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A typical missing data

ID

1 15 20 NA

2 12 NA NA

3 NA 43 35

4 11 25 NA

5 NA 37 NA

6 15 23 32

7 NA 27 35

L1 L2 L3
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Probability model under missingness

◦ The variable of interest (also called a study variable) is a random
variable L � (L1 , · · · , Ld) ∈ Rd .

◦ We represent the missingness of L using a binary response vector
R ∈ {0, 1}d .

◦ R j � 1 if L j is observed.

◦ We denote LR � (L j : R j � 1) be the observed variable when the
response pattern is R.

◦ The joint distribution of (L, R), F(`, r), is called the full-data
distribution. The corresponding density p(`, r) is called full-data
density.

◦ We are often interested in some characteristic of F(`), the
distribution of L.
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Response indicator

ID

1 15 20 NA 110

2 12 NA NA 100

3 NA 43 35 011

4 11 25 NA 110

5 NA 37 NA 101

6 15 23 32 111

7 NA 27 35 011

L1 L2 L3 R
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Challenge of missing data

◦ A challenge in missing data is that F(`) or F(`, r) or p(`, r) are
often unidentifiable.

◦ Namely, even with infinite amount of data, we still cannot
accurately estimate them.

◦ To see this, let 1d � (1, 1, · · · , 1) be the special response pattern
that corresponds to fully observed case.

◦ We denote R̄ � 1d − R as flipping 0 and 1 in R. Then, LR̄ is the
unobserved variables under pattern R.

◦ The challenge of missing data comes from the fact that the PDF

p(` |R � r) � p(` r̄ , `r |R � r) � p(` r̄ |`r , R � r)p(`r |R � r)
involves unobserved part p(` r̄ |`r , R � r).

4 / 42



Challenge of missing data

◦ A challenge in missing data is that F(`) or F(`, r) or p(`, r) are
often unidentifiable.

◦ Namely, even with infinite amount of data, we still cannot
accurately estimate them.

◦ To see this, let 1d � (1, 1, · · · , 1) be the special response pattern
that corresponds to fully observed case.

◦ We denote R̄ � 1d − R as flipping 0 and 1 in R. Then, LR̄ is the
unobserved variables under pattern R.

◦ The challenge of missing data comes from the fact that the PDF

p(` |R � r) � p(` r̄ , `r |R � r) � p(` r̄ |`r , R � r)p(`r |R � r)
involves unobserved part p(` r̄ |`r , R � r).

4 / 42



Challenge of missing data

◦ A challenge in missing data is that F(`) or F(`, r) or p(`, r) are
often unidentifiable.

◦ Namely, even with infinite amount of data, we still cannot
accurately estimate them.

◦ To see this, let 1d � (1, 1, · · · , 1) be the special response pattern
that corresponds to fully observed case.

◦ We denote R̄ � 1d − R as flipping 0 and 1 in R. Then, LR̄ is the
unobserved variables under pattern R.

◦ The challenge of missing data comes from the fact that the PDF

p(` |R � r) � p(` r̄ , `r |R � r) � p(` r̄ |`r , R � r)p(`r |R � r)
involves unobserved part p(` r̄ |`r , R � r).

4 / 42



Challenge of missing data

◦ A challenge in missing data is that F(`) or F(`, r) or p(`, r) are
often unidentifiable.

◦ Namely, even with infinite amount of data, we still cannot
accurately estimate them.

◦ To see this, let 1d � (1, 1, · · · , 1) be the special response pattern
that corresponds to fully observed case.

◦ We denote R̄ � 1d − R as flipping 0 and 1 in R. Then, LR̄ is the
unobserved variables under pattern R.

◦ The challenge of missing data comes from the fact that the PDF

p(` |R � r) � p(` r̄ , `r |R � r) � p(` r̄ |`r , R � r)p(`r |R � r)
involves unobserved part p(` r̄ |`r , R � r).

4 / 42



Response indicator, again

ID

1 15 20 NA 110

2 12 NA NA 100

3 NA 43 35 011

4 11 25 NA 110

5 NA 37 NA 101

6 15 23 32 111

7 NA 27 35 011

L1 L2 L3 R
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Strategy in missing data: selection models

◦ Selection models (SMs): attempt to identify the selection
probability (missing data mechanism)

P(R � r |L)
from making assumptions (known as identifying restrictions).

◦ Motivation: consider the problem of estimating a mean

θ0 � E (θ(L)) � E

(
θ(L)I(R � 1d)

π(L)
)
, π(L) � P(R � 1d |L).

◦ If we can identify π(L) � P(R � 1d |L), we can construct an inverse
probability weighting (IPW) estimator.
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Strategy in missing data: missing at random

◦ Missing completely at random (MCAR):

P(R � r |L) � P(R � r).
◦ Missing at random (MAR; Little and Rubin 2002):

P(R � r |L) � P(R � r |Lr).
◦ Missing not at random (MNAR) is the case where the probability

P(R � r |L)may depends on the unobserved L r̄ .

◦ In this talk, the identifying restrictions we construct are mostly
MNAR.
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Strategy in missing data: pattern mixture models

◦ Pattern mixture models (PMMs): decompose the full-data
density via

p(`, r) � p(` r̄ |`r , R � r)p(`r |R � r)P(R � r).
◦ p(` r̄ |`r , R � r) : the extrapolation density (unidentifiable).

◦ p(`r |R � r)P(R � r) : the observed-data density (identifiable).

◦ We attempt to identify p(` r̄ |`r , R � r) by making assumptions.

◦ Complete-case missing value (CCMV; Little 1993 and Tchetgen et
al. 2016) restriction:

p(` r̄ |`r , R � r) � p(` r̄ |`r , R � 1d).
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Pattern graphs and
identification
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Regular pattern graph

◦ Let R ⊂ {0, 1}d be the response set that P(R ∈ R) � 1.
◦ A pattern graph is a directed graph G with vertex set being R.
◦ Namely, a pattern graph is a graph representing the relationship

between different patterns.

◦ If there is an arrow from s → r, then s is a parent of r and r is a
child of s. We denote PAr as the parents of r.

◦ A node/vertex of a graph is called a source if it has no parents.
◦ For two patterns s , r ∈ {0, 1}d , we write r > s if r j ≥ s j for all j and

there is at least one coordinate j∗ such that r j∗ > s j∗ .
◦ A pattern graph is called a regular pattern graph if
(G1) pattern 1d � (1, 1, · · · , 1) is the only source.
(G2) if s → r, then s > r.
◦ (G2) implies that the resulting graph is a directed acyclic graph

(DAG).
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Examples of regular pattern graphs

111

110 101 011

100 010 001

000

111

110 101 011

100 010 001

000

111

110 011

100 010

000

11 / 42



Examples of regular pattern graphs

11

10 01

00

1111 1110 1100

0111 0110 0100
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Pattern graph and selection odds model

◦ We say that the selection odds model of (L, R) factorizes with
respect to G if

P(R � r |L)
P(R ∈ PAr |L) �

P(R � r |Lr)
P(R ∈ PAr |Lr) ≡ Or(Lr).

◦ Namely, the graph factorization requires that the selection odds
(against parents) is observable.

◦ The selection odds model implies

P(R � r |L) �
∑

s∈PAr

P(R � s |L)Or(Lr).

The chance of observing a particular pattern equals the
summation of all its parents’ probability multiplied by an
observed factor Or(Lr).

◦ Note: pattern graphs are not the conventional graphical model!
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Selection odds model and identifications

Theorem

Suppose that the selection odds model of (L, R) factorizes with respect to a
regular pattern graph G. Let Qr(L) �

P(R�r |L)
P(R�1d |L) and Q1d (L) � 1. Then

π(L) ≡ P(R � 1d |L) is identifiable and is defined via

π(L) � 1∑
r Qr(L) , Qr(L) � Or(Lr)

∑
s∈PAr

Qs(L).

◦ This provides a recursive approach to identify π(L).
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Path identification interpretation -1

◦ A (directed) path Ξ in a graph G is a set of vertices r1 , r2 , r3 , · · · , rk such
that the edge rt → rt+1 exists in G.

◦ We define Πr to be the collection of all paths from 1d to r and let
Π1d � {1d , 1d}. We also define Π � ∪rΠr to be the collection of all paths.

◦ The selection odds model implies an interesting representation of the
selection probability:

Theorem

Suppose that the selection odds model of (L, R) factorizes with respect to a
regular pattern graph G. Then

1 �

∑
Ξ∈Π

π(L)
∏
s∈Ξ

Os(Ls)

P(R � r |L) �
∑
Ξ∈Πr

π(L)
∏
s∈Ξ

Os(Ls)
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Path identification interpretation -2

◦ The two equations

1 �

∑
Ξ∈Π

π(L)
∏
s∈Ξ

Os(Ls)

P(R � r |L) �
∑
Ξ∈Πr

π(L)
∏
s∈Ξ

Os(Ls)

show an interesting interpretation.

◦ First, for Ξ ∈ Π, we can interpret

π(L)
∏
s∈Ξ

Os(Ls) � κ(Ξ|L)

as the probability of selecting Ξ from Π.

◦ Then the second equation implies P(R � r |L) � ∑
Ξ∈Πr κ(Ξ|L), i.e.,

P(R � r |L) is the summation of contributions from all paths ending at r.
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Path identification: an example

11

10 01

00

◦ There are 5 paths and each corresponds to
probability:

κ(11→ 11|L) � π(L)
κ(11→ 10|L) � π(L)O10(L10)
κ(11→ 01|L) � π(L)O01(L01)
κ(11→ 00|L) � π(L)O00(L00)

κ(11→ 10→ 00|L) � π(L)O10(L10)O00(L00)

◦ So the chance of observing each pattern is

P(R � 11|L) � π(L), P(R � 10|L) � π(L)O10(L10),
P(R � 01|L) � π(L)O01(L01)
P(R � 00|L) � π(L)O00(L00) + π(L)O10(L10)O00(L00).
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κ(11→ 10→ 00|L) � π(L)O10(L10)O00(L00)

◦ So the chance of observing each pattern is

P(R � 11|L) � π(L), P(R � 10|L) � π(L)O10(L10),
P(R � 01|L) � π(L)O01(L01)
P(R � 00|L) � π(L)O00(L00) + π(L)O10(L10)O00(L00).
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Pattern graph and pattern mixture model - 1

◦ Recall that PMMs decompose the joint density via

p(`, r) � p(` r̄ |`r , R � r)p(`r |R � r)P(R � r).
◦ p(` r̄ |`r , R � r) : the extrapolation density (unidentifiable).

◦ p(`r |R � r)P(R � r) : the observed-data density (identifiable).

◦ Strategy of PMMs: try to identify the extrapolation density.
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Pattern graph and pattern mixture model - 2

◦ We say that the pattern mixture model of (L, R) factorizes with
respect to G if

p(` r̄ |`r , R � r) � p(` r̄ |`r , R ∈ PAr).
◦ Namely, the extrapolation density is the same as the same

variables’ conditional density in the parent patterns.

Theorem
Suppose that the pattern mixture model of (L, R) factorizes with respect to a
regular pattern graph G. Then the full-data density p(`, r) is (nonparamet-
rically) identifiable.

◦ Namely, we can estimate the joint distribution of (L, R) and the
resulting distribution will agree with the observed data
(nonparametrically identifiable).
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Equivalence of the graph factorizations

Theorem

If G is a regular pattern graph and p(`r , r) > 0 for all `r and r ∈ R, then
the following two statements are equivalent:

◦ the selection odds model of (L, R) factorizes with respect to G.

◦ the pattern mixture model of (L, R) factorizes with respect to G.

◦ The condition, p(`r , r) > 0 for all `r and r ∈ R, can be viewed as a
positivity condition.

◦ Therefore, we can interpret the result using either a selection odds
model perspective or a pattern mixture model perspective.

◦ Note that Robins et al. (2000) had shown that certain selection
odds models and pattern mixture models are equivalent.
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Estimation with pattern graphs
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IPW estimator and graph factorization - 1

◦ With a slight abuse of notation, the observations are denoted as

(L1,R1 , R1), · · · , (Ln ,Rn , Rn).
◦ Recall that the IPW estimator is

1
n

n∑
i�1

θ(Li)I(Ri � 1d)
π(Li) .

◦ Often π(`) is unknown and has to be estimated.

◦ With the selection odds model, we can estimate it by estimating
each odds Or(Lr) � P(R�r |Lr )

P(R∈PAr |Lr ) .
◦ This can be done by applying a generative classifier or a regression

model comparing two classes

R � r v.s. R ∈ PAr

using only the variables Lr .
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IPW estimator and graph factorization - 2

◦ Let Ô(Lr) � O(Lr ; η̂r) be the estimated odds and η̂r ∈ Θr is the
corresponding parameter.

◦ Note: logistic regression leads to O(Lr ; η̂r) � exp(LT
r η̂r).

◦ This implies an estimator π̂(L) � π(L; η̂), where η̂ � (η̂r : r ∈ R).
◦ The IPW estimator is

θ̂IPW �
1
n

n∑
i�1

θ(Li)I(Ri � 1d)
π(Li ; η̂) .

Theorem

Suppose that parametric models are correctly specified. Then under regular-
ity conditions,

√
n(θ̂IPW − θ0) D

→ N(0, σ2IPW).
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Recursive computation of π̂(L)

◦ Here is a simple approach to compute π̂(L) from estimators Ôr(Lr)
(not limited to parametric models).

◦ Recall that

π̂(L) � 1∑
r Q̂r(L)

, Q̂r(L) � Ôr(Lr)
∑

s∈PAr

Q̂s(L)

and Q̂1d (L) � 1.

◦ We first evaluate Ôr(Lr) for each r.

◦ Then we sequentially compute Q̂r(L) for |r | � d − 1, d − 2, · · · , 1
using the recursive relation where |r | � ∑

j r j is the number of
observed patterns.
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Graphical representation of the recursive computation

Q̂r(L) � Ôr(Lr)∑s∈PAr Q̂s(L)

◦ Consider the above graph and the corresponding Or ,Qr .
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Graphical representation of the recursive computation

Q̂r(L) � Ôr(Lr)∑s∈PAr Q̂s(L)

◦ All these quantities are identifiable/computable (Q111(L) � 1).
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Graphical representation of the recursive computation

Q̂r(L) � Ôr(Lr)∑s∈PAr Q̂s(L)

◦ We compute Qr using the parent(s) and the selection odds.
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Graphical representation of the recursive computation

Q̂r(L) � Ôr(Lr)∑s∈PAr Q̂s(L)

◦ Having computed all Qr , we can compute π(L) � 1∑
r Qr

.
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Regression adjustment and PMMs

◦ In addition to the IPW, we can rewrite

θ0 � E(θ(L)) � E(E(θ(L)|LR , R)) � E(m(LR , R)),
where m(LR , R) � E(θ(L)|LR , R) is the regression function under
pattern R.

◦ If we have estimator m̂(LR , R), then we can estimate the parameter
of interest via

θ̂RA �
1
n

n∑
i�1

m̂(Li ,Ri , Ri).

◦ We estimate m(LR , R) by the pattern graph and PMMs
formulation.

◦ You can show that if we use a Monte Carlo approximation to
m̂(Li ,Ri , Ri), this is identical to the multiple imputation method.
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Semi-parametric theory

◦ In our on-going research, we are able to derive the efficient
influence function (EIF) under a pattern graph.

◦ This leads to the following linear function:

Lsemi(L, R) � θ(L)I(R � 1d)
π(L) + EIF(L, R)

�
θ(L)I(R � 1d)

π(L) +
∑
r,1d

∑
Ξ∈Πr

∑
s∈Ξ

EIFΞ,s(L, R),

where

EIFΞ,s(L, R) � µΞ,s(Ls) (I(R � s) − Os(Ls)I(R ∈ PAs))
∏

w∈Ξ,w<s

Ow(Lw)

is a ‘pathwise’ efficient influence function of a pattern s on a
descending path Ξ.

◦ We prove that E(Lsemi(L, R)) � θ and the resulting estimator has a
multiply-robust property.
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Generalized pattern graphs
and equivalence classes
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Generalized pattern graphs

◦ A pattern graph is called a generalized pattern graph if
(G1) pattern 1d � (1, 1, · · · , 1) is the only source.

(DAG) the graph is a DAG.

Theorem
For a graph G that satisfies (G1) and (DAG) and p(`r , r) > 0 for all `r and
r ∈ R, then

1. selection odds model and pattern mixture model factorizations are
equivalent.

2. it leads to an (nonparametrically) identifiable full-data distribution.

◦ The above theorem shows a powerful result–as long as the pattern
graph has unique source 1d and is a DAG, it can be used to
represent an identifying restriction.
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Example: equivalence classes
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00
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G1 G2

11
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00

G3 G4

◦ These are generalized pattern graphs and each of them represent
an identifying restriction.

◦ Interestingly, G1 and G2 represent the same restriction; G3 and G4

represent the same restriction.

◦ Namely, G1 and G2 belong to the same equivalence class and G3

and G4 belong to another class.
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A characterization of equivalence classes - 1

Theorem

Let G be a generalized pattern graph. For a pattern r and another pattern s
such that s , PAr . This graph is equivalent to the graph G′ such that

G′ � G ⊕ es→r 	 {eτ→r : τ ∈ PAr}
if the following conditions holds

1. (blocking) all paths from 1d to r intersects s.

2. (uninformative) for any pattern q that is on a path from s to r, q < r.
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Choice of pattern graph and PISA data - 1

◦ The choice of pattern graph reflects our knowledge on how the
missingness is generated. Here is a possible way to choose a
reasonable graph.

◦ We use the Programme for International Student Assessment
(PISA) data at year 2009 as an example.

◦ It is a survey on students’ ability on math, science, and literature
from different countries.

◦ We focus on Germany and focus on three variables:
◦ MATH: the math score (always observed).
◦ FA: father’s education level (H/L; may be missing).
◦ MA: mother’s education label (H/L; may be missing).

◦ Here is the table of the response pattern (RFA , RMA):
(RFA , RMA) � 11 10 01 00

n � 3282 230 340 1126
Proportion� 65.9% 4.6% 6.8% 22.6%
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Choice of pattern graph and PISA data - 2

◦ Variables FA and MA are collected by questionnaire before a student
took the exam.

◦ Suppose that a participant is asked about father’s education first
and then mother’s education.

◦ Before asking any questions, every individual is expected to
answer all questions so every one start with a response pattern
(1, 1). Then when asked a question, the participant will decide
answer it or not.
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◦ Before asking any questions, every individual is expected to
answer all questions so every one start with a response pattern
(1, 1). Then when asked a question, the participant will decide
answer it or not.

11

11 10 01 00

1 101
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Choice of pattern graph and PISA data - 3

11

11 10 01 00

1 101

◦ There will be 4 possible scenarios that an individual respond:

Answer FA and then answer MA⇒ 11 . 11 . 11

Answer FA and then not answer MA⇒ 11 . 11 . 10

Not answer FA but then answer MA⇒ 11 . 01 . 01

Not answer FA and then not answer MA⇒ 11 . 01 . 00

34 / 42



Choice of pattern graph and PISA data - 4

Answer FA and then answer MA⇒ 11 . 11 . 11

⇒ path = 11→ 11

Answer FA and then not answer MA⇒ 11 . 11 . 10

⇒ path = 11→ 10

Not answer FA but then answer MA⇒ 11 . 01 . 01

⇒ path = 11→ 01

Not answer FA and then not answer MA⇒ 11 . 01 . 00

⇒ path = 11→ 01→ 00.

◦ The notation . denotes the decision of answering one question or
not.

◦ r1 . r2 will becomes an arrow in a DAG when r1 , r2.
◦ The only exception is the scenario that 1d . 1d . · · · . 1d ; in this case

we denote it as 1d → 1d . 35 / 42



Choice of pattern graph and PISA data - 5

11

10 01

00

G1

◦ The above plot is the pattern graph that corresponds to these
scenarios:

Report FA and then report MA⇒ path = 11→ 11

Report FA and then not report MA⇒ path = 11→ 10

Not report FA but then report MA⇒ path = 11→ 01

Not report FA and then not report MA⇒ path = 11→ 01→ 00.
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Choice of pattern graph and PISA data - 6

11

10 01

00

G2

◦ Suppose that there are some individuals who would skip any
questions relating to parent’s education level.

◦ This can be represented by a path 11→ 00.

◦ Then the above graph will be a better description.
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Choice of pattern graph and PISA data - 7

11

10 01

00

G1
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◦ The left two panels show the two possible pattern graphs.

◦ The right panel displays the average score of mathematics,
separated by different parents’ education level.

◦ The estimator is obtained by the IPW with logistic regression;
uncertainty is obtained by the bootstrap.
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Conclusion

39 / 42



Conclusion

◦ Pattern graph provides a theoretical framework for missing data.

◦ Identification, interpretation, estimation, efficiency, computation,
sensitivity analysis all depend on the underlying pattern graph.

◦ It is a new graph-based model for data analysis.

◦ And it opens several new research directions.

◦ Note again: the pattern graph is not a conventional graphical
model.
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Future work

◦ Pattern separation and missing data: if a set of patterns A
separates B and C, what does this mean?

◦ Semi-parametric inference: how to find the underlying efficient
estimator with graph-based augmentation?

◦ Merging patterns to avoid small sample size: what should we do
when some patten only has a few observations.

◦ Deeper understanding on the equivalence class: given a pattern
graph, how to find other patterns in the same class?

◦ Inference with multiple graphs: what should we do if we have
many identifying restrictions?
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Thank You!

More details can be found in https://arxiv.org/abs/2004.00744.
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Example: Conditional MAR

◦ Let L � (Z,Y1 ,Y2 ,Y3) where Z is a covariate and Yt is measured at
different time points. Also, we define Rz � R1 and T � R2 + R3 + R4.

◦ Both Z and Yt are subject to missing and the missingness of Yt is
monotone.

1111 1110 1100

0111 0110 0100

T=3 T=2 T=1

◦ Then the above pattern graph implies the following conditional MAR:

P(T � t |Rz � 1, L) � P(T � t |Rz � 1, Z,Y1 , · · · ,Yt), t � 1, 2, 3

P(T � t |Rz � 0, L) � P(T � t |Rz � 0,Y1 , · · · ,Yt), t � 1, 2, 3

P(Rz � 0|T � 3, L) � P(Rz � 1|T � 3, L) · P(Rz � 0|T � 3,Y1 ,Y2 ,Y3)
P(Rz � 1|T � 3,Y1 ,Y2 ,Y3)
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Assumptions on the IPW estimator

Let η � (ηr : r ∈ R) ∈ Θ be any parameter value, where Θ is the total
parameter space. We assume the following conditions:

(L1) there exists O ,O such that

0 < O ≤ Or(`r ; η) ≤ O < ∞

for all `r ∈ Sr and r ∈ R and η ∈ Θ.

(L2) there exists η∗ � (η∗r : r ∈ R) in the interior of Θ such that
Or(`r ; η∗) � P(R�r |`r )

P(R∈PAr |`r ) and
√

n(η̂r − η
∗

r)→ N(0, σ2r ),
∫

θ2(`)(Or(`r ; η̂) − Or(`r ; η∗))2F(d`) � oP(1),
for some σ2r > 0 for all r.

(L3) for every r, the class { fηr (`r) � Or(`r ; ηr) : ηr ∈ Θr} is a Donsker class.

(L4) for every r, the differentiation of Or(`r ; ηr) with respect to ηr ,
O′r(`r ; ηr) � ∇ηr Or(`r ; ηr), exists and

∫ ‖O′r(`r ; ηr)‖F(d`r) < ∞ for a ball
B(η∗ , τ0) for some τ0 > 0. 45 / 42



Assumptions on the regression adjustments

The regression adjustment estimator has asymptotic normality under
the following conditions:

(R1) There exists λ∗r ∈ Λr such that the true conditional density
p(`r |R � r) � p(`r |R � r; λ∗r) for every r.

(R2) For every r, the class

{ fλ(`r) � m(`r , r; λ) : λ ∈ Λ}
is a Donsker class.

(R3) For every r, qr(λ) � E(m(Lr , r; λ)I(R � r)) is bounded
twice-differentiable and∫

(m(`r , r; λ̂) − m(`r , r; λ))2F(d`r , r) � oP(1)
√

n(λ̂r − λ
∗
r)→ N(0, σ2r ).
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Regression adjustment and PMMs - 1

◦ In addition to the IPW, we can rewrite

θ0 � E(θ(L)) � E(E(θ(L)|LR , R)) � E(m(LR , R)),
where m(LR , R) � E(θ(L)|LR , R) is the regression function under
pattern R.

◦ If we have estimator m̂(LR , R), then we can estimate the parameter
of interest via

θ̂RA �
1
n

n∑
i�1

m̂(Li ,Ri , Ri).
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Regression adjustment and PMMs - 2

◦ The regression function

m(LR , R) � E(θ(L)|LR , R) �
∫

θ(`R̄ , LR)p(`R̄ |LR , R)d`R̄

is essentially the integral of θ(L) with respect to the extrapolation
density.

◦ With a PMM, we can identify this regression function using an
estimator p̂(`R̄ |LR , R).

◦ This leads to

m̂(LR , R) �
∫

θ(`R̄ , LR)p̂(`R̄ |LR , R)d`R̄ .
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Monte Carlo approximation and multiple imputation

◦ The integral

m̂(LR , R) �
∫

θ(`R̄ , LR)p̂(`R̄ |LR , R)d`R̄

is hard to compute in general.

◦ But we can numerically approximate it with Monte Carlo method.
◦ We generate

L∗
R̄,1 , · · · , L

∗

R̄,N
∼ p̂(`R̄ |LR , R).

◦ Then use the average

1
N

N∑
k�1

θ(L∗
R̄,k
, LR) ≈ m̂(LR , R).

◦ You can show that this is identical to the multiple imputation
method!
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Sampling from PMMs

◦ The PMM factorization implies

p̂(` r̄ |Lr , R � r) � p̂(` r̄ |Lr , R ∈ PAr)
�

∑
s∈PAr

P(R � s |R ∈ PAr , Lr) · p̂(` r̄ |Lr , R � s).

◦ Moreover,

p̂(` r̄ |Lr , R � s) � p̂(` s̄ |`s−r , Lr , R � s)p̂(`s−r |Lr , R � s).
◦ It implies that we first choose a parent pattern s ∈ PAr with a

probability of P(R � s |R ∈ PAr , Lr).
◦ Then we fill-in variable `s−r by sampling from p̂(`s−r |Lr , R � s).
◦ And treat this observation as the one with pattern R � s.
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Illustration: sampling from PMMs

◦ Suppose we have an individual without
any observed variables.

◦ It has two parents: 100 and 001 (red).

◦ We will randomly choose one parent as
our next pattern.
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Illustration: sampling from PMMs

◦ Suppose that pattern 100 is chosen.

◦ We will generate variable L100 from
p̂(`100 |R � 100).

◦ Then we will treat this as an observation
with pattern 100.

◦ Now we continue to randomly choose one
pattern from the two parents (red).
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Illustration: sampling from PMMs

◦ Suppose that pattern 101 is chosen.

◦ We will generate variable L001 from
p̂(`001 |L100 , R � 100) because it is still
missing.

◦ Then we will treat this as an observation
with pattern 101.

◦ Now we continue to randomly choose one
pattern from the parent set.
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Illustration: sampling from PMMs

◦ Because there is only one parent 111, we
will alway move to this node.

◦ We generate variable L010 from
p̂(`010 |L101 , R � 111).

◦ Now the pattern is 111 so we have finished
the sampling/imputation.
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Illustration: sampling from PMMs

◦ Note that at the pattern 100, it is possible
to directly move to 111.
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Illustration: sampling from PMMs

◦ In this case, we will generate L011 from
p̂(`011 |L100 , R � 111).

◦ And the sampling/imputation process is
done.
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Sensitivity analysis
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Sensitivity analysis - 1

◦ Sensitivity analysis attempts to perturb our identifying restrictions
a bit and study how the final estimator change with respect to the
perturbation.

◦ A common approach in sensitivity analysis is the exponential
tilting (Kim and Yu 2011).

◦ For SMs, this can be written as

P(R � r |L)
P(R ∈ PAr |L) �

P(R � r |Lr)
P(R ∈ PAr |Lr) exp(L

T
r̄ δ r̄),

where δ r̄ is a given vector.
◦ When δ r̄ � 0, we recover the original restriction.
◦ For PMMs, we can use

p(` r̄ |`r , R � r) � p(` r̄ |`r , R ∈ PAr) exp(LT
r̄ δ r̄).
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Sensitivity analysis - 2

◦ Here is an interesting result–perturbing the selection odds and
perturbing the pattern mixture models are equivalent.

Theorem

Let r be a response pattern and g(` r̄) be any function of the unobserved
entries. Then the assumption

P(R � r |`)
P(R ∈ PAr |`) �

P(R � r |`r)
P(R ∈ PAr |`r) · g(` r̄)

is equivalent to the assumption

p(` r̄ |`r , R � r) � p(` r̄ |`r , R ∈ PAr) · g(` r̄).
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Sensitivity analysis: perturbing graph - 1

◦ We can also perform sensitivity analysis via perturbing the graph.

◦ Before doing so, we first note that the number of identifying
restrictions generated by regular pattern graphs is huge.

Proposition

If all the study variable L ∈ Rd are subjected to missing, then there are

M � Md �

d−1∏
k�0

(22d−k
−1
− 1)(d

k)

distinct graphs satisfying conditions (G1-2) .

◦ Here are the first few values of M � Md :

M1 � 1, M2 � 7, M3 � 43561, M4 > 1018.
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Augmented IPW - 1

◦ It is known that we can improve the efficiency of the IPW via
augmentation (Tsiatis 2007).

◦ A general form of augmentation is

θ(L)I(R � 1d)
π(L) +Ψ(LR , R),

where E(Ψ(LR , R)) � 0 and E(Ψ2(LR , R)) < ∞.
◦ Because we are modeling the selection odds to be observable,

consider another augmentation:

θ(L)I(R � 1d)
π(L) +

∑
r,1d

(I(R � r) − Or(Lr)I(R ∈ PAr))φr(Lr),

where E(φ2
r (Lr)) < ∞ for each r.
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Augmented IPW - 2

◦ All possible augmentations:

G�

{
θ(L)I(R � 1d)

π(L) +Ψ(LR , R) : E(Ψ(LR , R)) � 0,E(Ψ2(LR , R)) < ∞
}
.

◦ Augmentations using selection odds:

F�

{
θ(L)I(R � 1d)

π(L) +
∑
r,1d

(I(R � r) − Or(Lr)I(R ∈ PAr))φr(Lr) :

E(φ2
r (Lr)) < ∞

}
.

Theorem

Suppose that (L, R) factorizes with respect to a regular pattern graph and
and p(`r , r) > 0 for all `r and r ∈ R. Then G� F.
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Sensitivity analysis: perturbing graph - 2

◦ Because the regular pattern graphs span a large class of
identifying restriction, we can perturb the graph to perform
sensitivity analysis.

◦ Define

∆1G � {G′ : |G′ − G| � 1, condition (G1-2) holds for G′},
where |G′ − G| � 1 means that the two graphs only differ by one
edge (arrow).

◦ The class ∆1G can be decomposed into

∆1G � ∆+1G ∪ ∆−1G,

where

∆+1G � {G′ : |G′ − G| � 1,G′ is a regular pattern graph,G ⊂ G′},
∆−1G � {G′ : |G′ − G| � 1,G′ is a regular pattern graph,G′ ⊂ G}.
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Sensitivity analysis: perturbing graph - 3

Proposition

Let s , r be vertices of G and es→r be the edge/arrow from s to r. We define
G ⊕ es→r to be the graph where edge es→r is added and G 	 es→r to be the
graph where edge es→r is moved. Then

∆+1G � {G ⊕ es→r : s > r, s < PAr},
∆−1G � {G 	 es→r : s ∈ PAr , |PAr | > 1}.

◦ This proposition provides a simple way to characterize the two
perturbed classes of graphs.

59 / 42



Exponential tilting on the PISA data
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◦ We use the same sensitivity parameter for all pattern and all
values, i.e., every element of δ r̄ is the same.

◦ Note that because only FA and MA are subject to missing, the
sensitivity parameter only applies to these two variables.

◦ In both panels we see that the group (L, L) is unaffected by the
sensitivity parameter. This is because when both FA and MA are L
(the binary representation of L is 0 and H is 1).
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