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Prelude: causal inference

[¢]

In a typical causal problem, our data consists of IID random
vectors

(Yl/ Tl/ Sl)/ Tty (Yn/ Tﬂ/ Sl’l)
o Y € R : outcome of interest.
o T € R : treatment.

S € R? : covariates.
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Prelude: causal inference

o In a typical causal problem, our data consists of IID random
vectors
(Y1, T1,51), -+, (Yo, T, Sn)-
o Y € R : outcome of interest.
o T € R : treatment.

S € R? : covariates.

(¢]

@]

We want to investigate the causal effect of T on the outcome of
interest Y.

[¢]

Many well-established work when the treatment T is binary, i.e.,
T €{0,1}.
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Continuous treatment: PM2.5 Example

fips name 1ng lat PM2.5 CMR
I Franklin -87.84328 34.44238 8.045251 452.8492
3 19109 Kossuth -94.20690 43.20414 6.857354 294.3387
4 40115 Ottawa -94.81059 36.83588 8.073921 424.5076

5 42115 Susquehanna -75.80090 41.82128 7.955338 383.5730
8 29213 Taney -93.04128 36.65474 7.026484 348.6023
9 32510 Carson City -119.74735 39.15108 4.063737 347.6080

Figure: An example of PM2.5 data on cardiovascular mortality rate (CMR) at
county-level.

o We want to investigate the effect of PM2.5 on the CMR!.

o The treatment variable T is the amount of PM2.5 at a county,
which is not binary but a continuous number!

1Data from US National Center for Health Statistics and Community Multiscale Air
Quality modeling system
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9 32510 Carson City -119.74735 39.15108 4.063737 347.6080

Figure: An example of PM2.5 data on cardiovascular mortality rate (CMR) at
county-level.

o We want to investigate the effect of PM2.5 on the CMR!.

o The treatment variable T is the amount of PM2.5 at a county,
which is not binary but a continuous number!

o We then encounter the problem of continuous treatment.

1Data from US National Center for Health Statistics and Community Multiscale Air
Quality modeling system
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Figure: The average PM2.5 value of each county.
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Continuous treatment: do-calculus

o To deal with continuous treatment problem, we use the graphical
model framework with the do-calculus technique to define a causal
effect.

o The causal effect of T on Y is defined to be

m(t) = E(Y|do(T = t)) = E[E(Y|T = t, S)].
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Continuous treatment: do-calculus

o To deal with continuous treatment problem, we use the graphical
model framework with the do-calculus technique to define a causal
effect.

o The causal effect of T on Y is defined to be
m(t) = E(Y|do(T =t)) = E[E(Y|T =t¢,S)].

o The above implies a simple estimation procedure. We first
estimate u(t,s) = E(Y|T =t, S = s) with u(t, s). Then we estimate
m(t) via a naive estimator

i) =+ A, )
i=1
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Continuous treatment: the positivity condition
o The naive estimator requires the positivity condition, i.e.,

(PS) p(tls) >0 Vs €S,

where S is the support of S.
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Continuous treatment: the positivity condition

o The naive estimator requires the positivity condition, i.e.,
(PS) p(tls) >0 Vs €S,

where S is the support of S.

o To see why (PS) is needed, recall the naive estimator is
1 n
m(t) = ” le y(t, Si).
1=

o Without (PS), we cannot have a consistent estimator of (¢, s)
evaluating on s = §;!
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Reality: the support of (T,S)

I joint support of (T,S)

A very common scenario is that the noise E is bounded, leading to a
violation of the positivity condition.
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Identification
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Additive confounding model

o In this work, we will focus on additive confounding model.

o Recall that we have a triplet of observations (Y, T, S), where Y € R
is the outcome, T € R is the treatment, and S € R is the
confounder.
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Additive confounding model

o In this work, we will focus on additive confounding model.

o Recall that we have a triplet of observations (Y, T, S), where Y € R
is the outcome, T € R is the treatment, and S € R is the
confounder.

o We assume that
Y =m(T)+n(S)+e¢, @)
1
T=f(S)+E,

where (¢, E) are independent mean 0 noises and E(7(S)) = 0.

o In spatial confounding problem (such as PMz2.5 studies), the above
model is often assumed and is known as spatial additive
confounding model [KW2003, WD2024].
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Properties of the additive model

Theorem (ZCG2024)

Assume the additive confounding model and E(1(S)) = 0. Then
1. E(Y|T =t) =m(t) + E(m(S)|T = t) # m(t).
2. Let O(t) = %m(t). Then

0(t) = Oc(t)

Oc(t) = E (%u(t,sw = t)

The first result shows that naively using conditional mean suffers from
a spatial confounding bias. The second result is a key to our
identification.
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The support of S given T

I joint support of (T,S)

1.0] p(s|t)>0

0.51

—0.51

—1.0;

-1.0 . l l 1.0

Identification of O¢(t) only require derivatives on the support of S

given T.
11/31



Properties of the derivative

o Without positivity, p(t|s) can be 0 so we do not have a consistent
estimator of u(t, s).

o Our integral estimator is based on the following fact:

O(t) = m'(t) = Oc(t) = E (%y(t, )T = t) .
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Properties of the derivative

o Without positivity, p(t|s) can be 0 so we do not have a consistent
estimator of u(t, s).

o Our integral estimator is based on the following fact:

O(t) = m'(t) = Oc(t) = E (%y(t, )T = t) .

o The quantity Oc(t) can be estimated consistently because it is
conditioned on T = ¢.

o We then use the relation

s= s=t
m(t) —m(7) = f_ tm’(s)ds = f_ Oc(s)ds

to estimate m(t).
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The integral estimator
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The integral estimator - 1

o Recall that we have

m(t) —m(7) = f_5=t m’(s)ds = f_SZt Oc(s)ds

for any 7.
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The integral estimator - 1

o Recall that we have

m(t) —m(7) = f_5=t m’(s)ds = f_szt Oc(s)ds

for any 7.
o Thus, m(t) = m(T) + f::; Oc(s)ds, which implies

m(t)=[E (m(T) + fS:t Qc(s)ds)

=T

=E (Y + fS:t Gc(s)ds) .
s=T

=E (m(T) +1(S)+e+ f5=t Gc(s)ds)
s=T
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The integral estimator - 2

o Let éc(t) be an estimator of O¢(t).

o The integral estimator is

_ 1 v
m(t)ZE;Yi+£

S

1

o Thus, the key is to construct a good estimator of
Oc(t) =E(Zu(t,S)IT = t).

=t
Oc(s)ds.
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The derivative estimator - 1

o We recommend to use the local polynomial regression to estimate
2 u(t, s).
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The derivative estimator - 1

o We recommend to use the local polynomial regression to estimate
2 u(t, s).
o Let E(t, s) € R3,a(t, s) € RY be the minimizer of

2
Ti—t ISi —sl|
KT( h )KS( b )’

where K7 and Ks are smoothing kernel and /1, b > 0 are

n 3

d
Z Yi—Zﬁj(Ti 1) = > au(Sie - se)
=1 =1

i=1

smoothing bandwidth.
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The derivative estimator - 1

o We recommend to use the local polynomial regression to estimate
2 u(t, s).
o Let E(t, s) € R3,a(t, s) € RY be the minimizer of

2
Ti—t IS; = sl|
KT( h )KS( b )’

where K7 and Ks are smoothing kernel and /1, b > 0 are

n 3

d
Z Yi—Zﬁj(Ti 1) = > au(Sie - se)
= =

i=1

smoothing bandwidth.

o It is known that the second component Ez(t, s) is a consistent
estimator of %‘u(t, s); see, e.g., [F2018].
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The derivative estimator - 2

o Note that

Oc(t)=E (%y(t,S)lT = t) = f %[u(t,s)dP(slt).

17/31



The derivative estimator - 2

o Thus, we also need an estimator of P(s|t). Here we simply use a
kernel CDF estimator

SIS < 5)Kr (L)
— (Ti—t
R (50)

o Note: other estimators are applicable-kernel CDF is just a simple

P(s|t) =

and reliable estimator.
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The derivative estimator - 3

o Combining the above two estimators, our estimator O¢(t) can be

written as _ —
2iiq Pa(t, S))Kr (ZT)

5(:(1‘) = Z?zl [ ($)
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The derivative estimator - 3

o Combining the above two estimators, our estimator O¢(t) can be
written as

Xy Bat, SR (1)
Z] 1KT (T t)

o Thus, the integral estimator is

i) = — ZY +fs Oc(s)ds.

6c(t) =

18 /131



The derivative estimator - 3

[¢]

Combining the above two estimators, our estimator O¢(f) can be
written as

S Balt, SRy (5
Z] 1KT (T t)

Thus, the integral estimator is

i) = — ZY +fs Oc(s)ds.

Note: the above integral estimator is also a linear smoother.

Oc(t) =

[¢]

[¢]

o We can use the bootstrap to construct a simultaneous confidence
band.
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Asymptotic theory
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The support of (T,S) revisited

I joint support of (T,S)

o Let € be the support of (T, S).

o In the above figure, the support is the blue area, which shows a
clear violation of (PS).
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Bypassing the positivity condition

o O¢c(t) = f %y(t, s)dP(s|t) only require Ez(t, s) to be consistent on
€!
o Feature of the local polynomial estimator: Ez(t, s) is consistent

estimator in 6.

21 /731



Uniform convergence of derivative estimator

Lemma (ZCG2024)

Under regularity conditions (A3-As, A6-1, A6-2),

sup

~ d
Z(t/ S) - 3. (tl S)
(t,5)e€ ﬁ at‘u

& log(h
:O(h2+b2+M)+OP( [ log( )|).
h nhd

This shows that the local polynomial estimator is uniformly consistent
in €. Note that the convergence rate differs a little on the boundary of
€ versus its interior.
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Uniform convergence of integral estimator - 1

Combining with the convergence of kernel CDF, we immediately have
the following result:

Theorem (ZCG2024)

Let I’ ¢ I = supp(T) be a compact set. Under regqularity conditions
(A1-A6),

sup|Oc(t) — Oc (1)

teg’
-0 (h2 N max{b, h}4) ( |log(h Hlogh|)
B nh |’

sup|m(t) — m(t)]

teg’
B 2 2, max{b h}* h}* |log(h)| | log 7|
=0 (h N N T nfi
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Uniform convergence of integral estimator - 2

supl|in(t) — m(t)|

teg’

4 log(hbd [|logh
=0 h2+b2+M +OP L-i- M_th_’_ & .
h Vn nh3 nh

Blue term: the bias in local polynomial estimator.

Red term: additional bias from boundary of é.

Orange term: rate from Yy,.

Brown term: stochastic variation of local polynomial estimator.

Cyan term: rate from kernel CDF.
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Case study: PM2.5 effect
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PM2.5 data

fips name 1ng lat PM2.5 CMR
1 1059 Franklin -87.84328 34.44238 8.045251 452.8492
3 19109 Kossuth -94.20690 43.20414 6.857354 294.3387
4 40115 Ottawa -94.81059 36.83588 8.073921 424.5076

5 42115 Susquehanna -75.80090 41.82128 7.955338 383.5730
8 29213 Taney -93.04128 36.65474 7.026484 348.6023
9 32510 Carson City -119.74735 39.15108 4.063737 347.6080

Figure: An example of PM2.5 data on cardiovascular mortality rate (CMR) at
county-level.

o The above data table shows the average PM2.5 and CMR over
1990-2010 of each county.

o We also have other 8 county-level informations such as
population, unemployment rates, household income, ...etc.

o We want to investigate how PM2.5 would impact the CMR.
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PM2.5 data

400
[
©
350 =
o
- £
o
3 300 &
©
© E=4
S
s
250 Regress Y on T only (@] Regress Y on T only “
—— Regress Y on T and spatial locations | — 20— Regress Y on T and spatial locations
mm Regress Y on T and all covariates e Regress Y on T and all covariates Sl
4 6 8 10 4 6 8 10
PM, .5 concentration (ug/m?3) PM, .5 concentration (ug/m?3)

o We consider three model: naive method, adjusting for spatial

confounding, adjusting for all covariates.
o The confidence bands are pointwise.

o A clear increasing effect after adjusting for all covariates.
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Discussion
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Summary

o Our integral estimator allows us to bypass the positivity condition.

o We have a fast algorithm, nice asymptotic theory, and methods for
making inferences.

o This idea opens a new direction for investigating continuous
treatments because the violation of positivity is very common!
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Open problems and future work

o Inverse probability weighting. Our method is essentially a
regression adjustment (g-computation) method. Can we
generalize it to the inverse probability weighting approach?

o Doubly-robustness. Following the previous result, are we able to
construct a doubly-robust estimator? We may need to use a
cross-fitting (double machine learning) approach in this case.

o High-dimensional confounders. In addition to 2D spatial
confounders, we may have high-dimensional confounders with a
sparse linear effect. Will our method work?

o Unmeasured confounders. We assume all confounders are
observed. Can we handle unmeasured confounders? Perhaps
with some known instruments?
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Thank You!

All codes and data are available:
https://github.com/zhangyk8/npDoseResponse/tree/main

Paper reference: https://arxiv.org/abs/2405.09003.
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Continuous treatment: IPW

o We may use an inverse probability weighting (IPW; [CL2020,
HHLL2020]) estimator for this problem:

_ 1 v~ (Ti—t\ Y
= — K(l_)A_l
mipw(t) = — ; )5Sy

where p(t|s) is an estimator of the conditional PDF p(t|s) and K(-)
is a smoothing kernel such as a Gaussian.

o There is also a doubly-robust version of this idea via
pseudo-outcome [KMMS2017].
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The numerical method -1

o The integral estimator

_ 1y N
() = — Z} Yi+ f _ Oc()ds

1

=t
require the evaluation of integration fs s:T‘, which could be
computationally expansive.

o Here we propose a simple numerical method for approximating
this.
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The numerical method -1

o The integral estimator

=t

i) = — ZY +f Oc(s)ds

I

require the evaluation of integration fs S::T,»' which could be
computationally expansive.

o Here we propose a simple numerical method for approximating
this.

o Let Ty < Tp) < -+ < T(y) be the ordered values of the observed
treatment.

o We then have

s=t
—Zf GC(s)ds——Zf Oc(s)ds.
i=1 vY5=TG)
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The numerical method - 2

o The above result implies
. _ 1 n S:T(j) .
m(T)) =Yy + - Zf Oc(s)ds.

i=1 vVs=Tw)

o Let Aj = T(js) — T
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The numerical method - 2

o The above result implies

1 & s=T(j)
m(T)) =Yy + - Z fs=r. Oc(s)ds.
i=1 (i)
o LetAj =Tjw) — Tp.
o Wheni < j, we use Riemann sum,
s=T(j) gl
f QC(s)ds ~ QC(T(g))Ag.
S=T(,’) :

~
ll
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The numerical method - 2

@]

The above result implies

1 & s=T(j)
m(T)) =Yy + - Z fs=r. Oc(s)ds.
i=1 (i)
o LetAj =Tjw) — Tp.
o Wheni < j, we use Riemann sum,
s=T(j) gl
f QC(s)ds ~ QC(T(g))Ag.
S=T(,’) :

~
ll

(o]

When i > j, we use Riemann sum,
s=T) _ i
f Oc(s)ds ~ = Y Oc(T(esn)Ar.
s=T(; (=]
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The numerical method - 3

o When we include }}7" |, some §C(T(g)) will be used multiple times,
which eventually leads to the following result:

1 s=T(j)
lZf ] Oc(s)ds

= Js=T

—_

n—

A [i- 0c(T)IG < j) = (n =) - Oc(Ta)IG = )] .

Q|-
n
_
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The numerical method - 3

o When we include }}7" |, some §C(T(g)) will be used multiple times,
which eventually leads to the following result:

n s=T(j) __
lZf ] Oc(s)ds

= Js=T

—_

n—

A [i- 0c(T)IG < j) = (n =) - Oc(Ta)IG = )] .

Q|-
I
—

i

o The above result only requires evaluating Oc(t) at the observed
T1,---,T, once!
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The numerical method - 3

o When we include }}7" |, some §C(T(g)) will be used multiple times,
which eventually leads to the following result:

1 s=T(j)
lZf ] Oc(s)ds

= Js=T

—_

n—

A [i- 0c(T)IG < j) = (n =) - Oc(Ta)IG = )] .

Q|-
I
_

i

o The above result only requires evaluating Oc(t) at the observed
T1,---,T, once!

o As aresult, we can quickly approximate

n-1
—~ -1 .= . N = L.
m(T)) = Yot ZAi [l ~Oc(Ti)IG < j)—(n—i)- Oc(Ti)I(E > ])]
i=1

36 /31



The numerical method - 4

o Finally, to approximate 7i(t), we first find the interval [T i Tl
such that
t e [T, T

o We then use a linear interpolation between (T ;) and 7 (T(j41))
to approximate ().
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Confidence bands via the bootstrap

o We may construct a simultaneous confidence band of m(t) via the
bootstrap.

@]

Let (Y], T;,S3),--- , (Y}, Ty, S;,) be abootstrap sample (sampling
with replacement of the original data).
o We compute the bootstrap estimator *(t).

Let E 1_, be the 1 — a quantile of

(e]

sup |7 (1) = (1),

A 1 — a simultaneous confidence band is

o

[Ai(t) - &, wt)+&_]
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Bootstrap Validity - 1

o To show the bootstrap validity, we first need to derive an
asymptotic linear form of m(t).

o For simplicity, we assume that /1 < b, so the convergence rate
becomes

_ B ) | log(hd+1) [11log 7
fg£|m(t) m(t)| =0 (h +O ( \/I nh |’

logn -1/5 . .
o Weleth = ( > ) be the optimal choice so the kernel CDF
converges faster. Thus, we only need to focus on the primary term

O (h?)+Op (\/—| lzg}ffj; 1)) .
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Bootstrap Validity - 2

o We consider an undersmoothing / so that nh%+” — 0. Under this
choice, the bias converges faster than the variance, and the rate is

_ /| log(hd+1)
f;TPI lm(t) —m(t)| = OP( s |
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Bootstrap Validity - 3

Lemma (Asymptotic linearity)

-1/5
Under regularity conditions (A1-A6), h < b, h < (logn) / ,and nh%+7 —
0. There exists a function Yy : Y X T X S — R such that

[Nnh®+3(i(t) = m(t)) — Gui|
1 hd+31 d+3
R O ]

where G, f = # Y Lf(Y:, Ty, Si) - E(F(Y, T, S)).

Note that Y, T, S are the support of Y, T, S, respectively.
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Bootstrap Validity - 4

o With the above asymptotic linearity, we are able to approximate
the distribution of sup; |#(t) — m(t)| by a maximum of a Gaussian
process, leading to the validity of the bootstrap.

o Namely, we have
Vh®*3 sup [mi(t) — m(t)| = sup |G, | ~ sup [B, ],
teg’ teg’ teg’
where B, f; is a Gaussian process on the function class f; indexed
by t.
o The bootstrap maximum approximates the above maximum,

leading to the consistency of the bootstrap confidence band
[CCK2014, G2023].

42 /31



Bootstrap Validity - 5

Corollary (Bootstrap validity)

-1/5
Under regularity conditions (A1-A6), h < b, h < (107%”) L and nh?7 —
0. Let &]_, be the bootstrap quantile. Then

nha+3

5 \1/8
P (m(t) e () - &, it + &_] VieT)=1-a+0p (<log n) )
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Assumptions: causal assumptions

o A1-1: Consistency. Given T =, Y = Y(t).
o Ax-2: Ignorability. {Y(t):t € T} L T|S.

o A1-3: Treatment variation. The variance Var(E) > 0 in the
equation T = f(S) + E.

o A2: Derivative identification. O(t) = O¢(t) = E [%[u(t, ST = t]
and E(u(T, 8)) = E(m(T)).
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Assumptions: nuisance parameters

o Aj3: Conditional mean. u(t, s) is at least 3-times continuously
differentiable with respect to t and at least 4-times continuously
differentiable with respect to s.

o Ag: Joint density. p(t, s) is at least twice continuously
differentiable with bounded partial derivatives up to 2nd order in
the interior of €. All partial derivative are continuous up to, J€,
the boundary of €. € is compact and sup; ¢\ p(f,s) > 0.
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Assumptions: boundary condition

o Ajg-1: Smooth boundary. There are constants r1, 1, € (0,1) such
that for any (t,s) € € and all 6 € (0, r1], there is another point
(t',s") € € such that

B((t',s"),r20) € B((t,s), 0) N€.

o Ajg-2: Boundary derivative. For any (f,s) € €,
%p(t,s) = ais]_p(t,s) =0and ;—;y(t,s) =0forallj=1,---,d.
j

o Ajg-3: Stable volume. The Lebesgue measure of the set d€ & 6
satisfies
Leb(d€®0) < A1 6

for some constant A1, where A @ 6 = {z : infyea ||x — z|| < 0}.
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Assumptions: kernels in local polynomials

o A6-1: Regular. Kr, K5 are compactly supported and Lipchitz
kernel with Kt being symmetric and Kg is radially symmetric and
are second-order kernels.

o A6-2: VC-type kernels. Let

Hsq = {(y,z) - (]/]; t)f (zi;Si)h (Zj;Sj)kz

xKT(y;t)KS(Z;S):(t,s)E%;

i,j=1,---,d;£=0,--- ,6;k1,k2:0,1;h,b>0}

The class H3 4 is VC-type class.
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Assumptions: kernel in the kernel CDF

o A6-3: Regular of kernel CDF. Krisa compactly supported,
Lipchitz, symmetric, and second-order kernel.

o A6-4: VC-type kernel CDF. Let

%z{yl—)KT(y

):teT,h>0}

The class ¥ is VC-type class.
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Asymptotic linearity - 1

o In the asymptotic linearity, we have
Vrhi (i) = m(£)) ~ Gy

o 1 is the following function

t

meﬂS:En[~ @ﬁmﬂsmj

t=T,

with

4

62TM3—1\I/?/S3(Y,T,S) 1 ('[_ Ts)

(Y, T,S) = Er, s, e .-
YT = s [Wp(t,sa>m<t) R\ h

where e, = (0,1,0,- -+ ,0) € R3*? and M, € RG+*G+4) j5 3 block
diagonal matrix of constants.
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Asymptotic linearity - 2

o W;.(y,z,v)€ R3+ is the following function

z—t ]_1 z—t v—s
Kr(57)Ks (52), -
Wisly,z0)=y (vf-f_s?_g)KiEi s (P s
b
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