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A simple clustering problem in d=1000

Data: d = 1000; only first 2 coordinates are shown here and the rest

coordinates are Gaussian noises. /
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A simple clustering problem in d=1000

k—-means clustering

Data: d = 1000; only first 2 coordinates are shown here and the rest

coordinates are Gaussian noises. /
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A simple clustering problem in d=1000

Single Linkage

Data: d = 1000; only first 2 coordinates are shown here and the rest

coordinates are Gaussian noises. /
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A simple clustering problem in d=1000

Skeleton Clustering

Data: d = 1000; only first 2 coordinates are shown here and the rest

coordinates are Gaussian noises. y
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Skeleton Clustering-1

Idea:

o We start with applying k-means clustering to the whole data with
alarge k.

o We then merge two clusters if they overlap a lot.

This procedure can be summarized as constructing a weighted graph
called skeleton graph.
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Skeleton Clustering - 2
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Original data.
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Skeleton Clustering - 2
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k-means: generating knots (centers of k-means clusters); k = y/n.
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Skeleton Clustering

Voronoi cells of knots.
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Skeleton Clustering - 2

Delaunay triangulations—creating a graph. Assign a density-based
weights on the edge to measure overlapping.
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Skeleton Clustering - 2

eight

Convert a weighted graph into a dendrogram.
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Skeleton Clustering - 2

Cut the dendrogram to form the final clusters.
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Skeleton Clustering - 2

Final clustering result.
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Measuring the overlap between two knots

Data: Xi,---, X, € R?.

(¢]

@]

Centers of k-means: c1, -, Ck.

Partition of data:

[e]

X ={Xi:d(Xj,ce) <d(Xi,cj), j#l}

for knot cg.

@]

Goal: we want to create a quantity to measure the overlap between
ci,Cep.
]
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Voronoi density

[¢]

Intuition: ¢; and c, have a high overlap if

1. they are close, i.e., [|c; — c¢[| is small,
2. there are many observations between the c; and ¢,

(¢]

Define the 2-NN region of ¢; and c;:
Aje={x:d(x,cr) > max{d(x,c;j),d(x,ce)}, Yk # j, (}.

Namely, the 2-NN of knots at x is c;, c¢.
LetP,(A) = % 2, I(X; € A) be the empirical measure of the set A.

o We define the Voronoi density of c j,Ceas

[¢]

JVD _ Pn(Ajt’)
1 lej = el
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Voronoi density: remarks

o Recall that

Aje={x :d(x,cr) > max{d(x,c;),d(x,ce)}, Yk},
SVD _ M_
& lej = cell

§VD

o Clearly, 0 = 0if ¢; and c; do not share a boundary.

o A population version of §Vj€D is
VD _ P(Ajf)

1 lej = cell”

where P(Aj¢) = P(X; € Aj¢). The convergence is fast assuming
that knots are fixed.
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Alternatives: Face density

o The Voroni density is not the only way to measure the overlap.

o We also have some other good alternatives although the Voronoi
density works the best in practice.

o Face density:
o _ ~ (1
ij —'ij(i)r
where

o pje (t) is the KDE using observations in & ;, X, projected onto the
line segment c¢;c; and evaluated at t - ¢; + (1 — t)cy.
o Thus, pj¢(3) is the midpoint (on the boundary).
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Alternatives: Tube density

o Similar to the face density, we also consider the tube density.

o Tube density:

STD = min @i & (),
it rel0,1] ]f,R( )

where

o je,r (t) is the KDE of all observations projected to ¢jc; and
evaluated at ¢ - ¢; + (1 — t)c, with a projected distance less than R.
o Namely,

_ 1 « (X)) —t-cj—(1—t)e .
wjf,R(t):%ZK(] l h] I(d(Xi,cjce) < R).
i=1
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Simulation: Yingyang

Knots for Yinyang Data, d=1000

o An yingyang shape data with n = 3200.

o Main structure is 2D in the region [-3, 3] X [-3, 3].
o We added additional variables to make it high dimensions

(d = 10,100, 500, 1000).
o Additional noise level o =0.2,0.3.

o We use adjusted rand index to evaluate performance.
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Simulation: Yingyang (0 = 0.2)
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Simulation: Yingyang (o = 0.3)

Yinyang Data, sig = 0.3, d= 10 Yinyang Data, sig = 0.3, d= 100
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Real data: Zipcode data - 1

n = 2000 with 4 = 16 X 16 images of handwritten Hindu-Arabic
numerals from.

o

(e]

Numbers: 0,1,2,3,4,5,6,7,8,9.

While this data is often used for classification, we remove the class

[¢]

label and treat it as a clustering problem.

o

We consider using the original data and the denoised data
(removing observations with the lowest 10% density).
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Real data: Zipcode data - 2
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Skeleton Regression: Introduction

o The idea of skeleton can be used in a regression setting.

o Intuition: we construct skeleton using the covariates/features and
do prediction on the skeleton.
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Skeleton Regression: Application to Astronomy data
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Detecting galaxy’s redshift using color information (5D covariates).
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Skeleton Regression: big picture

Raw data (2D covariate + 1D response).
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Skeleton Regression: big picture
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k-means: generating knots (centers of k-means clusters); k = v/n.
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Skeleton Regression: big picture

Generating the skeleton.
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Skeleton Regression: big picture

Skeleton kernel regression.
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Skeleton Regression: big picture

Skeleton linear spline.
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Skeleton Regression: Skeleton - 1

o Data: (X1, Y1), ,(Xy, Yn) € R x R.
o We construct skeletons using Xj,--- , Xj,.

o Centers of k-means: ¢y, , C.

o The skeleton clustering creates a weighted graph Go = (V, W),
where

o V=A{ci, -, ck}
§VD

o W={wj¢}, where wj, = it is the Voronoi density.

o We choose a threshold A to convert it into an unweighted graph
G =(V,E), where ej; € E (j, { share an edge) if Wj; > A.
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Skeleton Regression: Skeleton - 2

(@]

The graph G creates a skeleton 8§ ¢ R? such that
§=V U,

where
6 = {tC]‘ +(1—t)p:te (0,1),6]'{ € E}

denotes the edges.

(¢]

8§ is almost a 1D structure except for knots that may have multiple
edges attaching to them.

@]

8 can be decomposed into the vertex region V and the edge region
8.

o We project each observation X; to S; € § and construct prediction
models accordingly.
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Skeleton linear spline

o A simple nonparametric regression on skeleton is the linear spline.

o Skeleton linear spline: For each point s € §, we require the
prediction model m(s) that

1. m(s) is linear when s is on an edge, and
2. m(s) is continuous at each knot.

o While it may looks non-trivial to fit this model, there is a simple
representer theorem for this.
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Skeleton linear spline: representer theorem

o Define a regression model m such that
o mg(V;) = B; for each vertex,
o mﬁ(s) = t(S)ﬁj +(1—t(s))Brifs = t(S)V]‘ +(1—t(s))Vp.
o Namely, the model is a linear interpolation of the prediction
values on each knot.
o The model mg is determined by the coefficients 1, - -, Bx on the
knots.

Theorem (Wei and Chen (2023))

Any skeleton linear spline model can be written as mg for some 3.
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Skeleton linear spline: fitting

@]

Fitting the skeleton linear spline is very easy.

[¢]

For every observation X; with a projected location S; € S, we
further convert it into a vector Z; € [0, 1] such that

1 if S; = Vi is on the vertex
Zik=qt ifS;=tVy+(1-1t)V, for some V,

0 otherwise.

@]

With this, the prediction value mg(S;) = Z IT B.

[¢]

Thus, when we estimate § using the least square, this becomes a
linear regression problem with an analytic solution:

B=(zzZ")'zyv.
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Metric space induced by skeleton

o The set § is equipped with a metric ds because
o each vertex ¢; € R has a location in Euclidean space and
o each edge ej has a length ||c; — c||.
o For two points s1, sy € S, their distance dg(s1, s2) will be the
shortest distance in S. If they belong to two different connected
component, we set ds(s1,52) = 0.

o The metric space (S, ds) allows us to use a wide variety of
methods for prediction.
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Skeleton kernel regression

o As a classical example, we may use kernel regression on the
skeleton.

o The prediction value 71j(s) is

Z?:l Y:K (ds(illsi))

ds(s,5)\
K (252

iy(s) =

o Other methods such as kNN is applicable as well.
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Skeleton Regression: simulations - 1

Yinyang Data Yinyang Regression Data

x2

We add additional covariates to make it a high-dimensional data.
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Skeleton Regression: simulations - 2

H Method  Medium SSE (5%, 95%) nknots Parameter ||

kNN 204.5 (192.3, 221.9) - neighbor=18

Ridge 2127.0 (2100.2, 2155.2) A=7.94

Lasso 1556.8 (1515.4, 1607.9) A = 0.0126
SpecSeries  1506.4 (1469.1,1555.6) - bandwidth = 2
S-Kernel ~ 112.8 (102.0, 121.7) 38 bandwidth = 6 rp,,

S-kNN  139.6 (129.6,148.7) 38 neighbor = 36
S-Lspline  95.8 (88.6, 102.6) 38 -

d =1000. We use 10-fold cross-validation for every method.
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Conclusion

(¢]

Skeleton approach offers a flexible framework.

@]

It shows promising results in both clustering and regression when
the number of covariates is high.
o However, a couple of open questions remains:

o Understanding the effect of k-means when k is large.
o How does the randomness of k-means affects the final result.
o Principled way to post-process the knots.

Main references:

(¢]

o Skeleton clustering: arXiv 2104.10770
o Skeleton regression: arXiv 2303.11786
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Thank You!

More details can be found in
http://faculty.washington.edu/yenchic.
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