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Prelude: causal inference

◦ In a typical causal problem, our data consists of IID random
vectors

(Y1 , T1 , S1), · · · , (Yn , Tn , Sn).
◦ Y ∈ R : outcome of interest.

◦ T ∈ R : treatment.

◦ S ∈ Rd : covariates.

◦ We want to investigate the causal effect of T on the outcome of
interest Y.
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Prelude: binary treatment - 1

◦ The simplest causal problem is the binary treatment problem.

◦ In this case, the treatment T ∈ {0, 1} is a binary variable.

◦ T � 1 indicates that the individual is treated (T � 0 means not
treated/received placebo).

◦ A simple way to investigate the causal effect is the potential
outcomemodel: we denote Y(0),Y(1) to be the potential outcomes.

◦ Y(0) is the outcome if the individual is NOT treated; Y(1) is the
outcome if the individual IS treated.
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Prelude: binary treatment - 2

◦ A common causal effect of interest is the average treatment effect
(ATE):

E(Y(1)) − E(Y(0)).

◦ In potential outcome framework, the observed outcome
Y � TY(1) + (1 − T)Y(0), or equivalently,

Y � Y(t)
conditioned on T � t. This is also known as the consistency.

◦ The challenge is: we only observe one of the two potential
outcomes!
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Prelude: binary treatment - 3

◦ To resolve this problem, we often use the ignorability assumption.

◦ Ignorability assumption: (Y(1),Y(0)) ⊥ T |S.
◦ Under this assumption, the covariates S are called the confounders.

◦ With the ignorability, we can rewrite

E(Y(1)) � E

(
YT

P(T � 1|S)
)
, E(Y(0)) � E

(
Y(1 − T)

P(T � 0|S)
)

and estimate the ATE accordingly.

◦ Here, we need an additional positivity assumption:
P(T � t |s) > 0 for s ∈ S ≡ supp(S) and t � 0, 1.
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Continuous treatment: PM2.5 Example

Figure: An example of PM2.5 data on cardiovascular mortality rate (CMR) at
county-level.

◦ We want to investigate the effect of PM2.5 on the CMR1.

◦ The treatment variable T is the amount of PM2.5 at a county,
which is not binary but a continuous number!

1Data from US National Center for Health Statistics and Community Multiscale Air
Quality modeling system
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Continuous treatment: PM2.5 Example

Figure: An example of PM2.5 data on cardiovascular mortality rate (CMR) at
county-level.

◦ We then encounter the problem of continuous treatment.
◦ We will work with the same assumptions:

1. Consistency: Y � Y(t) conditioned on T � t.
2. Ignorability: {Y(t) : t ∈ supp(T)} ⊥ T |S.
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Continuous treatment: potential outcome models

◦ The effect of continuous treatment is characterized by the
dose-response curve

m(t) � E(Y(t)).

◦ A popular parametric model is the Marginal Structural Models
(MSMs; [RHB2000]):

E(Y(t)) � f (t; θ),
where f (t; θ) belongs to a given family parameterized by θ such
as f (t; θ) � θ0 + θ1t.

◦ The MSMs is a fully parametric model, which may not capture the
structure of m(t).
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Continuous treatment: do-calculus

◦ An alternative way of framing a causal problem is the graphical
model approach and so-called do-calculus.

◦ In this case, the dose-response curve can be written as

m(t) � E(Y |do(T � t)) � E[E(Y |T � t , S)].

◦ The above implies a simple estimation procedure. We first
estimate µ(t , s) � E(Y |T � t , S � s) with µ̂(t , s). Then we estimate
m(t) via a naive estimator

m̃(t) � 1
n

n∑
i�1

µ̂(t , Si).
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Continuous treatment: IPW

◦ Alternatively, we can use an inverse probability weighting (IPW;
[CL2020, HHLL2020]) estimator for this problem:

m̃IPW (t) � 1
nh

n∑
i�1

K
(Ti − t

h

) Yi

p̂(t |Si) ,

where p̂(t |s) is an estimator of the conditional PDF p(t |s) and K(·)
is a smoothing kernel such as a Gaussian.

◦ There is also a doubly-robust version of this idea via
pseudo-outcome [KMMS2017].

10 / 46



Continuous treatment: the positivity condition

◦ Both the naive and IPW estimators require the positivity
condition, i.e.,

(PS) p(t |s) > 0 ∀s ∈ S,

where S is the support of S.

◦ To see why (PS) is needed, recall the naive estimator is

m̃(t) � 1
n

n∑
i�1

µ̂(t , Si).

◦ Without (PS), we cannot have a consistent estimator of µ̂(t , s)
evaluating on s � Si!
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Identification
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Additive confounding model

◦ In this work, we will focus on additive confounding model.

◦ Recall that we have a triplet of observations (Y, T, S), where Y ∈ R
is the outcome, T ∈ R is the treatment, and S ∈ Rd is the
confounder.

◦ We assume that
Y � m(T) + η(S) + ε,
T � f (S) + E,

(1)

where (ε, E) are independent mean 0 noises and E(η(S)) � 0.

◦ In spatial confounding problem (such as PM2.5 studies), the above
model is often assumed and is known as spatial additive
confounding model [KW2003, WD2024].
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The support of (T,S)

1.0 0.5 0.0 0.5 1.0
S

1.0

0.5

0.0

0.5

1.0
T

Joint support of (T,S)

A very common scenario is that the noise E is bounded, leading to a
violation of the positivity condition.
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Properties of the additive model

Theorem (ZCG2024)

Assume the additive confounding model and E(η(S)) � 0. Then

1. E(Y |T � t) � m(t) + E(η(S)|T � t) , m(t).
2. Let θ(t) � ∂

∂t m(t). Then

θ(t) � θC(t)
θC(t) � E

(
∂
∂t
µ(t , S)|T � t

)

The first result shows that naively using conditional mean suffers from
a spatial confounding bias. The second result is a key to our
identification.
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Properties of the derivative

◦ Without positivity, p(t |s) can be 0 so we do not have a consistent
estimator of µ(t , s).

◦ Our integral estimator is based on the following fact:

θ(t) � m′(t) � θC(t) � E

(
∂
∂t
µ(t , S)|T � t

)
.

◦ The quantity θC(t) can be estimated consistently because it is
conditioned on T � t .

◦ We then use the relation

m(t) − m(τ) �
∫ s�t

s�τ
m′(s)ds �

∫ s�t

s�τ
θC(s)ds

to estimate m(t).
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The integral estimator
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The integral estimator - 1

◦ Recall that we have

m(t) − m(τ) �
∫ s�t

s�τ
m′(s)ds �

∫ s�t

s�τ
θC(s)ds

for any τ.

◦ Thus, m(t) � m(T) + ∫ s�t
s�T θC(s)ds , which implies

m(t) � E

(
m(T) +

∫ s�t

s�T
θC(s)ds

)
� E

(
m(T) + η(S) + ε +

∫ s�t

s�T
θC(s)ds

)
� E

(
Y +

∫ s�t

s�T
θC(s)ds

)
.
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The integral estimator - 2

◦ Let θ̂C(t) be an estimator of θC(t).
◦ The integral estimator is

m̂(t) � 1
n

n∑
i�1

Yi +
∫ s�t

s�Ti

θ̂C(s)ds .

◦ Thus, the key is to construct a good estimator of
θC(t) � E

�
∂
∂t µ(t , S)|T � t

�
.
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The derivative estimator - 1

◦ We recommend to use the local polynomial regression to estimate
∂
∂t µ(t , s).

◦ Let β̂(t , s) ∈ R3 , α̂(t , s) ∈ Rd be the minimizer of

n∑
i�1


Yi −

3∑
j�1
β j(Ti − t) j−1

−

d∑
`�1

α`(Si ,` − s`)


2

KT

(Ti − t
h

)
KS

( ‖Si − s‖
b

)
,

where KT and KS are smoothing kernel and h , b > 0 are
smoothing bandwidth.

◦ It is known that the second component β̂2(t , s) is a consistent
estimator of ∂

∂t µ(t , s); see, e.g., [F2018].
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The derivative estimator - 2

◦ Note that

θC(t) � E

(
∂
∂t
µ(t , S)|T � t

)
�

∫
∂
∂t
µ(t , s)dP(s |t).

◦ Thus, we also need an estimator of P(s |t). Here we simply use a
kernel CDF estimator

P̂(s |t) �
∑n

i�1 I(Si ≤ s)K̄T
(

Ti−t
}

)
∑n

j�1 K̄T

(
T j−t
}

) .

◦ Note: other estimators are applicable–kernel CDF is just a simple
and reliable estimator.
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The derivative estimator - 3

◦ Combining the above two estimators, our estimator θC(t) can be
written as

θ̂C(t) �
∑n

i�1 β̂2(t , Si)K̄T
(

Ti−t
}

)
∑n

j�1 K̄T

(
T j−t
}

) .

◦ Thus, the integral estimator is

m̂(t) � 1
n

n∑
i�1

Yi +
∫ s�t

s�Ti

θ̂C(s)ds .

◦ Note: the above integral estimator is also a linear smoother.
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The numerical method - 1

◦ The integral estimator

m̂(t) � 1
n

n∑
i�1

Yi +
∫ s�t

s�Ti

θ̂C(s)ds

require the evaluation of integration
∫ s�t

s�Ti
, which could be

computationally expansive.
◦ Here we propose a simple numerical method for approximating

this.

◦ Let T(1) ≤ T(2) ≤ · · · ≤ T(n) be the ordered values of the observed
treatment.

◦ We then have

1
n

n∑
i�1

∫ s�t

s�Ti

θ̂C(s)ds �
1
n

n∑
i�1

∫ s�t

s�T(i)
θ̂C(s)ds .
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The numerical method - 2

◦ The above result implies

m̂(T( j)) � Ȳn + 1
n

n∑
i�1

∫ s�T( j)

s�T(i)
θ̂C(s)ds .

◦ Let ∆ j � T( j+1) − T( j).

◦ When i < j, we use Riemann sum,∫ s�T( j)

s�T(i)
θ̂C(s)ds ≈

`� j−1∑
`�i

θ̂C(T(`))∆` .

◦ When i > j, we use Riemann sum,∫ s�T( j)

s�T(i)
θ̂C(s)ds ≈ −

`�i−1∑
`� j

θ̂C(T(`+1))∆` .
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n

n∑
i�1

∫ s�T( j)

s�T(i)
θ̂C(s)ds .

◦ Let ∆ j � T( j+1) − T( j).
◦ When i < j, we use Riemann sum,∫ s�T( j)

s�T(i)
θ̂C(s)ds ≈

`� j−1∑
`�i

θ̂C(T(`))∆` .

◦ When i > j, we use Riemann sum,∫ s�T( j)

s�T(i)
θ̂C(s)ds ≈ −

`�i−1∑
`� j

θ̂C(T(`+1))∆` .

24 / 46



The numerical method - 2

◦ The above result implies

m̂(T( j)) � Ȳn + 1
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The numerical method - 3

◦ When we include
∑n

i�1, some θ̂C(T(`)) will be used multiple times,
which eventually leads to the following result:

1
n

n∑
i�1

∫ s�T( j)

s�T(i)
θ̂C(s)ds

≈
1
n

n−1∑
i�1
∆i

[
i · θ̂C(T(i))I(i < j) − (n − i) · θ̂C(T(i+1))I(i ≥ j)] .

◦ The above result only requires evaluating θ̂C(t) at the observed
T1 , · · · , Tn once!

◦ As a result, we can quickly approximate

m̂(T( j)) ≈ Ȳn+
1
n

n−1∑
i�1
∆i

[
i · θ̂C(T(i))I(i < j) − (n − i) · θ̂C(T(i+1))I(i ≥ j)] .
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◦ The above result only requires evaluating θ̂C(t) at the observed
T1 , · · · , Tn once!

◦ As a result, we can quickly approximate

m̂(T( j)) ≈ Ȳn+
1
n

n−1∑
i�1
∆i

[
i · θ̂C(T(i))I(i < j) − (n − i) · θ̂C(T(i+1))I(i ≥ j)] .
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The numerical method - 4

◦ Finally, to approximate m̂(t), we first find the interval [T( j∗) , T( j∗+1)]
such that

t ∈ [T( j∗) , T( j∗+1)].
◦ We then use a linear interpolation between m̂(T( j∗)) and m̂(T( j∗+1))

to approximate m̂(t).
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Confidence bands via the bootstrap

◦ We may construct a simultaneous confidence band of m(t) via the
bootstrap.

◦ Let (Y∗1 , T∗1 , S∗1), · · · , (Y∗n , T∗n , S∗n) be a bootstrap sample (sampling
with replacement of the original data).

◦ We compute the bootstrap estimator m̂∗(t).
◦ Let ξ̂∗1−α be the 1 − α quantile of

sup
t

|m̂∗(t) − m̂(t)|.

◦ A 1 − α simultaneous confidence band is

[m̂(t) − ξ̂∗1−α , m̂(t) + ξ̂∗1−α]
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Asymptotic theory
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The support of (T,S) revisited

1.0 0.5 0.0 0.5 1.0
S

1.0

0.5

0.0

0.5

1.0

T

Joint support of (T,S)

◦ Let Ebe the support of (T, S).
◦ In the above figure, the support is the blue area, which shows a

clear violation of (PS).
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Bypassing the positivity condition

◦ θC(t) �
∫

∂
∂t µ(t , s)dP(s |t) only require β̂2(t , s) to be consistent on

E!

◦ Feature of the local polynomial estimator: β̂2(t , s) is consistent
estimator in E.
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Uniform convergence of derivative estimator

Lemma (ZCG2024)

Under regularity conditions (A3-A5, A6-1, A6-2),

sup
(t ,s)∈E

�����
β̂2(t , s) − ∂

∂t
µ(t , s)

�����

� O
(
h2 + b2 +

max{b , h}4
h

)
+ OP

*.
,

√
| log(hbd)|

nh3bd
+/
-
.

This shows that the local polynomial estimator is uniformly consistent
in E. Note that the convergence rate differs a little on the boundary of
Eversus its interior.
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Uniform convergence of integral estimator - 1

Combining with the convergence of kernel CDF, we immediately have
the following result:

Theorem (ZCG2024)

Let T′ ⊂ T ≡ supp(T) be a compact set. Under regularity conditions
(A1-A6),

sup
t∈T′

|θ̂C(t) − θC(t)|

� O
(
h2 + b2 +

max{b , h}4
h

)
+ OP

*.
,

√
| log(hbd)|

nh3bd
+ }2 +

√ | log }|
n}

+/
-
,

sup
t∈T′

|m̂(t) − m(t)|

� O
(
h2 + b2 +

max{b , h}4
h

)
+ OP

*.
,

1
√

n
+

√
| log(hbd)|

nh3bd
+ }2 +

√ | log }|
n}

+/
-
.
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Uniform convergence of integral estimator - 2

sup
t∈T′

|m̂(t) − m(t)|

� O
(
h2 + b2 +

max{b , h}4
h

)
+ OP

*.
,

1
√

n
+

√
| log(hbd)|

nh3bd
+ }2 +

√ | log }|
n}

+/
-
.

◦ Blue term: the bias in local polynomial estimator.

◦ Red term: additional bias from boundary of E.

◦ Orange term: rate from Ȳn .

◦ Brown term: stochastic variation of local polynomial estimator.

◦ Cyan term: rate from kernel CDF.
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Bandwidth Rate

◦ Clearly, }∗ � n−1/5 is the optimal rate, which is similar to the
conventional problem.

◦ If we choose h � b, then the optimal rate is

h∗ � b∗ � n−1/(d+7) ,

which is slightly slower than the conventional rate n−1/(d+5).
◦ The slightly slowness of the rate is due to estimating the derivative.
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Bootstrap Validity - 1

◦ To show the bootstrap validity, we first need to derive an
asymptotic linear form of m̂(t).

◦ For simplicity, we assume that h � b, so the convergence rate
becomes

sup
t∈T′

|m̂(t)−m(t)| � O
�
h2�

+OP
*.
,

1
√

n
+

√
| log(hd+1)

nhd+3 + }2 +

√ | log }|
n}

+/
-
.

◦ We let } �
( log n

n

)−1/5
be the optimal choice so the kernel CDF

converges faster. Thus, we only need to focus on the primary term

O
�
h2�

+ OP
*.
,

√
| log(hd+1)

nhd+3
+/
-
.
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Bootstrap Validity - 2

◦ We consider an undersmoothing h so that nhd+7
→ 0. Under this

choice, the bias converges faster than the variance, and the rate is

sup
t∈T′

|m̂(t) − m(t)| � OP
*.
,

√
| log(hd+1)

nhd+3
+/
-
.
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Bootstrap Validity - 3

Lemma (Asymptotic linearity)

Under regularity conditions (A1-A6), h � b, } �
( log n

n

)−1/5
, and nhd+7

→

0. There exists a function ψt : Y × T × S→ R such that

�√
nhd+3(m̂(t) − m(t)) −Gnψt

�

� OP *
,

√
nhd+7 +

√
log n
n}2

+

√
hd+3 log n
}

+

√
hd+3

}2
+
-
,

where Gn f �
1
√

n

∑n
i�1[ f (Yi , Ti , Si) − E( f (Y, T, S)).

Note that Y , T ,S are the support of Y, T, S, respectively.
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Bootstrap Validity - 4

◦ With the above asymptotic linearity, we are able to approximate
the distribution of supt |m̂(t) − m(t)| by a maximum of a Gaussian
process, leading to the validity of the bootstrap.

◦ Namely, we have√
nhd+3 sup

t∈T′
|m̂(t) − m(t)| ≈ sup

t∈T′
|Gnψt | ≈ sup

t∈T′
|Bnψt |,

where Bn ft is a Gaussian process on the function class ft indexed
by t.

◦ The bootstrap maximum approximates the above maximum,
leading to the consistency of the bootstrap confidence band
[CCK2014, G2023].
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Bootstrap Validity - 5

Corollary (Bootstrap validity)

Under regularity conditions (A1-A6), h � b, } �
( log n

n

)−1/5
, and nhd+7

→

0. Let ξ∗1−α be the bootstrap quantile. Then

P
(
m(t) ∈ [m̂(t) − ξ̂∗1−α , m̂(t) + ξ̂∗1−α] ∀t ∈ T′

)
� 1 − α + OP

*.
,

*
,

log5 n
nhd+3

+
-

1/8
+/
-
.
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Case study: PM2.5 effect
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PM2.5 data

Figure: An example of PM2.5 data on cardiovascular mortality rate (CMR) at
county-level.

◦ The above data table shows the average PM2.5 and CMR over
1990-2010 of each county.

◦ We also have other 8 county-level informations such as
population, unemployment rates, household income, ...etc.

◦ We want to investigate how PM2.5 would impact the CMR.
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PM2.5 data
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Regress Y on T and all covariates

◦ We consider three model: naive method, adjusting for spatial
confounding, adjusting for all covariates.

◦ The confidence bands are pointwise.

◦ A clear increasing effect after adjusting for all covariates.
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Discussion
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Summary

◦ Our integral estimator allows us to bypass the positivity condition.

◦ We have a fast algorithm, nice asymptotic theory, and methods for
making inferences.

◦ This idea opens a new direction for investigating continuous
treatments because the violation of positivity is very common!

44 / 46



Open problems and future work

◦ Inverse probability weighting. Our method is essentially a
regression adjustment (g-computation) method. Can we
generalize it to the inverse probability weighting approach?

◦ Doubly-robustness. Following the previous result, are we able to
construct a doubly-robust estimator? We may need to use a
cross-fitting (double machine learning) approach in this case.

◦ High-dimensional confounders. In addition to 2D spatial
confounders, we may have high-dimensional confounders with a
sparse linear effect. Will our method work?

◦ Unmeasured confounders. We assume all confounders are
observed. Can we handle unmeasured confounders? Perhaps
with some known instruments?
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Thank You!

All codes and data are available:
https://github.com/zhangyk8/npDoseResponse/tree/main

Paper reference: https://arxiv.org/abs/2405.09003.
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Assumptions: causal assumptions

◦ A1-1: Consistency. Given T � t , Y � Y(t).
◦ A1-2: Ignorability. {Y(t) : t ∈ T} ⊥ T |S.
◦ A1-3: Treatment variation. The variance Var(E) > 0 in the

equation T � f (S) + E.

◦ A2: Derivative identification. θ(t) � θC(t) � E
�
∂
∂t µ(t , S)|T � t

�

and E(µ(T, S)) � E(m(T)).
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Assumptions: nuisance parameters

◦ A3: Conditional mean. µ(t , s) is at least 3-times continuously
differentiable with respect to t and at least 4-times continuously
differentiable with respect to s .

◦ A4: Joint density. p(t , s) is at least twice continuously
differentiable with bounded partial derivatives up to 2nd order in
the interior of E. All partial derivative are continuous up to, ∂E,
the boundary of E. E is compact and sup(t ,s)∈E p(t , s) > 0.
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Assumptions: boundary condition

◦ A5-1: Smooth boundary. There are constants r1 , r2 ∈ (0, 1) such
that for any (t , s) ∈ Eand all δ ∈ (0, r1], there is another point
(t′, s′) ∈ E such that

B((t′, s′), r2δ) ⊂ B((t , s), δ) ∩ E.

◦ A5-2: Boundary derivative. For any (t , s) ∈ E,
∂
∂t p(t , s) � ∂

∂s j
p(t , s) � 0 and ∂2

∂s2j
µ(t , s) � 0 for all j � 1, · · · , d.

◦ A5-3: Stable volume. The Lebesgue measure of the set ∂E⊕ δ
satisfies

Leb(∂E⊕ δ) ≤ A1 · δ

for some constant A1, where A ⊕ δ � {z : infx∈A ‖x − z‖ ≤ δ}.
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Assumptions: kernels in local polynomials

◦ A6-1: Regular. KT , KS are compactly supported and Lipchitz
kernel with KT being symmetric and KS is radially symmetric and
are second-order kernels.

◦ A6-2: VC-type kernels. Let

K3,d �

{(y , z) 7→
( y − t

h

) ` ( zi − si

b

) k1 ( z j − s j

b

) k2

× KT

( y − t
h

)
KS

( z − s
b

)
: (t , s) ∈ E;

i , j � 1, · · · , d; ` � 0, · · · , 6; k1 , k2 � 0, 1; h , b > 0
}

The class K3,d is VC-type class.
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Assumptions: kernel in the kernel CDF

◦ A6-3: Regular of kernel CDF. K̄T is a compactly supported,
Lipchitz, symmetric, and second-order kernel.

◦ A6-4: VC-type kernel CDF. Let

K̄�

{
y 7→ K̄T

( y − t
}

)
: t ∈ T , } > 0

}

The class K̄ is VC-type class.
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Asymptotic linearity - 1

◦ In the asymptotic linearity, we have√
nhd+3(m̂(t) − m(t)) ≈ Gnψt .

◦ ψt is the following function

ψt(Y, T, S) � ET2

[∫ t

t̃�T2

ψ̃ t̃(Y, T, S)dt̃
]

with

ψ̃ t̃(Y, T, S) � ET3 ,S3



eT
2 M−1

3 Ψt̃ ,S3
(Y, T, S)

√

hbd p(̃t , S3)pT (̃t)
·
1
}

K̄T

(
t̃ − T3
}

)
,

where e2 � (0, 1, 0, · · · , 0) ∈ R3+d and M2 ∈ R
(3+d)×(3+d) is a block

diagonal matrix of constants.
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Asymptotic linearity - 2

◦ Ψt ,s(y , z , v) ∈ R3+d is the following function

Ψt ,s(y , z , v) � y ·


� z−t
h

� j−1 KT
� z−t

h

�
KS

� v−s
b

�
1≤ j≤3( v j−3−s j−3

b

)
KT

� z−t
h

�
KS

� v−s
b

�
4≤ j≤3+d
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