpe (x)) = O(K*) + O (1,7) |

v

The optimal choice of his h < n=1/%, leading to the optimal
convergence rate

MSE* (Bkpe(x)) = O(n~*/).

v

Note that this convergence rate is faster than the rate of
histogram MSE*(ppist(x)) = O(n—2/3).
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Nonparametric Approach: k-NN - 1

» The idea of the k-nearest neighbor (k-NN) can also be applied
to density estimation.

» For a given point x (not necessarily an observation), its k-NN
are the collection of observations whose distance to x is
among the shortest k.
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Nonparametric Approach: k-NN - 1

» The idea of the k-nearest neighbor (k-NN) can also be applied
to density estimation.

» For a given point x (not necessarily an observation), its k-NN
are the collection of observations whose distance to x is
among the shortest k.

> Let Rk(x) be the distance from x to its k-th nearest neighbor
observation.

» The k-NN density estimation uses the following approximation:

% ~ P(Xpew € B(x, Rk(x))) = Cng(X) - p(x),

where d is the dimension of the data (often d =1,2,3) and
Cq is the size of d-dimensional unit ball and p(x) is the PDF.
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Nonparametric Approach: k-NN - 1

>

The idea of the k-nearest neighbor (k-NN) can also be applied
to density estimation.

For a given point x (not necessarily an observation), its k-NN
are the collection of observations whose distance to x is
among the shortest k.

Let Rk(x) be the distance from x to its k-th nearest neighbor
observation.

The k-NN density estimation uses the following approximation:

% ~ P(Xpew € B(x, Rk(x))) = Cng(X) - p(x),

where d is the dimension of the data (often d =1,2,3) and
Cq is the size of d-dimensional unit ball and p(x) is the PDF.
Thus, the k-NN density estimation is

k 1

P = 3 C R0

18/52



Nonparametric Approach: k-NN - 2

» Whend =1, C4 =2 so
k
o 2Rk(x) - p(x),

» Whend =2, Cy =7 so

» When d = 3, Cd:%wso
k 4
- ~ g”RE(X) - p(x),

Bron(x) = & !

Pknn - n 2Rk(X)

~ k 1
Prmn(x) = 7 TR2(x)
~ k 3
pknn(X) - E : 47TR/::’(X).

» And again, there will be a bias-variance tradeoff; in the case of

d =1, we have;

MSE (Ban(x)) = O ((k)> ¥ 1@/ .

bias variance
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Density Estimation: Inference - 1

» There are ways to do statistical inference for the PDF. We will
comment on how to construct a Cl.
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Density Estimation: Inference - 1

>

There are ways to do statistical inference for the PDF. We will
comment on how to construct a Cl.

In the case of parametric approach, we can convert a Cl of
parameter into a Cl of a PDF.

In the case of nonparametric approach, generally we will use a
bootstrap approach to construct a Cl of a PDF.

» But note that there are two types of Cl for a ‘function’.

» Pointwise Cl: given a point x and confidence level 1 — «, we

construct an interval Ci_, = [(1_4, U1—q] from the data such
that

P(li—a < p(x) <ui_g)=1-—a.
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Density Estimation: Inference - 1

» There are ways to do statistical inference for the PDF. We will
comment on how to construct a Cl.

» In the case of parametric approach, we can convert a Cl of
parameter into a Cl of a PDF.

» In the case of nonparametric approach, generally we will use a
bootstrap approach to construct a Cl of a PDF.
» But note that there are two types of Cl for a ‘function’.

» Pointwise Cl: given a point x and confidence level 1 — «, we
construct an interval Ci_, = [(1_4, U1—q] from the data such
that

P(li—a < p(x) <ui_g)=1-—a.

» Simultaneous CB (confidence band): given «, we construct a
band Ci_o(x) = [L1—a(X), Ui—a(x)] from the data such that

P(L1—o(x) < p(x) < Ui—o(x) for all x) =1 —a.
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Density Estimation: Inference - 2

Confidence Interval (Bootstrap) Uniform Confidence Band
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Pointwise Cl (left) and simultaneous CB (right)®.

LA tutorial on this topic is in: https://arxiv.org/abs/1704.03924
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Regression
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Regression: Introduction

» Regression is an approach to study the relationship between a
response variable Y and a covariate X.

» The covariate is also called a feature, a predictor, or an
independent variable.

» Note that the covariate X can be multivariate.
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Regression: Introduction

» Regression is an approach to study the relationship between a
response variable Y and a covariate X.

» The covariate is also called a feature, a predictor, or an
independent variable.

» Note that the covariate X can be multivariate.

» A traditional way to summarize the relationship via the
regression function:

r(x) = E(Y|X = x) = / y - Fly|x)dy.

» The goal of regression is to estimate r(x) using the random
sample ()(17 Yl), s ,(Xn, Yn)

23 /52



Linear Regression - 1

» Linear regression is a parametric approach that models the
function r(x) as a linear function:

r(x) = fBo + Bix.

» In many case, we will make further assumption on the noise
and rewrite the linear model as

Yi=Bo+ /Xi+ € ,
— =~

signal noise

where E(¢;|X;) = 0 and Var(¢;|X;) = o2.
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Linear Regression - 2

» In the linear regression model, there are two parameters:
intercept 5o and slope ;.
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Linear Regression - 2

» In the linear regression model, there are two parameters:
intercept 5o and slope ;.
» To estimate them, a classical approach is the least squares

(LS):

n

(30,51) = argming, 5, Z (Vi — Bo — BiX))?,

i=1
where the notation argming, 3 means finding the value of
5o, f1 that minimizes the followings.

» You can solve the above LS criterion and find a closed form
solution to the estimate:

SRV s o o
SR v e A G
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Linear Regression - 3

» Using the LS estimator (LSE), we will predict the value of Y;
as L
Yi = fo + X

26 / 52



Linear Regression - 3

» Using the LS estimator (LSE), we will predict the value of Y;
as L
Yi = Bo + 51X
» The difference between predicted and observed value is called
residual R L
e=Yi—=Yi=Yi—po— B X.

» The residual sums of squares RSS = >""_; e measures how
our estimate fits the data.
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Linear Regression - 3

» Using the LS estimator (LSE), we will predict the value of Y;
as

Y: = Bo + BuX:.
» The difference between predicted and observed value is called

residual
e =Y —Yi=Y—Bo— B X.
» The residual sums of squares RSS = >""_; e measures how
our estimate fits the data.

» You can interpret the LS approach as finding the best linear
model to minimize RSS.

» Note that the noise level o2 can be estimated by

51 n 2
0= e

26 / 52



Linear Regression - 4

» The LSE has nice theoretical properties:

bias(/gop(la t 7Xn) =0, bias(Bl|X1, T

Var(fo| X1, -+, X, 7*2)(2
nsy n
Var(f1| X1, -+, Xn) = 2
nsx

where s3 = 1570 (X; — X,)2.
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Linear Regression - 4

» The LSE has nice theoretical properties:
bias(Bo| X1, - , X,) =0, bias(B|X1, -, Xy) =0

Var(Bo| Xy, -+, Xn) = —5 = 3 X;
Var(B1|Xu, -+, Xn) = —5

where s3 = 1570 (X; — X,)2.
» Moreover, central limit theorem implies that the LSE converges

to a normal distribution under appropriate conditions.

» Thus, we can construct Cl for By and (31 using the standard
errors of 60, ﬁl
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Linear Regression - 5

Var(Bo| X1, -+, Xn) = —5— 3 _ X;

nSXnizl
- S X?
SE(B) = =17
— (50) sxv/n n
(5 )= 2
Varﬁle,-‘-,X = —5
" nsy
— SE(B1) = a
VT s/

Thus, a1 — o Cl will be

Bo £ 2o 2SE(Bo), B % 242 SE(B1)

for By and (31 respectively.
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Linear Regression: Multiple Covariates - 1

>

In the case of the multiple covariates x = (x,- - ,Xp), the
linear regression can be easily extended:
r(x) = Bo + Bix1 + Paxa + - -+ + BpXp.
Let Y =(Yi,---,Y,) be the vector of responses and
1 Xi1 -+ Xip
c_ |1 X o Xop
1 Xp1 -+ Xop

be the n x (p + 1) data matrix (each row is an observation).
The multiple linear regression can be written as the follows:

Y = X3 + e,
where 3 = (fo,- - ,Bp) is the parameter vector and
e = (€1, - ,€p) is the noise.
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Linear Regression: Multiple Covariates - 2
» The LS method is to find
5 = argmax | Y — X4
» And it has a closed form solution:

3= <XTX) TXTy,
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Linear Regression: Multiple Covariates - 2
» The LS method is to find
B= argmax|| Y — XB2
» And it has a closed form solution:
3= <XTX> TXTy,
» The LSE has a nice property that
BN (ﬂ,az (XTX) _1) :

» Actually, you can show that the LSE is an unbiased estimator
. : -1 .
and the variance is o (XTX) . The above expression further
suggests that we can use it to construct a Cl for 5.

30/ 52



Linear Regression: Remarks

» The linear regression is an important topic in statistics. It can
be a course for an entire semester!

» You can search online to learn more about it.

» Here are a few key words related to it: ANOVA, R?, outliers,
leverage points.

» Note that the idea of LS approach can be applied to
‘non-linear’ model as well. For instance, we can model

r(x) = Bo + Bix + Bax? + Bzexp(—Pax)

and apply LS approach to find the parameters.
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Logistic Regression - 1

» In some special case, the response Y may take only two
possible values, say 0 and 1.

» For instance, our response Y may be the type of galaxy and
Y =1ifitis a spiral galaxy and Y = 0 if it is an elliptical
galaxy.
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Logistic Regression - 1

» In some special case, the response Y may take only two
possible values, say 0 and 1.

» For instance, our response Y may be the type of galaxy and
Y =1ifitis a spiral galaxy and Y = 0 if it is an elliptical
galaxy.

> In this special case,

E(Y|X =x)=P(Y =1|X =x) = r(x)

is a probability.

» |f we naively model it as a linear function, then we may obtain
a negative probability or a probability greater than 1, both are
not reasonable.

» The logistic regression uses a smart way to model such a
probability.

32/52



Logistic Regression - 2

» The quantity r(x) = P(Y = 1|X = x) € [0, 1] because it is a
probability.
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Logistic Regression - 2
» The quantity r(x) = P(Y = 1|X = x) € [0, 1] because it is a
probability.
» We first consider the odds:
_or(x)  P(Y=1X=x)
°0) =179 = P(Y = o]X =)

€ [0, 00).
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Logistic Regression - 2
» The quantity r(x) = P(Y = 1|X = x) € [0, 1] because it is a
probability.
» We first consider the odds:
_or(x)  P(Y=1X=x)
°0) =179 = P(Y = o]X =)
» However, the odds is not symmetric with respect to x, so we
take logarithm of it:

r(x)
£(x) =logo(x) =lo € (—o0,00).
() = ogo(x) = log (") € (o0.2%)
This quantity is more symmetric — it can take values anywhere
in the real line.

€ [0, 00).
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Logistic Regression - 2
» The quantity r(x) = P(Y = 1|X = x) € [0, 1] because it is a
probability.
» We first consider the odds:
_or(x)  P(Y=1X=x)
°0) =179 = P(Y = o]X =)
» However, the odds is not symmetric with respect to x, so we
take logarithm of it:

{(x) = log o(x) = log <

€ [0, 00).

1 :()r(()x)> € (=00, ).

This quantity is more symmetric — it can take values anywhere
in the real line.

» The logistic regression models the log odds as a linear function
of x:

U(x) = Bo + P1x.
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Logistic Regression - 3

» The model

_ _ rx) ) _
£0x) = fog () = log ({705 ) = o + ix
leads to the following form of r(x):
eBO"‘BlX
r(x)=P(Y =1X=x) = 15 ofoihin’

» Using this probability model, we can then apply the MLE to
find By and 3.
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Logistic Regression - 3

» The model

#(x) = log o(x) = log ( : :(f()x)> = Bo + Bux

leads to the following form of r(x):

eBO +B1x

» Using this probability model, we can then apply the MLE to
find By and ;.

» Note that the MLE does not have a closed form solution but
one can find it using numerical methods such a gradient
descent approach.
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Nonparametric Regression

v

A problem of parametric regression is: the actual regression
function may not have the desired form.

v

When the parametric form is mis-specified, the result can be
very bad.

v

Nonparametric regression attempts to directly estimate the
regression function without assuming a parametric form of it.

v

We will talk about three popular methods: regressogram
(binning), kernel regression, and spline approach.
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Nonparametric Regression: Example
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Regressogram (Binning)

» The regressogram (binning) might be one of the most popular
regression approach but very few people know its name.

» The regressogram = regression + histogram.
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Regressogram (Binning)

» The regressogram (binning) might be one of the most popular
regression approach but very few people know its name.

» The regressogram = regression + histogram.

» The idea is: we bin the range of covariates into several
intervals.

» We then use the average of the responses for observations
within the same interval as the estimated value.

37/52



Regressogram: Example - 1
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Regressogram: Example - 2
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Kernel Regression - 1

» The kernel regression is another nonparametric regression
estimator.

» The kernel regression uses an estimator of the form

Trer(x) = > Wi(x)Y;
i=1

Sk () v
Yia K (55)

where (X )
K (%2
Wi(x) = ZJ"’:1 K <th—x>'

» The function K(x) is again the kernel function we talk about
in the KDE.
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Kernel Regression - 2

Wilx) = ‘ (Xi;x>

» The quantity

ek (5)

satisfies >_7_; Wi(x) =1 and Wj(x) > 0.

» Namely, it behaves like a weight of each ;.
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Kernel Regression - 2

k()
VVI(X) = Xi—x\ °
Y K (%)
satisfies >_7_; Wi(x) =1 and Wj(x) > 0.

» Namely, it behaves like a weight of each ;.

» The estimator 7ier(x) = >_7_; Wi(x)Y; can be interpreted as
follows.

» To estimate the regression function at X = x, we use a
weighted average of all responses such that observations close
to x will be given a higher weight (W;(x) will be large if X; is
close to x).

» The quantity
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Kernel

>

Regression - 2
The quantity

K Xi—x
Wi(x) = — ( hxj)_x -
S K (%)
satisfies >_7_; Wi(x) =1 and Wj(x) > 0.

» Namely, it behaves like a weight of each ;.
» The estimator 7ier(x) = >_7_; Wi(x)Y; can be interpreted as

follows.

To estimate the regression function at X = x, we use a
weighted average of all responses such that observations close
to x will be given a higher weight (W;(x) will be large if X; is
close to x).

The kernel function determines how we are going to give
weights to the nearby points.

The smoothing bandwidth h controls the range of influence
from each observation (the degree of smoothing).
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Kernel Regression: Example
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Cross-Validation Approach - 1

» How can we choose the smoothing bandwidth?

» There are many ways to do that but a simple principle is: we
want to choose it to optimize the prediction accuracy.
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Cross-Validation Approach - 1

» How can we choose the smoothing bandwidth?

» There are many ways to do that but a simple principle is: we
want to choose it to optimize the prediction accuracy.

» For an estimator m, a prediction accuracy is
R = IE:(|Ynew - a()<new)‘2)a

where (Xpew, Ynew) is @ new observation.

» In the case of kernel regression, the prediction accuracy
depends on h so

R(h) = E(‘ Ynew — ’:ﬁker(Xnew)F)‘
» We want to pick the smoothing bandwidth

h* = argmin,R(h).
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Cross-Validation Approach - 2

» The quantity R(h) = E(| Ynew — Mker(Xnew)|?) is unknown to

us — we need to estimate it.

» However, R(h) involves two expectations: one for the

estimator My, and the other for the new observation.
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Cross-Validation Approach - 2

» The quantity R(h) = E(| Ynew — Mker(Xnew)|?) is unknown to
us — we need to estimate it.

» However, R(h) involves two expectations: one for the
estimator My, and the other for the new observation.

» We know that we can use sample average to estimate the
expectation.

» Thus, a simple approach to consistently estimate R(h) is to
split the data into two parts: we use one part to construct
Myer and the other part of the data as the new observations.

» This idea is called data splitting.

» The cross-validation is a modified approach of data splitting
that repeat the splitting procedure multiple times and then use
the average as the final estimate of R(h).
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Cross-Validation Approach - 3

» In practice, we will split the data into several subsets and treat
part of them as training set (the part of data used to
computed the estimator mye,) and the other part as validation
set (the set treated as future observations).
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» We often choose one subset as the validation set and the
others as the training set.

» After evaluating the prediction risk, then we use another
subset as the validation set and others as the training set.
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validation set.

» We then use the average of all these prediction risks as an
estimate of the prediction.
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Cross-Validation Approach - 3

» In practice, we will split the data into several subsets and treat
part of them as training set (the part of data used to
computed the estimator mye,) and the other part as validation
set (the set treated as future observations).

» We often choose one subset as the validation set and the
others as the training set.

» After evaluating the prediction risk, then we use another
subset as the validation set and others as the training set.

» We repeat this process until all subsets have been used as the
validation set.

» We then use the average of all these prediction risks as an
estimate of the prediction.

» We often repeat the above procedure several times and take
the total average as the the final risk estimate.

» Note: if we split the data into k subset, we call this approach
the k-fold cross validation.

45 /52



Cross-Validation Approach: 5-fold CV

» Here is an illustration for 5-fold CV:

l Randomly split into 5 subsets

n

s _ 1 ~ (1) (1

Ry, :;E M (Xi) m( )
i=1

ker

R(z Zm fﬁf)
cer

1S a0 i)

> Validation Set. Training Set.
» We use the average R(h) i Ze 1 R(Z)(h) as a risk estimate.
» |n practice, we repeat this procedure for several times and take

the total average of them.
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5-fold Cross-Validation: Example
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Overfitting and underfitting

» Why we cannot use the same data twice for both training set
and validation set?
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Overfitting and underfitting

» Why we cannot use the same data twice for both training set
and validation set?

» From a theoretical point of view, this leads to a biased
estimator of the prediction risk.

» Sometimes people call this overfitting — a more complex model
you are using, you may seemly fit the data better but actually
the prediction error gets worse.

» As an extreme example: consider h ~ 0, then the kernel
regression passes every data point. If we use the training set
as the validation set, this leads to a prediction risk = 0!

» Note that: an opposite case is called underfitting — you fit a
too easy model so it cannot capture the complicated structure
of the data. When we apply the linear regression to the
example of a wave-form data, we suffer from underfitting.
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Spline Approach - 1

» Spline approach is a penalized regression method.

» The goal is to find a function f such that it fits the data well
and f is smooth.

2https ://en.wikipedia.org/wiki/Smoothing_spline
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Spline Approach - 1

» Spline approach is a penalized regression method.

» The goal is to find a function f such that it fits the data well
and f is smooth.

» To quantify smoothness, the spline approach places a penalty
on the curvature — the second derivative of f.

» In more details, the spline approach attempts to find Ep such
that

n

r 1 "
fop = argming - Z(Y 24 )\/ |f"(s)|2ds,

i=1

where XA > 0 is a parameter determines how smooth we want.
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Spline Approach - 1

» Spline approach is a penalized regression method.

» The goal is to find a function f such that it fits the data well
and f is smooth.

» To quantify smoothness, the spline approach places a penalty
on the curvature — the second derivative of f.

» In more details, the spline approach attempts to find Ep such
that

n

~ 1

fsp = argming — Y — A |f"(s)|°ds,

sp gming n z{;( *_ ]/ |
where XA > 0 is a parameter determines how smooth we want.

» There are some smart ways? to find such a minimal function

fsp.

2https://en.wikipedia.org/wiki/Smoothing_spline
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Spline Approach - 2

. 1 n Xmax
fop = argming — Z(Y, — f(X))* + )\/ £ (s)|?ds,
n i=1 Xmin
fitting to the data smoothness penalty

» A large \ leads to a smooth function fsp.

» A small X\ yields a more wiggly function.
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Spline Approach - 2

v

v

. 1 n Xmax
fop = argming — Z(Y, — f(X))* + )\/ £ (s)|?ds,
n i=1 Xmin
fitting to the data smoothness penalty

A large A leads to a smooth function fsp.
A small )\ yields a more wiggly function.

The choice of A\ determines how we want to weight the fitting
quality and smoothness.

We often use cross-validation to choose \.
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Spline Approach: Example
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spar: a quantity in R related to .
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Useful References

» All of statistics: a concise course in statistical inference.
Larry Wasserman. Springer Science & Business Media, 2013.

» All of nonparametric statistics. Larry Wasserman. Springer,
2006.

» Multivariate density estimation: theory, practice, and
visualization. David Scott. John Wiley & Sons, 2015.

» Applied Linear Regression. Sanford Weisberg. Wiley Series
in Probability and Statistics, 2005.
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