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Introduction

Density Mode Clustering: A Population Level Clustering

o Let p: RY — R be a density function.
o The gradient g(x) = Vp(x) and the Hessian H(x) = VVp(x).

Yen-Chi Chen (CMU) Enhanced Mode Clustering May 22, 2014 7/43



Introduction

Density Mode Clustering: A Population Level Clustering

o Let p: RY — R be a density function.
o The gradient g(x) = Vp(x) and the Hessian H(x) = VVp(x).
o For each x € RY, we construct a flow ¢ : [0, 00] — RY s.t.

Px(0) =x,  ¢L(t) = g(ex(t))-

Yen-Chi Chen (CMU) Enhanced Mode Clustering May 22, 2014 7/43



Introduction

Density Mode Clustering: A Population Level Clustering

Let p: RY — R be a density function.
The gradient g(x) = Vp(x) and the Hessian H(x) = VVp(x).
For each x € RY, we construct a flow ¢ : [0, 00] +— RY s.t.

Px(0) =x,  ¢L(t) = g(ex(t))-

By Morse theory, lim;_, ¢+(t) € M, where

M = {x: Vp(x) = 0, H(x) negative definite}

is the set of local modes.

Yen-Chi Chen (CMU) Enhanced Mode Clustering May 22, 2014 7/43



Introduction

Density Mode Clustering: A Population Level Clustering

Let p: RY — R be a density function.
The gradient g(x) = Vp(x) and the Hessian H(x) = VVp(x).
For each x € RY, we construct a flow ¢ : [0, 00] +— RY s.t.

Px(0) =x,  ¢L(t) = g(ex(t))-

o By Morse theory, lim;_, ¢:(t) € M, where

M = {x: Vp(x) = 0, H(x) negative definite}

is the set of local modes.
We denote M = {mq,---, my}.
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Introduction
Density Mode Clustering: An Example

o Given a smooth function.

@ Find the local modes.
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Introduction

Density Mode Clustering: Based on the KDE

The kernel density estimator (KDE):

B il x — X;
Pn(X):WZK( p )
=1

The gradient:

n N 1 x — X;
gn(X)=Vpn(x)=WZVK( h )
i=1

Clustering: Based on the gradient of g,(x).

©

Algorithm: The mean shift algorithm [Fukunaga1975, Cheng1995, Comaniciu2002].
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Density Mode Clustering: Based on the KDE
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Introduction

Conventions on Notations

@ True local modes

M={my, -, mg}.

Estimated local modes

My = {my,---, Mz}

The cluster regions (also known as basins of attraction):

C; = {x : x being assigned to m; under g}.

The estimated cluster regions:

E'J- = {x : x being assigned to m; under g,}.
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Soft Clustering
Basic ldeas for Soft Clustering

o Usual (Hard) clustering: assign each data to a cluster.

e.g. a(x) =(0,1,0,0,0): assign x to the second cluster.
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Soft Clustering
Basic ldeas for Soft Clustering

o Usual (Hard) clustering: assign each data to a cluster.
e.g. a(x) =(0,1,0,0,0): assign x to the second cluster.
o Soft clustering: assign each data to a mixture of clusters.
e.g. a(x) =(0.05,0.7,0.2,0.05, 0):
— We have strong confidence that x is assinged to cluster 2
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Soft Clustering
Soft Mixture Clustering

@ A common soft clustering method: mixture model.

o p(x) =mpi(x) + (1 — m)pa(x)
o But this is ill-defined.
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Soft Clustering
Soft Mixture Clustering

@ A common soft clustering method: mixture model.

o p(x) =mpi(x) + (1 — m)pa(x)
o But this is ill-defined.

P1 p2
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Soft Clustering
Basic ldeas for Soft Mode Clustering

o In mode clustering, we have fixed local modes my, - - - , my.

o All we need is to construct the soft assignment vector a(x).

Yen-Chi Chen (CMU) Enhanced Mode Clustering May 22, 2014 16 / 43



Soft Clustering The Bootstrap

Soft Mode Clustering: The Bootstrap

O Given data points X3, -, X,, we find the local modes.
©Q For each x € R, perform the bootstrap and redo the mode clusteirng.

O Construct the soft assignment vector a(x) = (a1, ,az(x)) where

ag(x) = fraction of x being assigned to cluster /.
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Soft Clustering The Bootstrap

The Bootstrap: Example

-0.25 0.00 025 050 075
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Soft Clustering The Hitting Probabili

Soft Mode Clustering: The Hitting Probability

o We define a diffusion between local modes and data points.
o k+ nstates: my,---,mg, X1, , X
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Soft Clustering The Hitting Probability

Soft Mode Clustering: The Hitting Probability

We define a diffusion between local modes and data points.
k + n states: my,--- My, X1, -+, Xp.

The first K states: absorbing states.

The transition probability between data points:

X;i—X;
()

n Xi_X' j(\ X,-—r’ﬁ i
> i1 K( 3 J) +2 1 K (Te)
The transition probability to local modes:

o G

Sk () + 3 K ()

P(Xi = X)) =

P(X; — my) =
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Soft Clustering The Hitting Probability

Soft Mode Clustering: The Hitting Probability

Qo
Qo
()
()

We define a diffusion between local modes and data points.
k + n states: my,--- My, X1, -+, Xp.

The first K states: absorbing states.

The transition probability between data points:

(<5
P~ %) = >
Zj:lK( - J) +Ze:1K('T€)
The transition probability to local modes:
(57
MK () + o K (K5)
Soft assignement vector:
ag(X;) = P (from X; and hits my first)

P(X; — my) =
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Soft Clustering The Hitting Probability

The Hitting Probability: Example
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Soft Clustering The Level Set

Soft Mode Clustering: The Level Set

o The third method is based on the level set.
o We create a distance dy(x) for each ¢ =1,--- k.
o Transform the distance into soft assignment vector. e.g.

exp(—fod(x))

M) = S o —Pod ()
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Soft Mode Clustering: The Level Set
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Soft Clustering The Level Set

Soft Mode Clustering: The Level Set
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Soft Clustering The Level Set

Soft Mode Clustering: The Level Set

D1 D2 D3 D4
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Soft Clustering The Level Set

Soft Mode Clustering: The Level Set

p
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Soft Clustering The Level Set

The Level Set: Example

-0.25 0.00 025 050 075
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Soft Clustering The Level Set

Soft Mode Clustering: Other Distance Methods

Other possible approaches:
o Diffusion distance

o Density integral distance
We need a conversion between distances dy(x) and soft assignment vector

a(x).
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Connectivity Measures
A Motivating Example
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Connectivity Measures

Soft Assignment Vector: A Measure of Overlapping

Recall: Z'J the regions belong to cluster ;.
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o The quantity
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N; is the number of points in C;.
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Connectivity Measures
Soft Assignment Vector: A Measure of Overlapping

Recall: ’(.:J the regions belong to cluster ;.

o The soft assignment vector a(x) measures the confidence to be
assigned to each cluster.

@ ay(x) : the confidence of x being assigned to cluster ¢.
o The quantity

measures the confidence for cluster j being assigned to cluster ¢; note
N; is the number of points in C;.

o We define the connectivity measure between cluster j, £ as

1 1 1
U=z | & > ag(X,-)—i—E > a(X)

i:X;eC iX;€Cy

Yen-Chi Chen (CMU) Enhanced Mode Clustering May 22, 2014 27 / 43



Connectivity Measures
Example for Connectivity Matrix

et 1 2 3
1 - 027 021
A 2 0.27 - 0.12

Sy 3 021 012 -
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Bandwidth Selection
Outline for the Proposed Methods
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Bandwidth Selection
Optimality for Bandwidth

@ Usually, we select smoothing bandwidth h according to minimize
some loss function.

o Mean integrated square errors (MISE):

MISEr) = E ([ (3r(x) - L) o )

o L loss:
[Pn — plloc = sup [pa(x) — p(x)|.
X
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Bandwidth Selection
Optimality for Mode Clustering

For mode clustering, the important quantity is the gradient g(x) and its
estimator gn(x).
o MISE:

MISE (g») = (/Hgn —g(x)|5 dX)-

o L, loss:
8n — glloo = sup [[8n(x) — &(x)/[max-
X
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Bandwidth Selection
Rate of Convergence and Bandwidth Selection

o MISE:

. 1
MISE(g,) = O(h*) + O (W) .
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Bandwidth Selection
Rate of Convergence and Bandwidth Selection

o MISE:

I 1
MISE(g,) = O(h*) + O (W) .

. log n
18n — &lloc = O(h2) + Op (\/ W) .

o L, loss:
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Bandwidth Selection
Rate of Convergence and Bandwidth Selection

o MISE:

nhd+2

. | logn
18 — &lloo = O(h2) + Op ( W) .

o This suggests two different optimality criteria:

1 1
1) d+6 log n\ d+6
hvise = C1 (;) h, =G ( 8 )

n

MISE(g,) = O(h*) + O ( L ) .

o L, loss:
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Bandwidth Selection
Rate of Convergence and Bandwidth Selection

o MISE:

I 1
MISE(g,) = O(h*) + O (W) .

. | logn
18 — &lloo = O(h2) + Op ( W) .

o This suggests two different optimality criteria:

1 1
1) d+6 log n\ d+6
hvise = C1 (;) h, =G ( 8 )

o L, loss:

n

@ In practice, we use the normal reference rule [siverman1986, Chacon2011,13):

h d(X R o
we=sd00 < (53)" (7)™

Yen-Chi Chen (CMU) Enhanced Mode Clustering May 22, 2014 32 /43



Outline for the Proposed Methods
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Visualization

Multidimensional Scaling (MDS): An Introduction

o Input: Xi,---,X, € RY.
o Output: Z1,---,Z, € R" with r < d.

o Distance preserved:

min » " |d(X;, X;) — d(Zi, Z)|
i)
for some distance function d.

o In practice, we use the classical scaling.
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Two-Stage MDS

O We apply MDS to local modes
i, -, g
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Two-Stage MDS

MDS on Modes

@ We apply MDS to local modes

m1,---,m;. +
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Two-Stage MDS

O We apply MDS to local modes
i, -, g,

@ For each cluster, we apply MDS
for the cluster points.
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Two-Stage MDS

MDS on one Cluster

@ We apply MDS to local modes . =
T . ) -
Q@ For each cluster, we apply MDS ) )
for the cluster points. .. e
s o 5
- )
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Two-Stage MDS

O We apply MDS to local modes
M, -, .

@ For each cluster, we apply MDS
for the cluster points.

© By matching the local modes,
we plot cluster points around
the mode.
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Two-Stage MDS

Matching modes

@ We apply MDS to local modes
T .

Q@ For each cluster, we apply MDS +
for the cluster points.

© By matching the local modes, IR DR, +
we plot cluster points around S §
the mode. 3 ‘
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Two-Stage MDS

O We apply MDS to local modes
M, -, .

@ For each cluster, we apply MDS
for the cluster points.

© By matching the local modes,
we plot cluster points around
the mode.

O Repeat (2-3) to each mode.
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Two-Stage MDS

MDS on Modes

@ We apply MDS to local modes
my,:---, m’;; +\

Q@ For each cluster, we apply MDS i 2
for the cluster points.

© By matching the local modes, s, ¥
we plot cluster points around KN
the mode.

O Repeat (2-3) to each mode.
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Outline

o Data Analysis
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DEIEWGEE

5-Cluster in d=6

@ 5 clusters each with nc = 200.

@ 4 edges connecting clusters and
each with ng = 100.

o Embedding this structure in
d = 6 and add Gaussian noise.
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DEIEWGEE
5-Cluster in d=6

1 2 3 4 5

1 - 017 019 0.15 0.05

i 2 017 - 005 0.04 o0.01
3 019 0.05 - 005 0.01
4 015 0.04 0.05 - 020
5

0.05 0.01 0.01 0.20 =
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Data Analysis
he Olive Oil Data: Description

o A data consists of 572 olive oil sample produced in 9 different areas in
Italy.

@ We measure 8 different chemical contents for each oil.

palmitic  palmitoleic  stearic  oleic linoleic linolenic  arachidic  eicosenoic
1 1088 73 224 7709 781 31 61 29
2 911 54 246 8113 549 31 63 29
3 966 57 240 7952 619 50 78 35
4 1051 67 259 7771 672 50 80 46
5 911 49 268 7924 678 51 70 44
6 1100 61 235 7728 734 39 64 35
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DEIEWGEE

The Olive Oil Data: Analysis

Yen-Chi Chen (CMU)
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Inland-Sardinia

North—Apulia
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The Olive Oil Data: Analysis

1 2 3 4 5 6 7

Calabria 0 51 5 0 0 0 0
Coast-Sardinia 0 0 0 33 0 0 O
East-Liguria 0 0 0 1 32 11 6
Inland-Sardinia 0 0 0 66 0 0 O
North-Apulia 23 2 0O 0 O 0 O
Sicily 6 19 11 0 0 0 O
South-Apulia 0 2 204 0 O O O
Umbria 0 0 0 0 O 51 0O
West-Liguria 0 0 0 0 O 0 50
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The Olive Oil Data: Analysis

1 2 3 4 5 6 7

- 0.08 0.05 0.00 0.01 0.02 0.00
0.08 - 030 0.01 0.01 0.00 0.00
0.05 0.30 - 0.02 0.01 0.00 0.00
0.00 0.01 0.02 - 0.09 0.02 0.01
0.01 0.01 0.01 0.09 - 0.19 0.04
0.02 0.00 0.00 0.02 0.19 - 0.09
0.00 0.00 0.00 0.01 0.04 0.09 =

~NOoO b wWw N
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Conclusion

Outline

o Conclusion
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Conclusion

Thank you!
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Conclusion
The Classical Scaling

o Minimizing

;‘(Xf—xn)T(%'—Xn) —(Z-Z) (z-Z)

@ Analystical solution:
Z= (2, ,Z)" =ViDy,

where Vi = [v1, -+, v] and Dy = Diag(y/(M), - -+ , v Ak) with
(vj, Aj) being j-th eigenvector/value of a n x n matrix S.
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