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Density Estimation: Introduction

I Recall that a statistical model views the data as random
variables X1, · · · ,Xn from an unknown distribution function
P(x).

I We further assume that such a distribution function has a
probability density function (PDF) p(x).

I In most cases, we do not know the PDF p(x) but we want to
reconstruct it from the data.

I The goal of density estimation is to estimate p(x) using
X1, · · · ,Xn.

I In other words, the parameter of interest is the PDF p(x).
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Parametric Approach: Introduction

I The PDF p(x) is a function. It may not be easily estimated.
I A simple approach is to further assume that p(x) = p(x ; θ) for

some parameter θ.
I Then estimating p can be done by estimating θ.
I Estimating a value is much easier than estimating the entire

function.
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Parametric Approach: MLE
I We can estimate the parameters by the MLE.
I Here is an example of assuming the data being normally

distributed: N(µ, σ2).
I In this case, we only need to estimate the two parameters
µ, σ2.

I The estimators are

µ̂MLE = X̄n, σ̂2MLE =
1
n

n∑

i=1

(
Xi − X̄n

)2
.

I Then the estimated density function is

p̂(x) =
1√

2πσ̂2MLE

e
− (x−µ̂MLE )2

2σ̂2
MLE .

I Note that MLE is not the only approach to estimate the
parameter; one can use method of moments or other
approaches.
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Parametric Approach: Mixture Model - 1

I Sometimes simple parametric models such as Gaussian,
exponential, Gamma distribution are too restrictive to capture
the complicated structure of the data.

I For instance, if the distribution has a bimodal density (two
local maxima), none of these traditional model is reasonable.

I In this case, the mixture model may be useful.
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Parametric Approach: Mixture Model - 2
I The idea of mixture model is to assume that the PDF can be

written as a mixture of several ‘simple’ parametric densities.

I For instance, Gaussian mixture model assumes

p(x) = ω1 ·
1√
2πσ21

e
− (x−µ1)

2

2σ2
1 + · · ·+ ωK ·

1√
2πσ2K

e
− (x−µK )2

2σ2
K ,

where ω1 + · · ·+ ωK = 1 and ω` > 0.
I The above model assumes that the PDF consists of K

components and each component is a Gaussian.
I The quantities ω1, · · · , ωK are the mixing proportion of each

component.
I In this case, the parameters are

θ = (ω1, µ1, σ
2
1, · · · , ωK , µK , σ

2
K ).
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Parametric Approach: Mixture Model - 3

I We can estimate a mixture model using the MLE again.
I However, performing MLE in the mixture model is often

computationally difficult and in general, there is no closed
form solution to the MLE.

I People often use a method called EM algorithm to compute
the MLE.

I In additional to the computational challenges, the
identifiability is another issue of the mixture model (different
parameters lead to the same PDF).
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Nonparametric Approach: Introduction

I Parametric models only require estimating a few parameters to
estimate the PDF.

I However, they are either too restrictive to capture the intricate
structure of the PDF or computationally infeasible.

I An alternative approach is to estimate the PDF
nonparametrically.

I Namely, we directly estimate the PDF without assuming a
parametric form of the PDF.
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Nonparametric Approach: Histogram
I A simple nonparametric approach is the histogram.
I A histogram first bins the entire range into equal width bins

and counts the number of observation within each bin.

I To make a histogram a density estimator, we need to rescale
the Y-axis a bit.

I Instead of using the count of numbers observations within
each bin, we need to divide the count by the total number of
observations and the width of the bin.

I Assume our histogram has bins B1, · · · ,BK and all bins have
width L.

I For a point x within the bin B`, the density estimated by the
histogram is

p̂hist(x) =
#of X1, · · · ,Xn within B`

n · L
.
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Bias-Variance Tradeoff - 1
I Is the histogram a good estimator?

I We can answer this question using the mean square error
(MSE).

I Given x being fixed, the quantity p̂hist(x) is a random variable
and it is the estimator of p(x).

I Therefore, we compute its bias and variance to obtain the
MSE.

I It terms outs that when the size of bin L ≈ 0 and sample size
n is large,

bias(p̂hist(x)) = O(L), Var(p̂hist(x)) = O

(
1
nL

)
.

I Therefore, the MSE of the histogram estimator is

MSE(p̂hist(x)) = O(L2) + O

(
1
nL

)
.
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Bias-Variance Tradeoff - 2

MSE(p̂hist(x)) = O(L2)︸ ︷︷ ︸
Bias

+O

(
1
nL

)

︸ ︷︷ ︸
Variance

.

I The MSE shows a very important pattern: it can be
decomposed into the bias and the variance.

I When the bin width L is small, the bias is small but the
variance is large.

I When the bin width L is large, the bias is large but the
variance is small.

I Such a tradeoff between bias and variance is known as the
bias-variance tradeoff.

I Moreover, it shows that we should choose L at the rate of
L � n−1/3 to minimize the MSE.

I This choice leads to the optimal rate of histogram:
MSE∗(p̂hist(x)) = O(n−2/3).
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Nonparametric Approach: Kernel Density Estimation - 1
I Here we introduce another nonparametric density estimation

approach: the kernel density estimation (KDE).

I The KDE estimate the PDF using the following form:

p̂KDE (x) =
1
nh

n∑

i=1

K

(
x − Xi

h

)
,

where K (x) is a function called the kernel function and h > 0
is a quantity called smoothing bandwidth that controls the
amount of smoothing.

I Common choice of K (x) includes the Gaussian

K (x) = 1√
2π
e−

x2
2 , uniform K (x) = 1

2 I (−1 ≤ x ≤ 1).

I The idea of KDE is: we smooth out each data point using the
kernel function into small bumps and then we sum over all
bumps to obtain a density estimate.
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Nonparametric Approach: Kernel Density Estimation - 2
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Black dots: locations of observations.
Purple bumps: the kernel function at each observation.
Brown curve: final density estimate from KDE.
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Nonparametric Approach: Kernel Density Estimation - 3
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The kernel function generally does not affect the density estimate
too much. 15 / 52



Nonparametric Approach: Kernel Density Estimation - 4
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The smoothing bandwidth often has a much stronger effect on the
quality of estimation.
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Nonparametric Approach: Kernel Density Estimation - 5
I We can also analyze the MSE of the KDE.
I When the smoothing bandwidth h ≈ 0 and sample size n is

large,

bias(p̂KDE (x)) = O(h2), Var(p̂KDE (x)) = O

(
1
nh

)
.

I Therefore, the MSE of the KDE is

MSE(p̂KDE (x)) = O(h4) + O

(
1
nh

)
.

I The optimal choice of h is h � n−1/5, leading to the optimal
convergence rate

MSE∗(p̂KDE (x)) = O(n−4/5).

I Note that this convergence rate is faster than the rate of
histogram MSE∗(p̂hist(x)) = O(n−2/3).
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Nonparametric Approach: k-NN - 1
I The idea of the k-nearest neighbor (k-NN) can also be applied

to density estimation.
I For a given point x (not necessarily an observation), its k-NN

are the collection of observations whose distance to x is
among the shortest k .

I Let Rk(x) be the distance from x to its k-th nearest neighbor
observation.

I The k-NN density estimation uses the following approximation:

k

n
≈ P(Xnew ∈ B(x ,Rk(x))) ≈ CdR

d
k (x) · p(x),

where d is the dimension of the data (often d = 1, 2, 3) and
Cd is the size of d-dimensional unit ball and p(x) is the PDF.

I Thus, the k-NN density estimation is

p̂knn(x) =
k

n
· 1
CdR

d
k (x)

.
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Nonparametric Approach: k-NN - 2
I When d = 1, Cd = 2 so

k

n
≈ 2Rk(x) · p(x), p̂knn(x) =

k

n
· 1
2Rk(x)

.

I When d = 2, Cd = π so
k

n
≈ πR2

k (x) · p(x), p̂knn(x) =
k

n
· 1
πR2

k (x)
.

I When d = 3, Cd = 4
3π so

k

n
≈ 4

3
πR3

k (x) · p(x), p̂knn(x) =
k

n
· 3
4πR3

k (x)
.

I And again, there will be a bias-variance tradeoff; in the case of
d = 1, we have:

MSE (p̂knn(x)) = O

((
k

n

)4
)

︸ ︷︷ ︸
bias

+ O

(
1
k

)

︸ ︷︷ ︸
variance

.
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Density Estimation: Inference - 1
I There are ways to do statistical inference for the PDF. We will

comment on how to construct a CI.

I In the case of parametric approach, we can convert a CI of
parameter into a CI of a PDF.

I In the case of nonparametric approach, generally we will use a
bootstrap approach to construct a CI of a PDF.

I But note that there are two types of CI for a ‘function’.
I Pointwise CI: given a point x and confidence level 1− α, we

construct an interval C1−α = [`1−α, u1−α] from the data such
that

P(`1−α ≤ p(x) ≤ u1−α) ≈ 1− α.
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Density Estimation: Inference - 2
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Pointwise CI (left) and simultaneous CB (right)1.

1A tutorial on this topic is in: https://arxiv.org/abs/1704.03924
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Regression
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Regression: Introduction

I Regression is an approach to study the relationship between a
response variable Y and a covariate X .

I The covariate is also called a feature, a predictor, or an
independent variable.

I Note that the covariate X can be multivariate.

I A traditional way to summarize the relationship via the
regression function:

r(x) = E(Y |X = x) =

∫
y · f (y |x)dy .

I The goal of regression is to estimate r(x) using the random
sample (X1,Y1), · · · , (Xn,Yn).
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Linear Regression - 1

I Linear regression is a parametric approach that models the
function r(x) as a linear function:

r(x) = β0 + β1x .

I In many case, we will make further assumption on the noise
and rewrite the linear model as

Yi = β0 + β1Xi︸ ︷︷ ︸
signal

+ εi︸︷︷︸
noise

,

where E(εi |Xi ) = 0 and Var(εi |Xi ) = σ2.
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Linear Regression - 2
I In the linear regression model, there are two parameters:

intercept β0 and slope β1.

I To estimate them, a classical approach is the least squares
(LS):

(β̂0, β̂1) = argminβ0,β1

n∑

i=1

(Yi − β0 − β1Xi )
2 ,

where the notation argminβ0,β1 means finding the value of
β0, β1 that minimizes the followings.

I You can solve the above LS criterion and find a closed form
solution to the estimate:

β̂1 =

∑n
i=1(Xi − X̄n)(Yi − Ȳn)∑n

i=1(Xi − X̄n)2
, β̂0 = Ȳn − β̂1X̄n.
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i=1(Xi − X̄n)2
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Linear Regression - 3

I Using the LS estimator (LSE), we will predict the value of Yi

as
Ŷi = β̂0 + β̂1Xi .

I The difference between predicted and observed value is called
residual

ei = Yi − Ŷi = Yi − β̂0 − β̂1Xi .

I The residual sums of squares RSS =
∑n

i=1 e
2
i measures how

our estimate fits the data.
I You can interpret the LS approach as finding the best linear

model to minimize RSS .
I Note that the noise level σ2 can be estimated by
σ̂2 = 1

n−2
∑n

i=1 e
2
i .
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Ŷi = β̂0 + β̂1Xi .

I The difference between predicted and observed value is called
residual
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Linear Regression - 4

I The LSE has nice theoretical properties:

bias(β̂0|X1, · · · ,Xn) = 0, bias(β̂1|X1, · · · ,Xn) = 0

Var(β̂0|X1, · · · ,Xn) =
σ2

ns2X

1
n

n∑

i=1

X 2
i

Var(β̂1|X1, · · · ,Xn) =
σ2

ns2X
,

where s2X = 1
n

∑n
i=1(Xi − X̄n)2.

I Moreover, central limit theorem implies that the LSE converges
to a normal distribution under appropriate conditions.

I Thus, we can construct CI for β0 and β1 using the standard
errors of β̂0, β̂1.
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Linear Regression - 5

Var(β̂0|X1, · · · ,Xn) =
σ2

ns2X

1
n

n∑

i=1

X 2
i

−→ SE (β̂0) =
σ̂

sX
√
n

√∑n
i=1 X

2
i

n

Var(β̂1|X1, · · · ,Xn) =
σ2

ns2X

−→ SE (β̂1) =
σ̂

sX
√
n
.

Thus, a 1− α CI will be

β̂0 ± zα/2SE (β̂0), β̂1 ± zα/2SE (β̂1)

for β0 and β1 respectively.
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Linear Regression: Multiple Covariates - 1
I In the case of the multiple covariates x = (x1, · · · , xp), the

linear regression can be easily extended:

r(x) = β0 + β1x1 + β2x2 + · · ·+ βpxp.

I Let Y = (Y1, · · · ,Yn) be the vector of responses and

X =




1 X1,1 · · · X1,p
1 X2,1 · · · X2,p
. . . . . . · · · . . .
1 Xn,1 · · · Xn,p




be the n × (p + 1) data matrix (each row is an observation).
I The multiple linear regression can be written as the follows:

Y = Xβ + ε,

where β = (β0, · · · , βp) is the parameter vector and
ε = (ε1, · · · , εn) is the noise.
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Linear Regression: Multiple Covariates - 2

I The LS method is to find

β̂ = argmaxβ‖Y − Xβ‖2

I And it has a closed form solution:

β̂ =
(
XTX

)−1
XTY .

I The LSE has a nice property that

β̂ ≈ N

(
β, σ2

(
XTX

)−1)
.

I Actually, you can show that the LSE is an unbiased estimator
and the variance is σ2

(
XTX

)−1. The above expression further
suggests that we can use it to construct a CI for β.
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Linear Regression: Remarks

I The linear regression is an important topic in statistics. It can
be a course for an entire semester!

I You can search online to learn more about it.
I Here are a few key words related to it: ANOVA, R2, outliers,

leverage points.
I Note that the idea of LS approach can be applied to

‘non-linear’ model as well. For instance, we can model

r(x) = β0 + β1x + β2x
2 + β3exp(−β4x)

and apply LS approach to find the parameters.
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Logistic Regression - 1

I In some special case, the response Y may take only two
possible values, say 0 and 1.

I For instance, our response Y may be the type of galaxy and
Y = 1 if it is a spiral galaxy and Y = 0 if it is an elliptical
galaxy.

I In this special case,

E(Y |X = x) = P(Y = 1|X = x) = r(x)

is a probability.
I If we naively model it as a linear function, then we may obtain

a negative probability or a probability greater than 1, both are
not reasonable.

I The logistic regression uses a smart way to model such a
probability.
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Logistic Regression - 2
I The quantity r(x) = P(Y = 1|X = x) ∈ [0, 1] because it is a

probability.

I We first consider the odds:

o(x) =
r(x)

1− r(x)
=

P(Y = 1|X = x)

P(Y = 0|X = x)
∈ [0,∞).

I However, the odds is not symmetric with respect to x , so we
take logarithm of it:

`(x) = log o(x) = log
(

r(x)

1− r(x)

)
∈ (−∞,∞).

This quantity is more symmetric – it can take values anywhere
in the real line.

I The logistic regression models the log odds as a linear function
of x :

`(x) = β0 + β1x .
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Logistic Regression - 3

I The model

`(x) = log o(x) = log
(

r(x)

1− r(x)

)
= β0 + β1x

leads to the following form of r(x):

r(x) = P(Y = 1|X = x) =
eβ0+β1x

1 + eβ0+β1x
.

I Using this probability model, we can then apply the MLE to
find β0 and β1.

I Note that the MLE does not have a closed form solution but
one can find it using numerical methods such a gradient
descent approach.
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Nonparametric Regression

I A problem of parametric regression is: the actual regression
function may not have the desired form.

I When the parametric form is mis-specified, the result can be
very bad.

I Nonparametric regression attempts to directly estimate the
regression function without assuming a parametric form of it.

I We will talk about three popular methods: regressogram
(binning), kernel regression, and spline approach.
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Nonparametric Regression: Example
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Regressogram (Binning)

I The regressogram (binning) might be one of the most popular
regression approach but very few people know its name.

I The regressogram = regression + histogram.

I The idea is: we bin the range of covariates into several
intervals.

I We then use the average of the responses for observations
within the same interval as the estimated value.
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Regressogram: Example - 1
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Regressogram: Example - 2
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Kernel Regression - 1
I The kernel regression is another nonparametric regression

estimator.
I The kernel regression uses an estimator of the form

r̂ker (x) =
n∑

i=1

Wi (x)Yi

=

∑n
i=1 K

(
Xi−x
h

)
Yi

∑n
j=1 K

(
Xj−x
h

)

where

Wi (x) =
K
(
Xi−x
h

)

∑n
j=1 K

(
Xj−x
h

) .

I The function K (x) is again the kernel function we talk about
in the KDE.
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Kernel Regression - 2
I The quantity

Wi (x) =
K
(
Xi−x
h

)

∑n
j=1 K

(
Xj−x
h

) .

satisfies
∑n

i=1Wi (x) = 1 and Wi (x) ≥ 0.
I Namely, it behaves like a weight of each Yi .

I The estimator r̂ker (x) =
∑n

i=1Wi (x)Yi can be interpreted as
follows.

I To estimate the regression function at X = x , we use a
weighted average of all responses such that observations close
to x will be given a higher weight (Wi (x) will be large if Xi is
close to x).

I The kernel function determines how we are going to give
weights to the nearby points.

I The smoothing bandwidth h controls the range of influence
from each observation (the degree of smoothing).
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Kernel Regression: Example
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Cross-Validation Approach - 1
I How can we choose the smoothing bandwidth?
I There are many ways to do that but a simple principle is: we

want to choose it to optimize the prediction accuracy.

I For an estimator m̂, a prediction accuracy is

R = E(|Ynew − m̂(Xnew )|2),

where (Xnew ,Ynew ) is a new observation.
I In the case of kernel regression, the prediction accuracy

depends on h so

R(h) = E(|Ynew − m̂ker (Xnew )|2).

I We want to pick the smoothing bandwidth

h∗ = argminhR(h).
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Cross-Validation Approach - 2

I The quantity R(h) = E(|Ynew − m̂ker (Xnew )|2) is unknown to
us – we need to estimate it.

I However, R(h) involves two expectations: one for the
estimator m̂ker and the other for the new observation.

I We know that we can use sample average to estimate the
expectation.

I Thus, a simple approach to consistently estimate R(h) is to
split the data into two parts: we use one part to construct
m̂ker and the other part of the data as the new observations.

I This idea is called data splitting.
I The cross-validation is a modified approach of data splitting

that repeat the splitting procedure multiple times and then use
the average as the final estimate of R(h).
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Cross-Validation Approach - 3
I In practice, we will split the data into several subsets and treat

part of them as training set (the part of data used to
computed the estimator m̂ker ) and the other part as validation
set (the set treated as future observations).

I We often choose one subset as the validation set and the
others as the training set.

I After evaluating the prediction risk, then we use another
subset as the validation set and others as the training set.

I We repeat this process until all subsets have been used as the
validation set.

I We then use the average of all these prediction risks as an
estimate of the prediction.

I We often repeat the above procedure several times and take
the total average as the the final risk estimate.

I Note: if we split the data into k subset, we call this approach
the k-fold cross validation.
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Cross-Validation Approach: 5-fold CV
I Here is an illustration for 5-fold CV:

Original Data

Data 1 Data 2 Data 3 Data 4 Data 5

Data 1 Data 2 Data 3 Data 4 Data 5

bm(1)
ker

bR(1)
h =

1

n1

n1X

i=1

bm(1)
ker(Xi)

Data 1 Data 2 Data 3 Data 4 Data 5

Data 1 Data 2 Data 3 Data 4 Data 5

bR(2)
h =

1

n2

n2X

i=1

bm(2)
ker(Xi)

bR(5)
h =

1

n5

n5X

i=1

bm(5)
ker(Xi)

bm(2)
ker

bm(5)
ker

…

Randomly split into 5 subsets

I Validation Set. Training Set.
I We use the average R̂(h) = 1

5
∑5

`=1 R̂
(`)(h) as a risk estimate.

I In practice, we repeat this procedure for several times and take
the total average of them.
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5-fold Cross-Validation: Example
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Overfitting and underfitting

I Why we cannot use the same data twice for both training set
and validation set?

I From a theoretical point of view, this leads to a biased
estimator of the prediction risk.

I Sometimes people call this overfitting – a more complex model
you are using, you may seemly fit the data better but actually
the prediction error gets worse.

I As an extreme example: consider h ≈ 0, then the kernel
regression passes every data point. If we use the training set
as the validation set, this leads to a prediction risk = 0!

I Note that: an opposite case is called underfitting – you fit a
too easy model so it cannot capture the complicated structure
of the data. When we apply the linear regression to the
example of a wave-form data, we suffer from underfitting.
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Spline Approach - 1

I Spline approach is a penalized regression method.
I The goal is to find a function f such that it fits the data well

and f is smooth.

I To quantify smoothness, the spline approach places a penalty
on the curvature – the second derivative of f .

I In more details, the spline approach attempts to find f̂sp such
that

f̂sp = argminf
1
n

n∑

i=1

(Yi − f (Xi ))2 + λ

∫ Xmax

Xmin

|f ′′(s)|2ds,

where λ > 0 is a parameter determines how smooth we want.
I There are some smart ways2 to find such a minimal function

f̂sp.

2https://en.wikipedia.org/wiki/Smoothing_spline
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Spline Approach - 2

f̂sp = argminf
1
n

n∑

i=1

(Yi − f (Xi ))2

︸ ︷︷ ︸
fitting to the data

+λ

∫ Xmax

Xmin

|f ′′(s)|2ds
︸ ︷︷ ︸
smoothness penalty

,

I A large λ leads to a smooth function f̂sp.
I A small λ yields a more wiggly function.

I The choice of λ determines how we want to weight the fitting
quality and smoothness.

I We often use cross-validation to choose λ.
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Spline Approach: Example
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spar: a quantity in R related to λ.
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Useful References

I All of statistics: a concise course in statistical inference.
Larry Wasserman. Springer Science & Business Media, 2013.

I All of nonparametric statistics. Larry Wasserman. Springer,
2006.

I Multivariate density estimation: theory, practice, and
visualization. David Scott. John Wiley & Sons, 2015.

I Applied Linear Regression. Sanford Weisberg. Wiley Series
in Probability and Statistics, 2005.
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