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Cosmic Web: What Does Our Universe Look Like
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The Importance of Filaments

◦ A galaxy’s brightness, size, and mass are associated with the
distance to filaments.

◦ A galaxy’s alignment is associated with filaments.
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Density Ridges

We formalize the notion of filaments as density ridges.
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Example: Ridges in Mountains

Credit: Google
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Example: Ridges in Smooth Functions
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Formal Definition of Density Ridges

◦ p : Rd
7→ R, the density function.

◦ (λ j(x), v j(x)): jth eigenvalue/vector of H(x) � ∇∇p(x).
◦ V(x) � [v2(x), · · · , vd(x)]: matrix of the 2nd eigenvector to the last

eigenvector.
◦ V(x)V(x)T : a projection.
◦ Ridges:

R � Ridge(p) � {x : V(x)V(x)T∇p(x) � 0, λ2(x) < 0}.

◦ Local modes:

Mode(p) � {x : ∇p(x) � 0, λ1(x) < 0}.
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Dimension of Ridges

The dimension of a ridge is 1.

This is because ridges are points satisfying V(x)V(x)T∇p(x) � 0.

V(x)V(x)T has rank d − 1, so there are d − 1 effective constraints.

By the Implicit Function Theorem, ridges have dimension 1.
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Estimator and Algorithm

We use the plug-in estimate:

R̂n � Ridge(p̂n),
where p̂n(x) � 1

nhd

∑n
i�1 K

(
x−Xi

h

)
is the kernel density estimator (KDE)

and X1 , · · · ,Xn are the locations of galaxies.

◦ In general, finding ridges from a given function is hard.

◦ The Subspace Constraint Mean Shift1 (SCMS) algorithm allows us
to find R̂n , ridges of the KDE.

1Ozertem, Umut, and Deniz Erdogmus. “Locally defined principal curves and surfaces."
JMLR (2011).
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SCMS: Ridge Recovery Algorithm

SCMS moves blue mesh points by gradient ascent and a projection.
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Formal definition of the SCMS algorithm

◦ Starting at an initial point x(0), the SCMS algorithm generates a
sequence of points x(1) , x(2) , · · · via the following updating
procedure:

x(t+1)
� x(t) + ηV̂(x(t))V̂(x(t))T∇p̂n(x(t))

for t � 0, 1, 2, 3, · · · .

◦ The tuning parameter η > 0 is the step size.
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Convergence of the SCMS algorithm

◦ Let x(∞)
∈ R̂n be its destination.

Theorem (Linear convergence of SCMS)

Under suitable conditions and ‖x(0)
− x(∞)‖2 ≤ r0, we have

‖x(t)
− x(∞)‖2 ≤ Γ

t‖x(0)
− x(∞)‖2 ,

where Γ ∈ (0, 1).
◦ We provide an explicit description of Γ, r0 in our paper.

◦ Technical challenge: the projection matrix V̂(x(t))V̂(x(t))T also
depends on the current location x(t), so we have to bound this
difference as well.
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3D Example for Estimated Ridges

Blue curves: density ridges.

Red points: density local modes.
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Uncertainty of Ridges from the Bootstrap
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SDSS: Comparing to Clusters

◦ Blue: filaments. Red: galaxy clusters (redMaPPer).
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SDSS: Filament Effects VS Environments

Do filaments have an extra effect other than environments?
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SDSS: Alignment
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Accounting for the spherical
geometry
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Directional data

◦ While the above results seem to be good, it has a severe problem:
our data (locations of galaxies) is not in Euclidean space.

◦ In particular, we use (RA, dec) to represent the location of a galaxy.

◦ (RA, dec) are spherical coordinate!

◦ The Euclidean ridge finding algorithm may lead to a severe bias.
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Failure of usual SCMS
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Directional ridges - 1

◦ Let X1 , · · · ,Xn ∈ Ωq , where Ωq � {x ∈ Rq+1 : ‖x‖2 � 1} be the
directional data on q-dimensional sphere.

◦ To define ridges on Ωq , we need to use gradient on a Riemannian
manifold.

◦ Luckily, in this case, we have a simple representation of the
gradient on Riemannian manifold grad using the usual gradient
operator ∇ (in (q + 1)-dimension):

grad f (x) � (Iq+1 − xxT)∇ f (x),
where x ∈ Rq+1 and Iq+1 � diag(1, 1, · · · , 1) ∈ R(q+1)×(q+1).

◦ In the SDSS data, we convert (RA, dec) into a point x ∈ Ω2 ⊂ R3

such that ‖x‖ � 1.
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Directional ridges - 2

◦ With the above representation, the Hessian on Riemannian
manifold can be expressed as

Hf (x) � (Iq+1 − xxT)∇∇ f (x)(Iq+1 − xxT)
when x ∈ Ωq .

◦ The directional ridges are then defined as

R � Ridge(p) � {x : V(x)V(x)T∇p(x) � 0, λ2(x) < 0},
where V(x) is the matrix of the smallest (q-1) eigenvectors and
λ2(x) is the second largest eigenvalue of Hp(x).
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Directional ridges - 3

◦ In practice, we estimate p by the directional KDE:

p̂dir(x) �
cL,q(h)

n

n∑
i�1

L
(
1 − xT Xi

h2

)
,

where cL,q(h) � O(h−q) is the normalizing constant and L is the
directional kernel.

◦ A popular choice is the von-Mises kernel, i.e., L(r) � e−r .

◦ This leads to Ĥf (x) and V̂(x) and λ̂2(x) and R̂.
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Directional SCMS

◦ The SCMS algorithm can be generalized to a directional SCMS
with some modifications.

◦ We showed that the directional SCMS can be expressed as the
following fixed-point iteration (starting at x(0)):

x(t+1)
�

V̂(x(t))V̂(x(t))T∇p̂dir(x(t)) + ‖∇p̂dir(x(t))‖2 · x(t)

‖V̂(x(t))V̂(x(t))T∇p̂dir(x(t)) + ‖∇p̂dir(x(t))‖2 · x(t)‖2
,

for t � 0, 1, 2, 3, · · · .
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Convergence of the directional SCMS algorithm

◦ Let x(0) be an initial point of the SCMS on Ωq and let x(∞)
∈ R̂ be

its destination.

Theorem (Linear convergence of directional SCMS)

Under suitable conditions and ‖x(0)
− x(∞)‖2 ≤ rdir, we have

‖x(t)
− x(∞)‖2 ≤ Γ

t
dir‖x(0)

− x(∞)‖2 ,

where Γdir ∈ (0, 1).
◦ We provide bounds on Γdir and rdir in the paper.
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DirSCMS in action
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Applying to the SDSS data
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Applying to the SDSS data
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Incorporating the redshift
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Incorporating the redshift information

◦ All the above approach is based on the idea of ‘slicing the
Universe’.

◦ Namely, we take slices based on redshift and find filaments in
each slice.

◦ How to incorporate the information from redshift is a key
problem.
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Failure of a naive idea

◦ Naively, one may think that we can convert (RA, dec, z) into
3-dimensional Cartesian coordinate and apply the 3D ridge
finding algorithm.

◦ This idea may lead to unstable results. See the following
simulation:
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Ω2 ×R space

◦ To incorporate the redshift, we consider the product spaceΩ2 ×R.

◦ Ω2 is the 2-sphere, which describes the angular position (RA, dec).

◦ R is the 1-dimensional Euclidean space, which describes the
redshift z.

◦ We attempt to find ridges in Ω2 ×R.
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Filament findings inΩ2 ×R
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◦ The right panel is the result from our directional-linear SCMS,
which recover the true filament (red curve).
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Density estimation inΩ2 ×R

◦ The idea is to estimate the density in the product space directly.

◦ Let x ∈ Ω2 denotes the angular coordinate and z ∈ R denotes the
redshift.

◦ Our data will be (X1 , Z1), · · · , (Xn , Zn) ∈ Ω2 ×R.

◦ We estimate the density using the product kernel:

p̂DL(x , z) � cL,2(hx)
nhz

n∑
i�1

L
(
1 − xT Xi

h2
x

)
K

(Zi − z
hz

)
,

where L(y) � e−y and K(y) � 1
√

2π
exp(− 1

2 y2) are a directional and
Gaussian kernel.

32 / 36



Idea: Mean-Shift inΩ2 ×R

◦ We show that a gradient ascent of p̂DL(x , z) with a suitable step size
can be written as follows.

◦ Starting at x(t) , z(t), we compute

x̃(t+1)
�

∑n
i�1 XiL

(
1−x(t)T Xi

h2
x

)
K

(
Zi−z(t)

hz

)
∑n

i�1 L
(

1−x(t)T Xi
h2

x

)
K

(
Zi−z(t)

hz

) ,

and update

x(t+1)
�

x̃(t+1)

‖x̃(t+1)‖ .
Also, the location z(t) is updated to

z(t+1)
�

∑n
i�1 ZiL

(
1−x(t+1)T Xi

h2
x

)
K

(
Zi−z(t)

hz

)
∑n

i�1 L
(

1−x(t)T Xi
h2

x

)
K

(
Zi−z(t)

hz

) .
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Directional-Euclidean SCMS on SDSS
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Directional-Euclidean SCMS on SDSS
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Conclusion and future direction

◦ We have generalized the usual ridge finding problem into
directional x Euclidean data, which is better suited for Astronomy
data.

◦ We proved both statistical and computational learning theory of
our algorithm.

◦ We have created python library for this algorithm:
https://pypi.org/project/sconce-scms/

◦ The catalog and associated data can be found in:
https://github.com/zhangyk8/sconce-scms/tree/main/

examples/Theory_Method_Code
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Thank You!

More details can be found in
http://faculty.washington.edu/yenchic.
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Directional SCMS

V̂ d(x̂
(t))V̂ d(x̂

(t))T∇f̂h(x̂
(t))

x̂(t)

x̂(t+1)

ĝ
h
(x̂

(t)
) · x̂(t)

θ′t

∣∣∣∣∇f̂h(x̂(t)
)
∣∣∣∣

2
· x̂(t)

x(t+1)
�

V̂(x(t))V̂(x(t))T∇p̂dir(x(t)) + ‖∇p̂dir(x(t))‖2 · x(t)

‖V̂(x(t))V̂(x(t))T∇p̂dir(x(t)) + ‖∇p̂dir(x(t))‖2 · x(t)‖2
,

Note: p̂dir � f̂h .
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Comparison: Euclidean ridges vs directional ridges
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We apply both Euclidean and directional ridge finding algorithms and
study the errors of Euclidean ridges as a function of latitude.
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Linear convergence: high-level idea

Rd

x∗

x(t)

πRd(x
(t))

x(t+1)

x(t+2) x(t+1) = x(t) + η · Vd(x
(t))Vd(x

(t))T∇p(x(t))

The projection matrix makes the algorithm not a conventional gradient
ascent.

A key step to the proof is to bound the projection
(Iq+1 − Vd(x(t))Vd(x(t))T)(x(t)

− x∗) to be O(‖x(t)
− x∗‖2).

We use this decomposition to achieve that.
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Weighted directional ridges: mass-distance
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Errors of Euclidean method at different DEC
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