Enhanced Mode Clustering

Yen-Chi Chen

Larry Wasserman Christopher Genovese

Department of Statistics Carnegie Mellon University

May 22, 2014

Outline

- Introduction
- Proposed Methods:
 - Soft Mode Clustering
 - Connectivity Measures
 - Bandwidth Selection
 - Visualizations
- Data Analysis
- Conclusion

Outline for the Proposed Methods

Outline

- Introduction
- Proposed Methods:
 - Soft Mode Clustering
 - Connectivity Measures
 - Bandwidth Selection
 - Visualizations
- Data Analysis
- Conclusion

Outline for the Proposed Methods

- Let $p: \mathbb{R}^d \mapsto \mathbb{R}$ be a density function.
- The gradient $g(x) = \nabla p(x)$ and the Hessian $H(x) = \nabla \nabla p(x)$.

- Let $p: \mathbb{R}^d \mapsto \mathbb{R}$ be a density function.
- The gradient $g(x) = \nabla p(x)$ and the Hessian $H(x) = \nabla \nabla p(x)$.
- For each $x \in \mathbb{R}^d$, we construct a flow $\phi : [0, \infty] \mapsto \mathbb{R}^d$ s.t.

$$\phi_{\mathsf{x}}(0) = \mathsf{x}, \qquad \phi_{\mathsf{x}}'(t) = \mathsf{g}(\phi_{\mathsf{x}}(t)).$$

- Let $p: \mathbb{R}^d \mapsto \mathbb{R}$ be a density function.
- The gradient $g(x) = \nabla p(x)$ and the Hessian $H(x) = \nabla \nabla p(x)$.
- For each $x \in \mathbb{R}^d$, we construct a flow $\phi : [0, \infty] \mapsto \mathbb{R}^d$ s.t.

$$\phi_{\mathsf{x}}(0) = \mathsf{x}, \qquad \phi_{\mathsf{x}}'(t) = \mathsf{g}(\phi_{\mathsf{x}}(t)).$$

• By Morse theory, $\lim_{t\to} \phi_t(t) \in \mathcal{M}$, where

$$\mathcal{M} = \{x : \nabla p(x) = 0, H(x) \text{ negative definite}\}$$

is the set of local modes.

- Let $p: \mathbb{R}^d \mapsto \mathbb{R}$ be a density function.
- The gradient $g(x) = \nabla p(x)$ and the Hessian $H(x) = \nabla \nabla p(x)$.
- For each $x \in \mathbb{R}^d$, we construct a flow $\phi : [0, \infty] \mapsto \mathbb{R}^d$ s.t.

$$\phi_{\mathsf{x}}(0) = \mathsf{x}, \qquad \phi_{\mathsf{x}}'(t) = \mathsf{g}(\phi_{\mathsf{x}}(t)).$$

• By Morse theory, $\lim_{t\to} \phi_t(t) \in \mathcal{M}$, where

$$\mathcal{M} = \{x : \nabla p(x) = 0, H(x) \text{ negative definite}\}\$$

is the set of local modes.

• We denote $\mathcal{M} = \{m_1, \cdots, m_k\}$.

Given a smooth function.

- Given a smooth function.
- Find the local modes.

- Given a smooth function.
- Find the local modes.

- Given a smooth function.
- Find the local modes.
- Following the gradient until arriving a mode.

- Given a smooth function.
- Find the local modes.
- Following the gradient until arriving a mode.

• The kernel density estimator (KDE):

$$\widehat{p}_n(x) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{x - X_i}{h}\right).$$

The gradient:

$$\widehat{g}_n(x) = \nabla \widehat{p}_n(x) = \frac{1}{nh^d} \sum_{i=1}^n \nabla K\left(\frac{x - X_i}{h}\right).$$

- Clustering: Based on the gradient of $\widehat{g}_n(x)$.
- Algorithm: The mean shift algorithm [Fukunaga1975, Cheng1995, Comaniciu2002].

Conventions on Notations

True local modes

$$\mathcal{M} = \{m_1, \cdots, m_k\}.$$

Estimated local modes

$$\widehat{\mathcal{M}}_n = \{\widehat{m}_1, \cdots, \widehat{m}_{\widehat{k}}\}.$$

• The cluster regions (also known as basins of attraction):

$$C_i = \{x : x \text{ being assigned to } m_i \text{ under } g\}.$$

• The estimated cluster regions:

$$\widehat{C}_j = \{x : x \text{ being assigned to } \widehat{m}_j \text{ under } \widehat{g}_n\}.$$

Outline

- Introduction
- Proposed Methods:
 - Soft Mode Clustering
 - Connectivity Measures
 - Bandwidth Selection
 - Visualizations
- Data Analysis
- Conclusion

Outline for the Proposed Methods

Basic Ideas for Soft Clustering

• Usual (Hard) clustering: assign each data to a cluster. e.g. a(x) = (0, 1, 0, 0, 0): assign x to the second cluster.

Basic Ideas for Soft Clustering

- Usual (Hard) clustering: assign each data to a cluster. e.g. a(x) = (0, 1, 0, 0, 0): assign x to the second cluster.
- Soft clustering: assign each data to a mixture of clusters.

Basic Ideas for Soft Clustering

- Usual (Hard) clustering: assign each data to a cluster.
 - e.g. a(x) = (0, 1, 0, 0, 0): assign x to the second cluster.
- Soft clustering: assign each data to a mixture of clusters.
 - e.g. a(x) = (0.05, 0.7, 0.2, 0.05, 0):
 - \longrightarrow We have strong **confidence** that x is assinged to cluster 2

- A common soft clustering method: mixture model.
- $p(x) = \pi p_1(x) + (1 \pi)p_2(x)$
- But this is ill-defined.

- A common soft clustering method: mixture model.
- $p(x) = \pi p_1(x) + (1 \pi)p_2(x)$
- But this is ill-defined.

- A common soft clustering method: mixture model.
- $p(x) = \pi p_1(x) + (1 \pi)p_2(x)$
- But this is ill-defined.

- A common soft clustering method: mixture model.
- $p(x) = \pi p_1(x) + (1 \pi)p_2(x)$
- But this is ill-defined.

Basic Ideas for Soft Mode Clustering

- In mode clustering, we have fixed local modes $\widehat{m}_1, \cdots, \widehat{m}_{\widehat{k}}$.
- All we need is to construct the **soft assignment vector** a(x).

Soft Mode Clustering: The Bootstrap

- Given data points X_1, \dots, X_n , we find the local modes.
- For each $x \in \mathbb{R}$, perform the bootstrap and redo the mode clusteirng.
- Construct the soft assignment vector $a(x) = (a_1, \dots, a_{\widehat{\nu}}(x))$ where

 $a_{\ell}(x) =$ fraction of x being assigned to cluster ℓ .

The Bootstrap: Example

- We define a diffusion between local modes and data points.
- $\hat{k} + n$ states: $\hat{m}_1, \dots, \hat{m}_{\hat{k}}, X_1, \dots, X_n$.

- We define a diffusion between local modes and data points.
- $\hat{k} + n$ states: $\hat{m}_1, \dots, \hat{m}_{\hat{k}}, X_1, \dots, X_n$.
- The first *K* states: absorbing states.

- We define a diffusion between local modes and data points.
- $\hat{k} + n$ states: $\hat{m}_1, \dots, \hat{m}_{\hat{k}}, X_1, \dots, X_n$.
- The first K states: absorbing states.
- The transition probability between data points:

$$\mathbf{P}(X_i \to X_j) = \frac{K\left(\frac{X_i - X_j}{h}\right)}{\sum_{j=1}^n K\left(\frac{X_i - X_j}{h}\right) + \sum_{\ell=1}^{\widehat{k}} K\left(\frac{X_i - \widehat{m}_{\ell}}{h}\right)}.$$

The transition probability to local modes:

$$\mathbf{P}(X_i \to \widehat{m}_{\ell}) = \frac{K\left(\frac{X_i - m_{\ell}}{h}\right)}{\sum_{j=1}^n K\left(\frac{X_i - X_j}{h}\right) + \sum_{\ell=1}^{\widehat{k}} K\left(\frac{X_i - \widehat{m}_{\ell}}{h}\right)}.$$

- We define a diffusion between local modes and data points.
- $\widehat{k} + n$ states: $\widehat{m}_1, \dots, \widehat{m}_{\widehat{k}}, X_1, \dots, X_n$.
- The first K states: absorbing states.
- The transition probability between data points:

$$\mathbf{P}(X_i \to X_j) = \frac{K\left(\frac{X_i - X_j}{h}\right)}{\sum_{j=1}^n K\left(\frac{X_i - X_j}{h}\right) + \sum_{\ell=1}^{\widehat{k}} K\left(\frac{X_i - \widehat{m}_{\ell}}{h}\right)}.$$

• The transition probability to local modes:

$$\mathbf{P}(X_i \to \widehat{m}_{\ell}) = \frac{K\left(\frac{X_i - m_{\ell}}{h}\right)}{\sum_{j=1}^n K\left(\frac{X_i - X_j}{h}\right) + \sum_{\ell=1}^{\widehat{k}} K\left(\frac{X_i - \widehat{m}_{\ell}}{h}\right)}.$$

Soft assignement vector:

$$a_{\ell}(X_i) = \mathbb{P} (\text{from } X_i \text{ and hits } \widehat{m}_{\ell} \text{ first})$$

The Hitting Probability: Example

- The third method is based on the level set.
- We create a distance $d_{\ell}(x)$ for each $\ell = 1, \dots, k$.
- Transform the distance into soft assignment vector. e.g.

$$a_{\ell}(x) = \frac{\exp(-\beta_0 d_{\ell}(x))}{\sum_{j=1}^k \exp(-\beta_0 d_j(x))}.$$

The Level Set: Example

Soft Mode Clustering: Other Distance Methods

Other possible approaches:

- Diffusion distance
- Density integral distance

We need a conversion between distances $d_{\ell}(x)$ and soft assignment vector a(x).

Outline for the Proposed Methods

A Motivating Example

A Motivating Example

Recall: \widehat{C}_j the regions belong to cluster j.

Recall: \widehat{C}_j the regions belong to cluster j.

• The soft assignment vector a(x) measures the confidence to be assigned to each cluster.

Recall: \widehat{C}_j the regions belong to cluster j.

- The soft assignment vector a(x) measures the confidence to be assigned to each cluster.
- $a_{\ell}(x)$: the confidence of x being assigned to cluster ℓ .

Recall: \widehat{C}_j the regions belong to cluster j.

- The soft assignment vector a(x) measures the confidence to be assigned to each cluster.
- $a_{\ell}(x)$: the confidence of x being assigned to cluster ℓ .
- The quantity

$$\frac{1}{N_j}\sum_{i:X_i\in\widehat{C}_j}a_\ell(X_i)$$

measures the confidence for cluster j being assigned to cluster ℓ ; note N_i is the number of points in \widehat{C}_i .

Recall: \widehat{C}_j the regions belong to cluster j.

- The soft assignment vector a(x) measures the confidence to be assigned to each cluster.
- $a_{\ell}(x)$: the confidence of x being assigned to cluster ℓ .
- The quantity

$$\frac{1}{N_j}\sum_{i:X_i\in\widehat{C}_j}a_\ell(X_i)$$

measures the confidence for cluster j being assigned to cluster ℓ ; note N_j is the number of points in \widehat{C}_j .

• We define the *connectivity measure* between cluster j, ℓ as

$$\Omega_{j\ell} = \frac{1}{2} \left(\frac{1}{N_j} \sum_{i: X_i \in \widehat{C}_j} a_\ell(X_i) + \frac{1}{N_\ell} \sum_{i: X_i \in \widehat{C}_\ell} a_j(X_i) \right).$$

Example for Connectivity Matrix

	1	2	3
1	_	0.27	0.21
2	0.27	_	0.12
3	0.21	0.12	_

Outline for the Proposed Methods

Optimality for Bandwidth

- Usually, we select smoothing bandwidth h according to minimize some loss function.
- Mean integrated square errors (MISE):

$$extit{MISE}(\widehat{
ho}_n) = \mathbb{E}\left(\int \left(\widehat{
ho}_n(x) -
ho(x)
ight)^2 dx
ight).$$

• L_{∞} loss:

$$\|\widehat{p}_n - p\|_{\infty} = \sup_{x} |\widehat{p}_n(x) - p(x)|.$$

Optimality for Mode Clustering

For mode clustering, the important quantity is the gradient g(x) and its estimator $\widehat{g}_n(x)$.

MISE:

$$MISE(\widehat{g}_n) = \mathbb{E}\left(\int \|\widehat{g}_n(x) - g(x)\|_2^2 dx\right).$$

• L_{∞} loss:

$$\|\widehat{g}_n - g\|_{\infty} = \sup_{x} \|\widehat{g}_n(x) - g(x)\|_{\max}.$$

MISE:

$$MISE(\widehat{g}_n) = O(h^4) + O\left(\frac{1}{nh^{d+2}}\right).$$

MISE:

$$MISE(\widehat{g}_n) = O(h^4) + O\left(\frac{1}{nh^{d+2}}\right).$$

• L_{∞} loss:

$$\|\widehat{g}_n - g\|_{\infty} = O(h^2) + O_P\left(\sqrt{\frac{\log n}{nh^{d+2}}}\right).$$

MISE:

$$MISE(\widehat{g}_n) = O(h^4) + O\left(\frac{1}{nh^{d+2}}\right).$$

• L_{∞} loss:

$$\|\widehat{g}_n - g\|_{\infty} = O(h^2) + O_P\left(\sqrt{\frac{\log n}{nh^{d+2}}}\right).$$

This suggests two different optimality criteria:

$$h_{MISE} = C_1 \left(\frac{1}{n}\right)^{\frac{1}{d+6}} \qquad \qquad h_{L_{\infty}} = C_2 \left(\frac{\log n}{n}\right)^{\frac{1}{d+6}}$$

MISE:

$$MISE(\widehat{g}_n) = O(h^4) + O\left(\frac{1}{nh^{d+2}}\right).$$

• L_{∞} loss:

$$\|\widehat{g}_n - g\|_{\infty} = O(h^2) + O_P\left(\sqrt{\frac{\log n}{nh^{d+2}}}\right).$$

• This suggests two different optimality criteria:

$$h_{MISE} = C_1 \left(\frac{1}{n}\right)^{\frac{1}{d+6}} \qquad \qquad h_{L_{\infty}} = C_2 \left(\frac{\log n}{n}\right)^{\frac{1}{d+6}}$$

• In practice, we use the normal reference rule [Sliverman1986, Chacon2011,13]:

$$h_{NR} = sd(\mathbb{X}) imes \left(rac{4}{d+4}
ight)^{rac{1}{d+6}} \left(rac{1}{n}
ight)^{rac{1}{d+6}}.$$

Outline for the Proposed Methods

Multidimensional Scaling (MDS): An Introduction

- Input: $X_1, \dots, X_n \in \mathbb{R}^d$.
- Output: $Z_1, \dots, Z_n \in \mathbb{R}^r$ with r < d.
- Distance preserved:

$$\min \sum_{i \neq j} |d(X_i, X_j) - d(Z_i, Z_j)|$$

for some distance function d.

• In practice, we use the classical scaling.

Two-Stage MDS

• We apply MDS to local modes $\widehat{m}_1, \dots, \widehat{m}_{\widehat{k}}$.

Two-Stage MDS

• We apply MDS to local modes $\widehat{m}_1, \dots, \widehat{m}_{\widehat{k}}$.

Two-Stage MDS

- We apply MDS to local modes $\widehat{m}_1, \dots, \widehat{m}_{\widehat{k}}$.
- For each cluster, we apply MDS for the cluster points.

- We apply MDS to local modes $\widehat{m}_1, \dots, \widehat{m}_{\widehat{k}}$.
- For each cluster, we apply MDS for the cluster points.

MDS on one Cluster

- We apply MDS to local modes $\widehat{m}_1, \dots, \widehat{m}_{\widehat{k}}$.
- For each cluster, we apply MDS for the cluster points.
- By matching the local modes, we plot cluster points around the mode.

- We apply MDS to local modes $\widehat{m}_1, \cdots, \widehat{m}_{\widehat{k}}$.
- For each cluster, we apply MDS for the cluster points.
- By matching the local modes, we plot cluster points around the mode.

Matching modes

- We apply MDS to local modes $\widehat{m}_1, \dots, \widehat{m}_{\widehat{k}}$.
- For each cluster, we apply MDS for the cluster points.
- By matching the local modes, we plot cluster points around the mode.

Matching modes

- We apply MDS to local modes $\widehat{m}_1, \dots, \widehat{m}_{\widehat{k}}$.
- For each cluster, we apply MDS for the cluster points.
- By matching the local modes, we plot cluster points around the mode.
- Repeat (2-3) to each mode.

- We apply MDS to local modes $\widehat{m}_1, \dots, \widehat{m}_{\widehat{k}}$.
- For each cluster, we apply MDS for the cluster points.
- By matching the local modes, we plot cluster points around the mode.
- Repeat (2-3) to each mode.

MDS on Modes

Outline

- Introduction
- Proposed Methods:
 - Soft Mode Clustering
 - Connectivity Measures
 - Bandwidth Selection
 - Visualizations
- Data Analysis
- Conclusion

5-Cluster in d=6

- 5 clusters each with $n_C = 200$.
- 4 edges connecting clusters and each with $n_E = 100$.
- Embedding this structure in
 d = 6 and add Gaussian noise.

5-Cluster in d=6

- 5 clusters each with $n_C = 200$.
- 4 edges connecting clusters and each with $n_E = 100$.
- Embedding this structure in
 d = 6 and add Gaussian noise.

5-Cluster in d=6

	1	2	3	4	5
1	_	0.17	0.19	0.15	0.05
2	0.17	_	0.05	0.04	0.01
3	0.19	0.05	_	0.05	0.01
4	0.15	0.04	0.05	_	0.20
5	0.05	0.01	0.01	0.20	_

The Olive Oil Data: Description

- A data consists of 572 olive oil sample produced in 9 different areas in Italy.
- We measure 8 different chemical contents for each oil.

	palmitic	palmitoleic	stearic	oleic	linoleic	linolenic	arachidic	eicosenoic
1	1088	73	224	7709	781	31	61	29
2	911	54	246	8113	549	31	63	29
3	966	57	240	7952	619	50	78	35
4	1051	67	259	7771	672	50	80	46
5	911	49	268	7924	678	51	70	44
6	1100	61	235	7728	734	39	64	35

The Olive Oil Data: Analysis

The Olive Oil Data: Analysis

	1	2	3	4	5	6	7
Calabria	0	51	5	0	0	0	0
Coast-Sardinia	0	0	0	33	0	0	0
East-Liguria	0	0	0	1	32	11	6
Inland-Sardinia	0	0	0	65	0	0	0
North-Apulia	23	2	0	0	0	0	0
Sicily	6	19	11	0	0	0	0
South-Apulia	0	2	204	0	0	0	0
Umbria	0	0	0	0	0	51	0
West-Liguria	0	0	0	0	0	0	50

The Olive Oil Data: Analysis

	1	2	3	4	5	6	7
1	_	0.08	0.05	0.00	0.01	0.02	0.00
2	0.08	_	0.30	0.01	0.01	0.00	0.00
3	0.05	0.30	_	0.02	0.01	0.00	0.00
4	0.00	0.01	0.02	_	0.09	0.02	0.01
5	0.01	0.01	0.01	0.09	_	0.19	0.04
6	0.02	0.00	0.00	0.02	0.19	_	0.09
7	0.00	0.00	0.00	0.01	0.04	0.09	_

Outline

- Introduction
- Proposed Methods:
 - Soft Mode Clustering
 - Connectivity Measures
 - Bandwidth Selection
 - Visualizations
- Data Analysis
- Conclusion

Conclusion

Thank you!

reference

- 1. Y.-C. Chen, C. R. Genovese, L. Wasserman. Asymptotic theory for density ridges, working paper, 2014.
- 2. Y.-C. Chen, C. R. Genovese, Larry Wasserman. Enhanced Mode Clustering, working paper 2014.
- J. Chacon and T. Duong. Data-driven density derivative estimation, with applications to nonparametric clustering and bump hunting. Electronic Journal of Statistics, 2013.
- J. Chacon, T. Duong, and M. Wand. Asymptotics for general multivariate kernel density derivative estimators. Statistica Sinica, 2011.
- Y. Cheng. Mean shift, mode seeking, and clustering. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 17(8):790799, 1995.
- D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature space analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions, 2002.
- K. Fukunaga and L. D. Hostetler. The estimation of the gradient of a density function, with applications in pattern recognition, 1975.
- J. Li, S. Ray, and B. Lindsay. A nonparametric statistical approach to clustering via mode identification. Journal of Machine Learning Research, 2007

Minimizing

$$\sum_{i\neq j} \left| \left(X_i - \bar{X}_n \right)^T \left(X_j - \bar{X}_n \right) - \left(Z_i - \bar{Z}_n \right)^T \left(Z_j - \bar{Z}_n \right) \right|$$

Minimizing

$$\sum_{i\neq j} \left| \left(X_i - \bar{X}_n \right)^T \left(X_j - \bar{X}_n \right) - \left(Z_i - \bar{Z}_n \right)^T \left(Z_j - \bar{Z}_n \right) \right|$$

Analystical solution:

$$\mathbf{Z}=(Z_1,\cdots,Z_n)^T=\mathbf{V}_k\mathbf{D}_k,$$

Minimizing

$$\sum_{i\neq j} \left| \left(X_i - \bar{X}_n \right)^T \left(X_j - \bar{X}_n \right) - \left(Z_i - \bar{Z}_n \right)^T \left(Z_j - \bar{Z}_n \right) \right|$$

Analystical solution:

$$\mathbf{Z} = (Z_1, \cdots, Z_n)^T = \mathbf{V}_k \mathbf{D}_k,$$

where $\mathbf{V}_k = [v_1, \cdots, v_k]$ and $\mathbf{D}_k = \mathsf{Diag}(\sqrt(\lambda_1), \cdots, \sqrt{\lambda_k})$ with (v_j, λ_j) being j-th eigenvector/value of a $n \times n$ matrix \mathbf{S} .

Minimizing

$$\sum_{i \neq j} \left| \left(X_i - \bar{X}_n \right)^T \left(X_j - \bar{X}_n \right) - \left(Z_i - \bar{Z}_n \right)^T \left(Z_j - \bar{Z}_n \right) \right|$$

Analystical solution:

$$\mathbf{Z} = (Z_1, \cdots, Z_n)^T = \mathbf{V}_k \mathbf{D}_k,$$

where $\mathbf{V}_k = [v_1, \cdots, v_k]$ and $\mathbf{D}_k = \mathsf{Diag}(\sqrt(\lambda_1), \cdots, \sqrt{\lambda_k})$ with (v_j, λ_j) being j-th eigenvector/value of a $n \times n$ matrix \mathbf{S} .

$$\mathbf{S}_{ij} = \left(X_i - \bar{X}_n\right)^T \left(X_j - \bar{X}_n\right).$$