SKELETON CLUSTERING AND REGRESSION.

Yen-Chi Chen

Department of Statistics
University of Washington
• Supported by NSF DMS - 195278 and DMS - 2112907 and DMS - 2141808.
Joint work with Jerry (Zeyu) Wei

Idea:

- We start with applying k-means clustering to the whole data with a large *k*.
- We then merge two clusters if they overlap a lot.

This procedure can be summarized as constructing a weighted graph called skeleton graph.

Original data.

k-means: generating knots (centers of *k*-means clusters); $k = \sqrt{n}$.

Voronoi cells of knots.

Delaunay triangulations—creating a graph. Assign a density-based weights on the edge to measure overlapping.

Convert a weighted graph into a dendrogram.

Cut the dendrogram to form the final clusters.

Final clustering result.

Measuring the overlap between two knots

- Data: $X_1, \dots, X_n \in \mathbb{R}^d$.
- Centers of k-means: c_1, \dots, c_k .
- Partition of data:

$$\mathfrak{X}_{\ell} = \{X_i : d(X_i, c_{\ell}) < d(X_i, c_j), \quad j \neq \ell\}$$

for knot c_{ℓ} .

• Goal: we want to create a quantity to measure the overlap between c_j, c_ℓ .

Voronoi density

- Intuition: c_i and c_ℓ have a high overlap if
 - 1. they are close, i.e., $||c_i c_\ell||$ is small,
 - 2. there are many observations between the c_i and c_ℓ
- Define the 2-NN region of c_j and c_ℓ :

$$A_{j\ell} = \{x: d(x,c_k) > \max\{d(x,c_j),d(x,c_\ell)\}, \, \forall k \neq j,\ell\}.$$

Namely, the 2-NN of knots at x is c_i , c_ℓ .

- Let $\mathbb{P}_n(A) = \frac{1}{n} \sum_{i=1}^n I(X_i \in A)$ be the empirical measure of the set A.
- We define the Voronoi density of c_i , c_ℓ as

$$\widehat{S}_{j\ell}^{VD} = \frac{\widehat{P}_n(A_{j\ell})}{\|c_j - c_\ell\|}.$$

Voronoi density: remarks

Recall that

$$\begin{split} A_{j\ell} &= \{x: d(x,c_k) > \max\{d(x,c_j),d(x,c_\ell)\},\,\forall k\},\\ \widehat{S}_{j\ell}^{VD} &= \frac{\widehat{P}_n(A_{j\ell})}{\|c_j-c_\ell\|}. \end{split}$$

- Clearly, $\widehat{S}_{i\ell}^{VD} = 0$ if c_j and c_ℓ do not share a boundary.
- A population version of $\widehat{S}_{i\ell}^{VD}$ is

$$S_{j\ell}^{VD} = \frac{P(A_{j\ell})}{\|c_j - c_\ell\|},$$

where $P(A_{j\ell}) = P(X_i \in A_{j\ell})$. The convergence is fast assuming that knots are fixed.

Alternatives: Face density

- The Voroni density is not the only way to measure the overlap.
- We also have some other good alternatives although the Voronoi density works the best in practice.
- Face density:

$$\widehat{S}_{j\ell}^{FD} = \widehat{\rho}_{j\ell} \left(\frac{1}{2}\right),\,$$

where

- $\widehat{\rho}_{j\ell}(t)$ is the KDE using observations in \mathfrak{X}_j , \mathfrak{X}_ℓ projected onto the line segment $\overline{c_jc_\ell}$ and evaluated at $t \cdot c_j + (1-t)c_\ell$.
- Thus, $\widehat{\rho}_{j\ell}(\frac{1}{2})$ is the midpoint (on the boundary).

Alternatives: Tube density

- Similar to the face density, we also consider the tube density.
- Tube density:

$$\widehat{S}_{j\ell}^{TD} = \min_{t \in [0,1]} \widehat{\omega}_{j\ell,R}(t),$$

where

- $\widehat{\omega}_{j\ell,R}(t)$ is the KDE of all observations projected to $\overline{c_jc_\ell}$ and evaluated at $t \cdot c_j + (1-t)c_\ell$ with a projected distance less than R.
- Namely,

$$\widehat{\omega}_{j\ell,R}(t) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{\prod_{j\ell}(X_i) - t \cdot c_j - (1-t)c_\ell}{h}\right) I(d(X_i, \overline{c_j c_\ell}) < R).$$

Simulation: Yingyang

- An yingyang shape data with n = 3200.
- Main structure is 2D in the region $[-3,3] \times [-3,3]$.
- We added additional variables to make it high dimensions (d = 10, 100, 500, 1000).
- Additional noise level $\sigma = 0.2, 0.3$.
- We use adjusted rand index to evaluate performance.

Simulation: Yingyang ($\sigma = 0.2$)

Simulation: Yingyang ($\sigma = 0.3$)

Real data: Zipcode data - 1

- n = 2000 with $d = 16 \times 16$ images of handwritten Hindu-Arabic numerals from.
- o Numbers: 0,1,2,3,4,5,6,7,8,9.
- While this data is often used for classification, we remove the class label and treat it as a clustering problem.
- We consider using the original data and the denoised data (removing observations with the lowest 10% density).

Real data: Zipcode data - 2

Skeleton Regression: Introduction

- The idea of skeleton can be used in a regression setting.
- Intuition: we construct skeleton using the covariates/features and do prediction on the skeleton.

Skeleton Regression: Application to Astronomy data

Detecting galaxy's redshift using color information (5D covariates).

Raw data (2D covariate + 1D response).

k-means: generating knots (centers of *k*-means clusters); $k = \sqrt{n}$.

Generating the skeleton.

Skeleton kernel regression.

Skeleton linear spline.

Skeleton Regression: Skeleton - 1

- o Data: $(X_1, Y_1), \dots, (X_n, Y_n) \in \mathbb{R}^d \times \mathbb{R}$.
- We construct skeletons using X_1, \dots, X_n .
- Centers of k-means: c_1, \dots, c_k .
- The skeleton clustering creates a weighted graph $G_0 = (V, W)$, where
 - $V = \{c_1, \cdots, c_k\}$
 - o $W = \{w_{j\ell}\}$, where $w_{j\ell} = \widehat{S}_{j\ell}^{VD}$ is the Voronoi density.
- We choose a threshold λ to convert it into an unweighted graph G = (V, E), where $e_{j\ell} \in E$ (j, ℓ share an edge) if $W_{j\ell} \ge \lambda$.

Skeleton Regression: Skeleton - 2

• The graph G creates a skeleton $\mathcal{S} \subset \mathbb{R}^d$ such that

$$S = V \cup \mathscr{E}$$
,

where

$$\mathcal{E} = \{ tc_j + (1-t)c_\ell : t \in (0,1), e_{j\ell} \in E \}$$

denotes the edges.

- 8 is almost a 1D structure except for knots that may have multiple edges attaching to them.
- & can be decomposed into the vertex region V and the edge region &.
- We project each observation X_i to $S_i \in \mathcal{S}$ and construct prediction models accordingly.

Skeleton linear spline

- A simple nonparametric regression on skeleton is the linear spline.
- **Skeleton linear spline:** For each point $s \in S$, we require the prediction model m(s) that
 - 1. m(s) is linear when s is on an edge, and
 - 2. m(s) is continuous at each knot.
- While it may looks non-trivial to fit this model, there is a simple representer theorem for this.

Skeleton linear spline: representer theorem

- Define a regression model m_{β} such that
 - $m_{\beta}(V_i) = \beta_i$ for each vertex,
 - $om_{\beta}(s) = t(s)\beta_i + (1 t(s))\beta_{\ell} \text{ if } s = t(s)V_i + (1 t(s))V_{\ell}.$
- Namely, the model is a linear interpolation of the prediction values on each knot.
- The model m_{β} is determined by the coefficients β_1, \dots, β_k on the knots.

Theorem (Wei and Chen (2023))

Any skeleton linear spline model can be written as m_{β} for some β .

Skeleton linear spline: fitting

- Fitting the skeleton linear spline is very easy.
- For every observation X_i with a projected location $S_i \in \mathcal{S}$, we further convert it into a vector $Z_i \in [0,1]^k$ such that

$$Z_{ik} = \begin{cases} 1 & \text{if } S_i = V_k \text{ is on the vertex} \\ t & \text{if } S_i = tV_k + (1-t)V_\ell \text{ for some } V_\ell \\ 0 & \text{otherwise.} \end{cases}$$

- With this, the prediction value $m_{\beta}(S_i) = Z_i^T \beta$.
- Thus, when we estimate β using the least square, this becomes a linear regression problem with an analytic solution:

$$\widehat{\beta} = (ZZ^T)^{-1}ZY.$$

Metric space induced by skeleton

- The set δ is equipped with a metric d_{δ} because
 - each vertex $c_i \in \mathbb{R}^d$ has a location in Euclidean space and
 - each edge $e_{j\ell}$ has a length $||c_j c_\ell||$.
- For two points $s_1, s_2 \in \mathcal{S}$, their distance $d_{\mathcal{S}}(s_1, s_2)$ will be the shortest distance in \mathcal{S} . If they belong to two different connected component, we set $d_{\mathcal{S}}(s_1, s_2) = \infty$.
- The metric space (δ, d_{δ}) allows us to use a wide variety of methods for prediction.

Skeleton kernel regression

- As a classical example, we may use kernel regression on the skeleton.
- The prediction value $\widehat{m}_h(s)$ is

$$\widehat{m}_h(s) = \frac{\sum_{i=1}^n Y_i K\left(\frac{d_{\mathcal{S}}(s,S_i)}{h}\right)}{\sum_{j=1}^n K\left(\frac{d_{\mathcal{S}}(s,S_j)}{h}\right)}.$$

o Other methods such as kNN is applicable as well.

Skeleton Regression: simulations - 1

We add additional covariates to make it a high-dimensional data.

Skeleton Regression: simulations - 2

Method	Medium SSE (5%, 95%)	nknots	Parameter
kNN	204.5 (192.3, 221.9)	-	neighbor=18
Ridge	$2127.0 \ (2100.2, \ 2155.2)$		$\lambda = 7.94$
Lasso	1556.8 (1515.4, 1607.9)		$\lambda = 0.0126$
SpecSeries	1506.4 (1469.1,1555.6)	-	bandwidth = 2
S-Kernel	112.8 (102.0, 121.7)	38	bandwidth = 6 r_{hns}
S-kNN	139.6 (129.6,148.7)	38	neighbor = 36
S-Lspline	95.8 (88.6, 102.6)	38	-

d = 1000. We use 10-fold cross-validation for every method.

Conclusion

- Skeleton approach offers a flexible framework.
- It shows promising results in both clustering and regression when the number of covariates is high.
- However, a couple of open questions remains:
 - Understanding the effect of *k*-means when *k* is large.
 - How does the randomness of *k*-means affects the final result.
 - Principled way to post-process the knots.
- Main references:
 - Skeleton clustering: arXiv 2104.10770
 - Skeleton regression: arXiv 2303.11786

Thank You!

More details can be found in http://faculty.washington.edu/yenchic.