Cosmic Web Reconstruction through Density Ridges

Yen-Chi Chen

Shirley Ho Peter E. Freeman Christopher R. Genovese Larry Wasserman

> Department of Statistics McWilliams Center for Cosmology Carnegie Mellon University

> > February 12, 2015

Outline

- Introduction to Cosmic Web
- Statistical Model and Algorithm
- Filament Coverage and Uncertainty Measures
- Scientific Applications
- Summary

Outline

- Introduction to Cosmic Web
- Statistical Model and Algorithm
- Filament Coverage and Uncertainty Measures
- Scientific Applications
- Summary

Cosmic Web: What Does Our Universe Look Like

credit: Millennium Simulation

Cosmic Web: What Does Our Universe Look Like

credit. Willemilani Simulation

Focus of the Research: Filaments

Why filament?

• Galaxies tend to concentrate around filaments.

Focus of the Research: Filaments

Why filament?

- Galaxies tend to concentrate around filaments.
- Brightness of galaxies is influenced by filaments.

Focus of the Research: Filaments

Why filament?

- Galaxies tend to concentrate around filaments.
- Brightness of galaxies is influenced by filaments.
- Shape of galaxies is correlated with filaments.

Outline

- Introduction to Cosmic Web
- Statistical Model and Algorithm
- Filament Coverage and Uncertainty Measures
- Scientific Applications
- Summary

A Glance at our Universe

(Loading)

Statistical Model for Filaments: Density Ridges

Formally, we define a filament to be a **ridge** of the density.

Example: Ridges in Mountians

Credit: Google

Example: Ridges in Smooth Functions

Example: Ridges in Smooth Functions

Ridges: Local Modes in Subspace

 A generalized local mode in a specific 'subspace'.

Ridges: Local Modes in Subspace

 A generalized local mode in a specific 'subspace'.

Ridges: Local Modes in Subspace

 A generalized local mode in a specific 'subspace'.

• p(x): a density function.

- p(x): a density function.
- $(\lambda_i(x), v_i(x))$: jth eigenvalue/vector of $H(x) = \nabla \nabla p(x)$.

- p(x): a density function.
- $(\lambda_j(x), v_j(x))$: jth eigenvalue/vector of $H(x) = \nabla \nabla p(x)$.
- $V(x) = [v_2(x), \dots, v_d(x)]$: matrix of 2nd to last eigenvectors

- p(x): a density function.
- $(\lambda_j(x), v_j(x))$: jth eigenvalue/vector of $H(x) = \nabla \nabla p(x)$.
- $V(x) = [v_2(x), \dots, v_d(x)]$: matrix of 2nd to last eigenvectors
- $V(x)V(x)^T$: a projection

- p(x): a density function.
- $(\lambda_j(x), v_j(x))$: jth eigenvalue/vector of $H(x) = \nabla \nabla p(x)$.
- $V(x) = [v_2(x), \dots, v_d(x)]$: matrix of 2nd to last eigenvectors
- $V(x)V(x)^T$: a projection
- Ridges:

Ridge(p) =
$$\{x : V(x)V(x)^T \nabla p(x) = 0, \lambda_2(x) < 0\},\$$

- p(x): a density function.
- $(\lambda_j(x), v_j(x))$: jth eigenvalue/vector of $H(x) = \nabla \nabla p(x)$.
- $V(x) = [v_2(x), \dots, v_d(x)]$: matrix of 2nd to last eigenvectors
- $V(x)V(x)^T$: a projection
- Ridges:

Ridge(p) =
$$\{x : V(x)V(x)^T \nabla p(x) = 0, \lambda_2(x) < 0\},\$$

Local modes:

Mode
$$(p) = \{x : \nabla p(x) = 0, \lambda_1(x) < 0\}.$$

- p(x): a density function.
- $(\lambda_j(x), v_j(x))$: jth eigenvalue/vector of $H(x) = \nabla \nabla p(x)$.
- $V(x) = [v_2(x), \dots, v_d(x)]$: matrix of 2nd to last eigenvectors
- $V(x)V(x)^T$: a projection
- Ridges:

Ridge(p) =
$$\{x : V(x)V(x)^T \nabla p(x) = 0, \lambda_2(x) < 0\},\$$

Local modes:

Mode(
$$p$$
) = { $x : \nabla p(x) = 0, \lambda_1(x) < 0$ }.

• In practice, we estimate p by the kernel density estimator \widehat{p}_n .

Rawdata

- Rawdata
- 2 Density Reconstruction

- Rawdata
- 2 Density Reconstruction
- Thresholding

- Rawdata
- 2 Density Reconstruction
- Thresholding
- Ridge Recovery (Ozertem and Erdogmus 2011)

- Rawdata
- 2 Density Reconstruction
- Thresholding
- Ridge Recovery (Ozertem and Erdogmus 2011)

Summary for the Algorithm

Outline

- Introduction to Cosmic Web
- Statistical Model and Algorithm
- Filament Coverage and Uncertainty Measures
- Scientific Applications
- Summary

Simulation: Consistency for Density Ridges

• To evaluate the quality of our method, we use the N-body simulation.

Simulation: Consistency for Density Ridges

- To evaluate the quality of our method, we use the N-body simulation.
- We define 'true' filaments as applying our method to 'all' galaxies in the simulation.
- We subsample part of the galaxies from the simulation.

• Can we quantify the process of convergence?

- Can we quantify the process of convergence?
- Filament coverage provides a simple way to attain this.

- Can we quantify the process of convergence?
- Filament coverage provides a simple way to attain this.
- True positive coverage:

$$TP(r) = \frac{\operatorname{length}(R \cap \widehat{R}_n \oplus r)}{\operatorname{length}(R)}.$$

• False positive coverage:

$$FP(r) = 1 - \frac{\operatorname{length}(\widehat{R}_n \cap R \oplus r)}{\operatorname{length}(\widehat{R}_n)}.$$

• R and \widehat{R}_n are the 'true' filaments and estimated filaments.

Illustration: Filament Coverage

Figure: TP(r)

Figure: 1 - FP(r)

The Need for Uncertainty Measure

- Filament coverage gives a (global) evaluation for filaments.
- We have no idea about the local uncertainty along filaments.
- Moreover, filament coverage requires the knowledge of truth.

Uncertianty Measures

Let R and \widehat{R}_n be the true filaments and the estimated filaments. For each $x \in R$, we define the **(local) uncertainty measure** as

$$\rho_n^2(x) = \mathbb{E}(d^2(x, \widehat{R}_n)),$$

where d(x, A) is the projection distance from point x to a set A. Remark:

• This is analogous to the mean square error.

Estimating Uncertainty Measures

We apply the local uncertainty measure to our estimated filaments and use the *bootstrap* to evaluate the errors.

Real Data Evaluation

Real Data Evaluation

Outline

- Introduction to Cosmic Web
- Statistical Model and Algorithm
- Filament Coverage and Uncertainty Measures
- Scientific Applications
- Summary

• Goal: We want to see if galaxies close to filament are brighter than those away from filaments.

- Goal: We want to see if galaxies close to filament are brighter than those away from filaments.
- For each galaxy, we have two variables.

- Goal: We want to see if galaxies close to filament are brighter than those away from filaments.
- For each galaxy, we have two variables.
- Variable 1: distance to filaments.

- Goal: We want to see if galaxies close to filament are brighter than those away from filaments.
- For each galaxy, we have two variables.
- Variable 1: distance to filaments.
- Variable 2: brightness-absolute luminosity $(-1 \times absolute magnitude)$.

- Goal: We want to see if galaxies close to filament are brighter than those away from filaments.
- For each galaxy, we have two variables.
- Variable 1: distance to filaments.
- Variable 2: brightness—absolute luminosity $(-1 \times absolute magnitude)$.
- We analyze three datasets (at different ranges of redshifts).

• Goal: We want to see if the orientation of a galaxy is influenced by the orientation of nearby filaments.

- Goal: We want to see if the orientation of a galaxy is influenced by the orientation of nearby filaments.
- For each galaxy, we have three variables.

- Goal: We want to see if the orientation of a galaxy is influenced by the orientation of nearby filaments.
- For each galaxy, we have three variables.
- Variable 1, μ_F : the nearby filament orientation (vector).

- Goal: We want to see if the orientation of a galaxy is influenced by the orientation of nearby filaments.
- For each galaxy, we have three variables.
- Variable 1, μ_F : the nearby filament orientation (vector).
- Variable 2, μ_i : *j*-th principal axes for the galaxy (vector).

- Goal: We want to see if the orientation of a galaxy is influenced by the orientation of nearby filaments.
- For each galaxy, we have three variables.
- Variable 1, μ_F : the nearby filament orientation (vector).
- Variable 2, μ_i : j-th principal axes for the galaxy (vector).
- Variable 3: distance to filaments.

- Goal: We want to see if the orientation of a galaxy is influenced by the orientation of nearby filaments.
- For each galaxy, we have three variables.
- Variable 1, μ_F : the nearby filament orientation (vector).
- Variable 2, μ_j : *j*-th principal axes for the galaxy (vector).
- Variable 3: distance to filaments.
- We analyze the massive blackhole dataset (a simulation dataset).

Outline

- Introduction to Cosmic Web
- Statistical Model and Algorithm
- Filament Coverage and Uncertainty Measures
- Scientific Applications
- Summary

Model: density ridges.

Model: density ridges.

Algorithm: SCMS.

- Model: density ridges.
- Algorithm: SCMS.
- 3 Consistency: filament coverage.

- Model: density ridges.
- Algorithm: SCMS.
- 3 Consistency: filament coverage.
- Errors: uncertainty measures.

- Model: density ridges.
- Algorithm: SCMS.
- Consistency: filament coverage.
- Errors: uncertainty measures.
- Application: galaxy luminosity, alignment.

Thank you!

reference

- Chen, Yen-Chi, Shirley Ho, Peter E. Freeman, Christopher R. Genovese, and Larry Wasserman. "Cosmic Web Reconstruction through Density Ridges: Method and Algorithm." arXiv preprint arXiv:1501.05303 (2015).
- Chen, Yen-Chi, Christopher R. Genovese, and Larry Wasserman. "Asymptotic theory for density ridges." arXiv preprint arXiv:1406.5663 (2014).
- Chen, Yen-Chi, Christopher R. Genovese, and Larry Wasserman. "Generalized mode and ridge estimation." arXiv preprint arXiv:1406.1803 (2014).
- 4. Eberly, David. Ridges in image and data analysis. Vol. 7. Springer Science & Business Media, 1996.
- 5. Genovese, Christopher R., et al. "Nonparametric ridge estimation." The Annals of Statistics 42.4 (2014): 1511-1545.
- Ozertem, Umut, and Deniz Erdogmus. "Locally defined principal curves and surfaces." The Journal of Machine Learning Research 12 (2011): 1249-1286.