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Prelude: causal inference

(¢]

In a typical causal problem, our data consists of IID random
vectors
(er T1, Sl)r Tt (Yn/ T, Sn)

Y € R : outcome of interest.

[¢]

o T € R : treatment.

S € R? : covariates.

(@]
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Prelude: causal inference

(¢]

In a typical causal problem, our data consists of IID random

vectors
(er T]/ Sl)/ Tty (Yn/ Tn/ Sn)

Y € R : outcome of interest.

[¢]

o T € R : treatment.

S € R? : covariates.

(@]

(¢]

We want to investigate the causal effect of T on the outcome of
interest Y.
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Prelude: binary treatment - 1

o The simplest causal problem is the binary treatment problem.
o In this case, the treatment T € {0, 1} is a binary variable.

o T =1 indicates that the individual is treated (T = 0 means not
treated /received placebo).
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Prelude: binary treatment - 1

The simplest causal problem is the binary treatment problem.
In this case, the treatment T € {0, 1} is a binary variable.

T =1 indicates that the individual is treated (T = 0 means not
treated /received placebo).

A simple way to investigate the causal effect is the potential
outcome model: we denote Y(0), Y(1) to be the potential outcomes.

Y (0) is the outcome if the individual is NOT treated; Y(1) is the
outcome if the individual IS treated.
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Prelude: binary treatment - 2

o A common causal effect of interest is the average treatment effect
(ATE):
E(Y(1)) - E(Y(0)).
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Prelude: binary treatment - 2

o A common causal effect of interest is the average treatment effect
(ATE):
E(Y(1)) - E(Y(0)).

o In potential outcome framework, the observed outcome
Y =TY(1)+ (1 -T)Y(0), or equivalently,

Y = Y()

conditioned on T = t. This is also known as the consistency.
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Prelude: binary treatment - 2

o A common causal effect of interest is the average treatment effect
(ATE):
E(Y(1)) - E(Y(0)).

o In potential outcome framework, the observed outcome
Y =TY(1)+ (1 -T)Y(0), or equivalently,

Y = Y()

conditioned on T = t. This is also known as the consistency.

o The challenge is: we only observe one of the two potential
outcomes!
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Prelude: binary treatment - 3

o To resolve this problem, we often use the ignorability assumption.
o Ignorability assumption: (Y(1), Y(0)) L T|S.

o Under this assumption, the covariates S are called the confounders.
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Prelude: binary treatment - 3

[¢]

To resolve this problem, we often use the ignorability assumption.

Ignorability assumption: (Y(1), Y(0)) L T|S.

(¢]

@]

Under this assumption, the covariates S are called the confounders.

[¢]

With the ignorability, we can rewrite

YT

£ =

), E(Y(0)) = [E( Ya-n )

P(T =0]S)

and estimate the ATE accordingly.
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Prelude: binary treatment - 3

o To resolve this problem, we often use the ignorability assumption.
o Ignorability assumption: (Y(1), Y(0)) L T|S.
o Under this assumption, the covariates S are called the confounders.

o With the ignorability, we can rewrite

YT

£ =

), E(Y(0) = [E( Y -T) )

P(T =0]S)

and estimate the ATE accordingly.

o Here, we need an additional positivity assumption:
P(T =t|s)>0fors € S =supp(S)and t =0, 1.
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Continuous treatment: PM2.5 Example

fips name 1ng lat PM2.5 CMR
I Franklin -87.84328 34.44238 8.045251 452.8492
3 19109 Kossuth -94.20690 43.20414 6.857354 294.3387
4 40115 Ottawa -94.81059 36.83588 8.073921 424.5076

5 42115 Susquehanna -75.80090 41.82128 7.955338 383.5730
8 29213 Taney -93.04128 36.65474 7.026484 348.6023
9 32510 Carson City -119.74735 39.15108 4.063737 347.6080

Figure: An example of PM2.5 data on cardiovascular mortality rate (CMR) at
county-level.

o We want to investigate the effect of PM2.5 on the CMR™.

o The treatment variable T is the amount of PM2.5 at a county,
which is not binary but a continuous number!

1Data from US National Center for Health Statistics and Community Multiscale Air

Quality modeling system
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Continuous treatment: PM2.5 Example

fips name 1ng lat PM2.5 CMR
1 1059 Franklin -87.84328 34.44238 8.045251 452.8492
3 19109 Kossuth -94.20690 43.20414 6.857354 294.3387
4 40115 Ottawa -94.81059 36.83588 8.073921 424.5076

5 42115 Susquehanna -75.80090 41.82128 7.955338 383.5730
8 29213 Taney -93.04128 36.65474 7.026484 348.6023
9 32510 Carson City -119.74735 39.15108 4.063737 347.6080

Figure: An example of PM2.5 data on cardiovascular mortality rate (CMR) at
county-level.

o We then encounter the problem of continuous treatment.
o We will work with the same assumptions:

1. Consistency: Y = Y(¢) conditioned on T = ¢.
2. Ignorability: {Y(t): t € supp(T)} L T|S.
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Continuous treatment: potential outcome models

o The effect of continuous treatment is characterized by the
dose-response curve

m(t) = E(Y(t)).

8/ 46



Continuous treatment: potential outcome models

o The effect of continuous treatment is characterized by the
dose-response curve

m(t) = E(Y(1)).

o A popular parametric model is the Marginal Structural Models
(MSMs; [RHB2000]):

E(Y(1) = f(£;0),

where f(t; 0) belongs to a given family parameterized by 6 such
as f(t;0) = 6y + O1t.

o The MSMs is a fully parametric model, which may not capture the
structure of m(t).
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Continuous treatment: do-calculus

o An alternative way of framing a causal problem is the graphical
model approach and so-called do-calculus.

o In this case, the dose-response curve can be written as

m(t) = E(Y|do(T = t)) = E[E(Y|T = t, S)].
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Continuous treatment: do-calculus

o An alternative way of framing a causal problem is the graphical
model approach and so-called do-calculus.

o In this case, the dose-response curve can be written as
m(t) = E(Y|do(T = t)) = E[E(Y|T =¢,S)].

o The above implies a simple estimation procedure. We first
estimate u(t,s) = E(Y|T =t,S = s) with p(t, s). Then we estimate
m(t) via a naive estimator

) =+ B, 5,
i=1
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Continuous treatment: IPW

o Alternatively, we can use an inverse probability weighting (IPW;
[CL2020, HHLL2020]) estimator for this problem:

_ 1w (Ti-t\ Y
t)=— K(l—) A—l/
mipw(t) = — ; ) 5y

where p(t|s) is an estimator of the conditional PDF p(t|s) and K(-)
is a smoothing kernel such as a Gaussian.

o There is also a doubly-robust version of this idea via
pseudo-outcome [KMMS2017].
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Continuous treatment: the positivity condition

o Both the naive and IPW estimators require the positivity
condition, i.e.,

(PS) p(tls) >0 Vs €S,

where S is the support of S.
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Continuous treatment: the positivity condition

o Both the naive and IPW estimators require the positivity
condition, i.e.,

(PS) p(tls) >0 Vs €S,

where S is the support of S.

o To see why (PS) is needed, recall the naive estimator is
1 n
m(t) = - Zl [.l(t, Si).
1=

o Without (PS), we cannot have a consistent estimator of pi(t, s)
evaluating on s = ;!

11/ 46



Identification
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Additive confounding model

o In this work, we will focus on additive confounding model.

o Recall that we have a triplet of observations (Y, T, S), where Y € R
is the outcome, T € R is the treatment, and S € R is the
confounder.
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Additive confounding model

o In this work, we will focus on additive confounding model.

o Recall that we have a triplet of observations (Y, T, S), where Y € R
is the outcome, T € R is the treatment, and S € R is the

confounder.

o We assume that
Y=m(T)+n(S)+e,

T=f(S)+E, @)

where (¢, E) are independent mean 0 noises and E(7(S)) = 0.
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Additive confounding model

o In this work, we will focus on additive confounding model.

o Recall that we have a triplet of observations (Y, T, S), where Y € R
is the outcome, T € R is the treatment, and S € R is the
confounder.

o We assume that
Y =m(T)+n(S)+e¢, @
1
T=f(S)+E,

where (¢, E) are independent mean 0 noises and E(7(S)) = 0.

o In spatial confounding problem (such as PMz2.5 studies), the above
model is often assumed and is known as spatial additive
confounding model [KW2003, WD2024].
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The support of (T,S)

EEE joint support of (T,S)

A very common scenario is that the noise E is bounded, leading to a

violation of the positivity condition.
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Properties of the additive model

Theorem (ZCG2024)

Assume the additive confounding model and E(1(S)) = 0. Then
1. E(Y|T =t) = m(t) + E(m(S)|T = t) # m(¢t).
2. Let O(t) = %m(t). Then

0(t) = Oc(t)

Oc(t) = E (%y(t,S)lT - t)

The first result shows that naively using conditional mean suffers from
a spatial confounding bias. The second result is a key to our
identification.
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Properties of the derivative

o Without positivity, p(t|s) can be 0 so we do not have a consistent
estimator of u(t,s).

o Our integral estimator is based on the following fact:

0(t) = m'(t) = Oc(t) = E (%y(t, )T = t) .
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o Without positivity, p(t|s) can be 0 so we do not have a consistent
estimator of u(t,s).

o Our integral estimator is based on the following fact:

O(t)=m'(t)=0c(t)=E (%y(t, ST = t) .

o The quantity Oc(t) can be estimated consistently because it is
conditioned on T = ¢.

16 / 46



Properties of the derivative

o Without positivity, p(t|s) can be 0 so we do not have a consistent
estimator of u(t,s).

o Our integral estimator is based on the following fact:

O(t)=m'(t)=0c(t)=E (%y(t, ST = t) .

o The quantity Oc(t) can be estimated consistently because it is
conditioned on T = ¢.

o We then use the relation
s=t s=t
m(t) —m(t) = f m'(s)ds = f Oc(s)ds
S=T S=T
to estimate m(t).
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The integral estimator
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The integral estimator - 1

o Recall that we have

s=t s=t
m(t) —m(7) = f_ m’(s)ds = f_ Oc(s)ds

for any 7.
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The integral estimator - 1

o Recall that we have

s=t s=t
m(t) —m(7) = f_ m’(s)ds = f_ Oc(s)ds

for any 7.
o Thus, m(t) = m(T) + fss:; Oc(s)ds, which implies

s=t
m(t)=E (m(T) +f Qc(s)ds)

=T

s=t
=F (m(T)+n(S)+e+f Gc(s)ds)
s=T

s=t
=E (Y +f Qc(s)ds) .
s=T
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The integral estimator - 2

o Let éc(t) be an estimator of O¢(t).

o The integral estimator is

1v :
() ==Y Y
mi(t) n; z+fs:

o Thus, the key is to construct a good estimator of
Oc(t) =E(Zu(t,S)IT = t).

T;

t
Oc(s)ds.
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The derivative estimator - 1

o We recommend to use the local polynomial regression to estimate
% u(t, s).
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The derivative estimator - 1

o We recommend to use the local polynomial regression to estimate
% u(t, s).

o Let E(t, s) € R3, a(t,s) € R? be the minimizer of

2
T; —t IS; — sl|
KT( h )KS( b )’

where K7 and Ks are smoothing kernel and /1, b > 0 are
smoothing bandwidth.

n 3

d
Z Yi - Z Bi(Ti -ty - Z ae(Sie —se)
= =1

i=1
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The derivative estimator - 1

o We recommend to use the local polynomial regression to estimate
% u(t, s).
o Let E(t, s) € R3, a(t,s) € R? be the minimizer of

2
T; —t IS; — sl|
KT( h )KS( b )’

where K7 and Ks are smoothing kernel and /1, b > 0 are

n 3

d
Z Yi— Z Bi(Ti—ty™ = au(Sie—se)
=1 =1

i=1

smoothing bandwidth.

o It is known that the second component Ez(t, s) is a consistent
estimator of %‘u(t, s); see, e.g., [F2018].
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The derivative estimator - 2

o Note that

Oc(t)=E (%y(t,S)lT = t) = f %[u(t,s)dP(slt).
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The derivative estimator - 2

o Note that
Oc(t)=E i (t,9)|T =t —fi (t,s)dP(s|t)
SN FTEa S Y A TR '

o Thus, we also need an estimator of P(s|t). Here we simply use a
kernel CDF estimator

T (St < 9)Kr (H)

P(slt) = e ($)

o Note: other estimators are applicable-kernel CDF is just a simple
and reliable estimator.
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The derivative estimator - 3

o Combining the above two estimators, our estimator O¢(f) can be
written as _
X1 Ba(t, Sk (1)
Tj—t

Z?:l Kr (T)

Oc(t) =
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The derivative estimator - 3

o Combining the above two estimators, our estimator O¢(t) can be
written as

S Balt, Si)Kr (u)
ZJ =1 Kr (T] )

o Thus, the integral estimator is

m(t) = — ZYZ f Qc(s)ds

o Note: the above integral estimator is also a linear smoother.

Oc(t) =

22 /46



The numerical method -1

o The integral estimator

i) = — ZY 4 f Oc(s)ds

I

require the evaluation of integration fs S:T, which could be
computationally expansive.

o Here we propose a simple numerical method for approximating
this.
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The numerical method -1

o The integral estimator

i) = — ZY 4 f Oc(s)ds

I

require the evaluation of integration fs S:Ti, which could be
computationally expansive.

o Here we propose a simple numerical method for approximating
this.

o Let T(qy < Ty < -+ < T(y) be the ordered values of the observed
treatment.

o We then have

—Z f ec<s>ds_—z f " Betords.

i=1 v 5=Tau
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The numerical method - 2

o The above result implies
. _ 1 & s=T(j) __
m(T(j) = Yn+— ;fs Oc(s)ds.

=T

o Let Aj = T(ji1) — T
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The numerical method - 2

o The above result implies

1S e
m(T(j) = Yn+— Z fs:T' Oc(s)ds.
i=1 (@
o Let Aj = T(js) = T
o When i < j, we use Riemann sum,
s=Ti) &
f Qc(s)ds =~ Qc(T(g))Ag.
S:T(i) ;

~
IJ.
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The numerical method - 2

o The above result implies

1S e
T =Yt >, [ et
i=1 (@
o Let Aj = T(js) = T
o When i < j, we use Riemann sum,
s=Ti) &
f Qc(s)ds =~ Qc(T(g))Ag.
S:T(i) ;

~
IJ.

o Wheni > j, we use Riemann sum,

s=T; t=i-1

D~ —~

f Oc(s)ds ~ — E Oc(Tie+1))A¢.
S
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The numerical method - 3

o When we include }}7" |, some §C(T(g)) will be used multiple times,

which eventually leads to the following result:

1 s=T(j) __
lZf ] Oc(s)ds

i3 Js=T

n—

[

A [+ Bc(Ta)IG < j) = (n =) - Oc(T)IG = )] .

|-
n
_
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The numerical method - 3

o When we include }}7" |, some §C(T(g)) will be used multiple times,

which eventually leads to the following result:

L s=T(j)
lZf ] Oc(s)ds

a3 Js=Tg

n—

[

A [+ Bc(Ta)IG < j) = (n =) - Oc(T)IG = )] .

I |-
I
L

i

o The above result only requires evaluating Oc(t) at the observed
T1,---,T, once!
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The numerical method - 3

o When we include }}7" |, some §C(T(g)) will be used multiple times,
which eventually leads to the following result:

L s=T(j)
lZf ] Oc(s)ds

a3 Js=Tg

n—

[

A [+ Bc(Ta)IG < j) = (n =) - Oc(T)IG = )] .

I |-
I
L

i

o The above result only requires evaluating Oc(t) at the observed
T1,---,T, once!

o As aresult, we can quickly approximate

n-1
—~ -1 .o . N~ S
mi(Tgy) ~ Vot Zl] A [i - Oc(Tp)I( < )= (n = i) - Oc(Ta)IG 2 )]
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The numerical method - 4

o Finally, to approximate 7i(t), we first find the interval [Ty, T+
such that
t € [T(), Tl

o We then use a linear interpolation between (T ]-*)) and fn\(T(]'*H))
to approximate ().

26/ 46



Confidence bands via the bootstrap

o We may construct a simultaneous confidence band of m(t) via the
bootstrap.

[¢]

Let (Yf, T3, SI), -+, (Y, T, S;,) be a bootstrap sample (sampling
with replacement of the original data).

(¢]

We compute the bootstrap estimator *(t).

@]

Let E 1 be the 1 — a quantile of

sup | (t) — m(t)].

A 1 — a simultaneous confidence band is

(¢]

) - &, mH+& ]
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Asymptotic theory
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The support of (T,S) revisited

I joint support of (T,S)

o Let € be the support of (T, S).

o In the above figure, the support is the blue area, which shows a
clear violation of (PS).
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Bypassing the positivity condition

o O¢c(t) = f %y(t, s)dP(s|t) only require Ez(t, s) to be consistent on
€!
o Feature of the local polynomial estimator: Ez(t, s) is consistent

estimator in 6.
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Uniform convergence of derivative estimator

Lemma (ZCG2024)

Under reqularity conditions (A3-As, A6-1, A6-2),

Balt, )~ Zu(t,s)

_ 2 . .o, max{b,h}* | log(hb?)|
_O(h +b +—h + Op e |

This shows that the local polynomial estimator is uniformly consistent
in €. Note that the convergence rate differs a little on the boundary of
€ versus its interior.

sup
(t,5)€€
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Uniform convergence of integral estimator - 1

Combining with the convergence of kernel CDF, we immediately have
the following result:

Theorem (ZCG2024)

Let I’ ¢ I = supp(T) be a compact set. Under regqularity conditions
(A1-A6),

sup|Oc(t) — 6c (1)

teg’

3 oy rnax{b h}4 |log(hbdﬂ |log 7|
—O(h P+ R

sup|m(t) — m(t)|

teg’
4 log(hb4 [|logh

=0 h2+b2+M +OP L_ﬁ. M‘i‘hz‘l‘ & .
N nh

/ 46
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Uniform convergence of integral estimator - 2

sup|m(t) — m(t)|

teg’

o (v2 2, max{b, h}* 1 [llog(nbh)] ,  [llogal
=0 (h“+D +—h + Op \/ﬁ+ R + 7"+ |

Blue term: the bias in local polynomial estimator.

Red term: additional bias from boundary of .

Orange term: rate from Y,,.

Brown term: stochastic variation of local polynomial estimator.

Cyan term: rate from kernel CDF.
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Bandwidth Rate

o Clearly, #* < n=1/5 is the optimal rate, which is similar to the
conventional problem.

o If we choose /i < b, then the optimal rate is
W= bt = n—l/(d+7),
which is slightly slower than the conventional rate n~1/(4+9).

o The slightly slowness of the rate is due to estimating the derivative.
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Bootstrap Validity - 1

o To show the bootstrap validity, we first need to derive an
asymptotic linear form of mi(t).

o For simplicity, we assume that 1 < b, so the convergence rate
becomes

~ [og(h®*1) |log 7|
_ 2
?S£|m(f)—m(t)|— (r*)+Op ( T ands nh

logn -1/5 . .
o Weleth = ( > ) be the optimal choice so the kernel CDF
converges faster. Thus, we only need to focus on the primary term

0(1#)+0r (x/—' L 1)).
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Bootstrap Validity - 2

o We consider an undersmoothing / so that nh%+” — 0. Under this
choice, the bias converges faster than the variance, and the rate is

R /| log(hd+1)
sup |m(t) —m(t)| = Op( g—d+3 .
teg nh
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Bootstrap Validity - 3

Lemma (Asymptotic linearity)

1/5
Under reqularity conditions (A1-A6), h < b, h =< (logn) ,and nh®7 —
0. There exists a function Yy : Y X T X S — R such that

|\/nhd+3(m(t) m(t)) — Gl,bt

d
<o Vi [ [ i)
n

where G, f = # Y f(Y:, Ty, Si) — E(F(Y, T, S)).

Note that Y, T, S are the support of Y, T, S, respectively.
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Bootstrap Validity - 4

o With the above asymptotic linearity, we are able to approximate
the distribution of sup, |i(t) — m(t)| by a maximum of a Gaussian
process, leading to the validity of the bootstrap.

o Namely, we have
Vnhi+3sup |in(t) — m(t)| = sup |G, P¢| = sup [B,i:],
teg’ teg’ teg’

where B,, f; is a Gaussian process on the function class f; indexed
by ¢.
o The bootstrap maximum approximates the above maximum,

leading to the consistency of the bootstrap confidence band
[CCK2014, G2023].
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Bootstrap Validity - 5

Corollary (Bootstrap validity)

-1/5
Under regularity conditions (A1-A6), h < b, h < (lo;fn) / , and nh™7 —
0. Let &7_, be the bootstrap quantile. Then

nhd+3

5 \1/8
P (m(t) € [i(t) - &_,, m(t)+ &_,] VteT')=1-a+Op ((10‘5_”) )
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Case study: PM2.5 effect
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PM2.5 data

fips name 1ng lat PM2.5 CMR
1 1059 Franklin -87.84328 34.44238 8.045251 452.8492
3 19109 Kossuth -94.20690 43.20414 6.857354 294.3387
4 40115 Ottawa -94.81059 36.83588 8.073921 424.5076

5 42115 Susquehanna -75.80090 41.82128 7.955338 383.5730
8 29213 Taney -93.04128 36.65474 7.026484 348.6023
9 32510 Carson City -119.74735 39.15108 4.063737 347.6080

Figure: An example of PM2.5 data on cardiovascular mortality rate (CMR) at
county-level.

o The above data table shows the average PM2.5 and CMR over
1990-2010 of each county.

o We also have other 8 county-level informations such as
population, unemployment rates, household income, ...etc.

o We want to investigate how PMz2.5 would impact the CMR.
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PM2.5 data

[
2
e
o
£
o
c
©
=
S
H
250 Regress Y on T only ) Regress Y on T only .
—— Regress Y on T and spatial locations —201— Regress Y on T and spatial locations
== Regress Y on T and all covariates = Regress Y on T and all covariates. Sell
4 6 8 10 4 6 8 10
PM, 5 concentration (ug/m?3) PM, 5 concentration (ug/m?3)

o We consider three model: naive method, adjusting for spatial

confounding, adjusting for all covariates.
o The confidence bands are pointwise.

o A clear increasing effect after adjusting for all covariates.
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Discussion
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Summary

o Our integral estimator allows us to bypass the positivity condition.

o We have a fast algorithm, nice asymptotic theory, and methods for
making inferences.

o This idea opens a new direction for investigating continuous
treatments because the violation of positivity is very common!
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Open problems and future work

o Inverse probability weighting. Our method is essentially a
regression adjustment (g-computation) method. Can we
generalize it to the inverse probability weighting approach?

o Doubly-robustness. Following the previous result, are we able to
construct a doubly-robust estimator? We may need to use a
cross-fitting (double machine learning) approach in this case.

o High-dimensional confounders. In addition to 2D spatial
confounders, we may have high-dimensional confounders with a
sparse linear effect. Will our method work?

o Unmeasured confounders. We assume all confounders are
observed. Can we handle unmeasured confounders? Perhaps

with some known instruments?
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Thank You!

All codes and data are available:
https://github.com/zhangyk8/npDoseResponse/tree/main

Paper reference: https://arxiv.org/abs/2405.09003.
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https://arxiv.org/abs/2405.09003
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Assumptions: causal assumptions

o A1-1: Consistency. Given T =t,Y = Y(t).
o A1-2: Ignorability. {Y(t):t € T} L T|S.

o A1-3: Treatment variation. The variance Var(E) > 0 in the
equation T = f(S) + E.

o A2: Derivative identification. 0(t) = Oc(t) = E [%y(t, ST = t]
and E(u(T, S)) = E(m(T)).
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Assumptions: nuisance parameters

o Aj3: Conditional mean. u(t,s) is at least 3-times continuously
differentiable with respect to t and at least 4-times continuously
differentiable with respect to s.

o Ag: Joint density. p(t, s) is at least twice continuously
differentiable with bounded partial derivatives up to 2nd order in
the interior of 6. All partial derivative are continuous up to, J€,
the boundary of €. € is compact and sup; ¢\ p(f,s) > 0.
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Assumptions: boundary condition

o As-1: Smooth boundary. There are constants r1, 2 € (0, 1) such
that for any (t,s) € € and all 6 € (0, r1], there is another point
(t',s”) € € such that

B((t',s"),r20) € B((t,s),0) N€.

o Ag-2: Boundary derivative. For any (t,s) € §,
(%p(t s) = (t s) = Oanda2p(t s)y=0forallj=1,---,d.

o Ajz-3: Stable volume. The Lebesgue measure of the set d€ & o
satisfies
Leb(d€®0) < A1-0

for some constant A1, where A @ 6 = {z : infyea ||x — z|| < 0}.
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Assumptions: kernels in local polynomials

o A6-1: Regular. Kt, K5 are compactly supported and Lipchitz
kernel with Kt being symmetric and Kj is radially symmetric and
are second-order kernels.

o A6-2: VC-type kernels. Let

s g = {(y,Z) . (y;t)f(zizsi)h (Zj;Sj)kz

xKT(y;t)KS(Z;S):(t,s)E%;

i,j=1,---,d;£=0,--- ,6;k1,k2=0,1;h,b>0}

The class #3 4 is VC-type class.
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Assumptions: kernel in the kernel CDF

o A6-3: Regular of kernel CDF. Kt is a compactly supported,
Lipchitz, symmetric, and second-order kernel.

o A6-4: VC-type kernel CDF. Let

S"Z:{yl—)IZT(y ):teT,h>O}

The class ¥ is VC-type class.
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Asymptotic linearity - 1

o In the asymptotic linearity, we have
Vrh@3(in(t) — m(t)) = Guiy.

o 1 is the following function

t
(Y, T, S) = Er, [ i

t=T»

VY, T, S)d?]

with

4

_ eIM'W- (Y, T,S) 1_ [F-T
2 3 t,Sg\"7 27 = 3
YAY,T,S)=Er,s — — -—KT( )
t " VrbIp(E, Sa)pr(f) T L

where e, =(0,1,0,--- ,0) € R3*? and M, € RG+**G+4) jg 3 block
diagonal matrix of constants.
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Asymptotic linearity - 2

o W;s(y,z,v) € R3+ is the following function

—t\j-1 - -
(th)] Ky (Z_t)KS (%)15]33

\I]t, (y,z,v) =y-
. (F555) Kr (55 Ks (%5%)sc<sva
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