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Solution manifolds

o A solution manifold is a manifold formed by the solutions of a
system of equations (Rheinboldt 1988).
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Solution manifolds

A solution manifold is a manifold formed by the solutions of a
system of equations (Rheinboldt 1988).

Let W : R? — R® be a system of s equations with d augments.

The solution manifold generated by W is
M ={x:W¥(x)=0}.

Namely, the solution manifold is the solution set of a system of
functions.

We called W the generator (function) of M.

Although the construct of a solution manifold seems to be
abstract, it appears in many statistical problems.
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Example: constrained likelihood

o LetYy,---,Y, ~N(u, 02), where u and 02 are unknown
parameters.
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LetYy,---,Y, ~ N(u, 02), where u and 02 are unknown
parameters.

(e]

Suppose that we want to test the hypothesis

Hy:P(-5<Y; <2)=0.5.

@]

There is one constraint (s = 1) and we have two parameters (d = 2).

[¢]

So the parameter space under Hp forms a solution manifold.
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Example: constrained likelihood

(¢]

LetYy,---,Y, ~ N(u, 02), where u and 02 are unknown
parameters.

(e]

Suppose that we want to test the hypothesis

Hy:P(-5<Y; <2)=0.5.

@]

There is one constraint (s = 1) and we have two parameters (d = 2).

[¢]

So the parameter space under Hp forms a solution manifold.

(e]

In this case,

W(u,0%) = \/2_2 - 252 dy —0.5.
uty
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Example: mixture models with moment constraints

o LetYy, -+ ,Y, € RbellD random variables from an unknown
distribution.

o We fit a 2-Gaussian mixture model to the data; namely, the PDF
can be written as

p(y) = po(y; p1, 03) + (1 = p)Pp(y; a2, 03),

where ¢(y; 1, 0?) is the PDF of a normal distribution with mean u

variance 2.
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Example: mixture models with moment constraints

o LetYy, -+ ,Y, € RbellD random variables from an unknown
distribution.

o We fit a 2-Gaussian mixture model to the data; namely, the PDF
can be written as

p(y) = po(y; p1, 03) + (1 = p)Pp(y; a2, 03),

where ¢(y; 1, 0?) is the PDF of a normal distribution with mean u
variance ¢2.
o There are a total of 5 parameters (u1, 2, 07, 03, p).

o Consider matching the first two moments to the data:

1 n
g;Yi =pur+ (1 - puz,

1 n
~ 2 YE =i+ o)+ (L= p)(u5 + 03)
i=1

3/21



Example: geometric features

o Consider a nonparametric density estimation problem where
X1,+-+, Xy ~ p, where p is the underlying unknown PDF.

o Many geometric features of p are solution manifolds.
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Example: geometric features

o Consider a nonparametric density estimation problem where
X1,+-+, Xy ~ p, where p is the underlying unknown PDF.

o Many geometric features of p are solution manifolds.

o The A-level set (Polonik 1995, Walther 1997):

{x:p(x)— A =0}

o The critical points:
{x : Vp(x) = 0}.

o The k-ridges (Genovese et al. 2014):
{x: Vi(x)Vp(x) =0, Ay < 0},

where Vi (x) is the matrix of eigenvectors of the Hessian matrix
corresponding to the (d — k) smallest eigenvalues.
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Solution manifolds

o In this talk, we will discuss both geometric and computational
properties of solution manifolds.

o We will propose a gradient descent algorithm to compute the
manifold.
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Solution manifolds

o In this talk, we will discuss both geometric and computational
properties of solution manifolds.
o We will propose a gradient descent algorithm to compute the
manifold.
o Geometric properties:
o Smoothness: how smooth the manifold is?
o Stability: if we perturb the generator a bit, how much the manifold
can change?
o Computational properties:
o Gradient flow convergence: when will the gradient flow converges
to the manifold?
o Local manifold properties: will the basin of attraction of a point on
the manifold forms another manifold?
o Gradient descent algorithm convergence: will the gradient
descent converges? how fast it converges?
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Assumptions

o Let the gradient and Hessian be
Guy(x) = VW(x) € R™4, Hy(x) = VVW(x) € RSx4,
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Assumptions

(e]

Let the gradient and Hessian be
Guy(x) = VW(x) € R™4, Hy(x) = VVW(x) € RSx4,
Define

(@]

W13, = max {Sup 1% ()l lmax, SUp [|Gw(x)|lmax, sup ”H\I—’(x)”max} :
X X X

[¢]

Foraset A, define A®r={x:d(x,A) <r}.
Consider the following assumptions:

(F1) W is three-times bounded differentiable.

(F2) There exists Ag, 0g, co > 0 such that
1. Amin(Gw(x)Gy(x)T) = A2 for all x € M & 6.
2. ||W(x)|lmax > cg for all x ¢ M & O.

@]
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Smoothness of a solution manifold

Theorem (Smoothness theorem)

Assume (F1-2). Then

. Jo60 Ao
reach(M) > min { —, -
(M) {2 ||\If||2,w}

o Reach (Federer 1959): the maximal distance that every point
within this distance to M has a unique projection on M.

o This theorem links the smoothness of the generator W into the
smoothness of the solution manifold.
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Stability of a solution manifold

o Let Haus(A, B) = max{sup, ., d(x, B),sup, .5 d(x, A)} be the
Hausdorff distance between A and B.

o Let W : R? - R® be another generator function with at least
bounded twice differentiable and M be its solution manifold.
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Stability of a solution manifold

o Let Haus(A, B) = max{sup, ., d(x, B),sup, .5 d(x, A)} be the
Hausdorff distance between A and B.

o Let W : R? - R® be another generator function with at least
bounded twice differentiable and M be its solution manifold.

Theorem (Stability theorem)

Assume (F1-2) of V. When ||V — \Pffllg o Is sufficiently small,
o Haus(M, M) = O (sup, [|¥(x) = P(x)]max).

o reach(M)zmm{gﬂ,M }+o(||\y Bl )-
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Consistency of a manifold estimator

o The stability theorem implies the consistency of a manifold
estimator.
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Consistency of a manifold estimator

o The stability theorem implies the consistency of a manifold
estimator.

o Consider the 2-Gaussian mixture examples where the population
solution manifold M is formed by

E(Y1) = pu1 + (1= p)ua, E(YT) = p(uf +07) + (1 = p)(u3 + 03)

o The estimator of the solution manifold Mn will be the one based
on empirical moments:

1 n
ZZYi =pur+ 1 - puz,

i=1

1 n
g;ﬁ = p(4s} + 1) + (1= p)(453 + 03)

o The stability theorem shows that Haus(]\71n, M) = Op (\/% ) .
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Computing a solution manifold

o The above results characterize geometric properties of a solution
manifold.

o But in practice, how do we numerically find the manifold?
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Computing a solution manifold

o The above results characterize geometric properties of a solution
manifold.

o But in practice, how do we numerically find the manifold?

o Here we propose a simple gradient descent algorithm to find the
manifold (Boyd and Vandenberghe 2004).

o Let
f(x) =) W(x) = [P € R.

o One may notice that
M={x:W¥(x)=0}={x: f(x)=0}.

o So we will find M by minimizing f.
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A gradient descent algorithm

1. Randomly choose an initial point xg ~ Q, where Q is a
distribution over the region of interest K.

2. Iterates
X1 < x¢ = YV f(xe)
until convergence. Let x., be the convergent point.

3. If W(xo) = 0 (or sufficiently small), we keep xo; otherwise, discard
Xoo-

4. Repeat the above procedure until we obtain enough points for
approximating M.
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Gradient descent: illustration
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Gradient flow

o To study how the gradient descent algorithm works, we first
analyze the (continuous-time) gradient flow 7 : R — R4

n(0)=x, () = ~Vf(ra(b)).
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Gradient flow

o To study how the gradient descent algorithm works, we first
analyze the (continuous-time) gradient flow 7 : R — R4

n(0)=x, () = ~Vf(ra(b)).

o Tiyx(00) = lim;_,o 714 (1) is called the destination of ,.

o Also, let v,(t) = % be the directional vector at time ¢ and
Vx(00) = limy 0 Uy (£).
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Consistency of the gradient flow

Theorem (Gradient flow convergence)

Assume (F1-2) and let

; 2" BT, VT |
Then

o Convergence radius. If x € M @ 0, Ttx(c0) € M.
o Terminal flow orientation. If 7,(c0) € M, then vy(c0) L M at

T (00).

o Namely, if the initial point is within 6. distance to M, the gradient
flow converges to M.
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Local stable manifold theorem

o For a point z € M, its basin of attraction is
A(z) = {x : tx(c0) = z}.

o Namely, A(z) is the collection of points converging to z by the
gradient flow.
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Local stable manifold theorem

o For a point z € M, its basin of attraction is
A(z) = {x : tx(c0) = z}.

o Namely, A(z) is the collection of points converging to z by the
gradient flow.

o Interestingly, A(z) forms another manifold, known as the local
stable manifold of a gradient flow (Perko 2001).

Theorem (Local stable manifold theorem)

Assume (F1-2). Then A(z) forms an s-dimensional manifold for each z € M.
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Implication on manifold data

o Here is an interesting implication.

o If we initialize from a regular PDF g over R?, the convergent
points forms a distribution Q over M such that Q has an
(d — s)-dimensional Hausdorff density (Preiss 1987).
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Implication on manifold data

o Here is an interesting implication.

o If we initialize from a regular PDF g over R?, the convergent
points forms a distribution Q over M such that Q has an
(d — s)-dimensional Hausdorff density (Preiss 1987).

o Specifically, suppose we have initial points x1,--- ,x, ~ g and let
z1,+ -+ ,zn be the corresponding points on the manifold M by the
gradient flow.

o Then zj,--- ,z, can be viewed as IID from a density on M.

o This becomes a scenario that IID observations on a manifold is a
reasonable model.
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Theory of gradient descent algorithm

o Inreality, we use a discrete time gradient descent algorithm;
namely, we use the discrete update:

X1 = Xp — YV f(x4)

and y > 0 is the step size.
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Theory of gradient descent algorithm

o Inreality, we use a discrete time gradient descent algorithm;
namely, we use the discrete update:

X1 = xp — YV f(xe)
and y > 0 is the step size.
o When y = 0, the algorithm behaves just like the gradient flow.

o We proved that when y is sufficiently small and x is properly
initialized,

AE K
f(xx) < f(xo0) - (1 - VW)
2,00

d(xx, M) < d(xo, M) - (1 - yA2)"2.

foreachK=1,2,3,---
o An interesting fact: f is a non-convex function so we are using

gradient descent on a non-convex function. 17/ 21



A 2D manifold example

o3
03

cos
o w0 20 wo a0 S0 o

o This is the density level sets in a 3D data (GvHD data in R); the
level sets form 2-dimensional manifolds.

o The three panels are three different view of the level sets.
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Discussion: assumptions

o One may notice that all five theorems rely on the same set of
assumptions:
(F1) W is three-times bounded differentiable.
(F2) There exists Ag, 0¢, co > 0 such that
1. Amin(Gyw(¥)Gy(x)T) > A¢ forall x € M @ §.
2. |[W(x)|lmax > co for all x ¢ M & Og.
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Discussion: assumptions

o One may notice that all five theorems rely on the same set of
assumptions:

(F1) W is three-times bounded differentiable.
(F2) There exists Ag, 0¢, co > 0 such that

1. Amin(Gw(x)Gw(x)T) > A¢ forall x € M & 6g.
2. ||W(x)|lmax > cg for all x ¢ M & O.
o This shows that the smoothness, stability, gradient flow, and
gradient descent algorithm are all implicitly related.

o In fact, this is a generic result that other M-estimator also share but
somehow we did not emphasize this in statistics.

o Note: for some theorems, these two assumptions are often
stronger than what we actually need but unifying them give us
some new insights.
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Discussion: connections to other fields

o Econometrics. The generalized method of moments (Hansen
1982) is tightly connected to solution manifolds. In particular, they
are often using the minimizer of a function f as a numerical
method for finding a solution.
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Discussion: connections to other fields

o Econometrics. The generalized method of moments (Hansen
1982) is tightly connected to solution manifolds. In particular, they
are often using the minimizer of a function f as a numerical
method for finding a solution.

o Dynamical system. The local stable manifold theorem is from
dynamical system literature (Perko 2001). Here we present a new
use of this theorem on data analysis.

o Computational geometry. Numerically computing a manifold is a
classical problem in computational geometry (Dey 2006). Here we
present a set of new procedures for this purposes and analyze the
underlying algorithmic properties.

o Optimization. We show that for a particular family of non-convex
function f, the gradient descent may still converge quickly. This
may reveal a new class of non-convex problem that is easy to solve.
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Thank You!

More details can be found in https://arxiv.org/abs/2002.05297.
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Reach of a manifold

o By the implicit function theorem, if the rank of the matrix VW(x) is
s, the same as the number of equations, then M is an (d — s)
dimensional manifold.

o But this does not tell us anything about the smoothness of M

23 /21



Reach of a manifold

o By the implicit function theorem, if the rank of the matrix VW(x) is
s, the same as the number of equations, then M is an (d — s)
dimensional manifold.

o But this does not tell us anything about the smoothness of M

o To quantify the smoothness, we use the concept of reach:

reach(M) = sup{r : x has a unique projection onto M for all d(x, M) < r},

where d(x, M) = inf epm [|x — y/| is the projection distance from x
to M.

23 /21



Reach of a manifold

o By the implicit function theorem, if the rank of the matrix VW(x) is
s, the same as the number of equations, then M is an (d — s)
dimensional manifold.

o But this does not tell us anything about the smoothness of M

o To quantify the smoothness, we use the concept of reach:

reach(M) = sup{r : x has a unique projection onto M for all d(x, M) < r},

where d(x, M) = inf epm [|x — y/| is the projection distance from x
to M.

o A simple way to think of a reach is via its ball-rolling property.
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Example: reach

[A'BRA'S

o If r is less than the reach, then a ball with radius r can roll freely

around the manifold (left panel).

o If r is larger than the reach, then a ball with radius r cannot roll
freely around the manifold (right panel).
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Theory of gradient descent algorithm - 1

Theorem (Convergence of gradient decent algorithm)

Assume (F1-2) and let O, be the same as the theorem of gradient flow. Suppose
that the step size satisfies

Yy < min ! : ”2’00 0
Ill; .~ 442 7

and d(xo, M) < 6. Then foreach T =1,2,3,---

As o\
flxr) < f(xo)- (1 AT )
2,00

d(xr, M) < d(xo, M) - (1 - y22)".
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Theory of gradient descent algorithm - 2

A4\
f(xT) < f(x0) : (1 =Y ||\II||(1 )
2,00

d(xr, M) < d(xo, M) - (1 - yA2)'

o An equivalent statement is that the algorithm takes O(log(1/€)) to
converges to e-error to the minimum.
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Theory of gradient descent algorithm - 2

A4\
f(xT) < f(x0) : (1 4 ||\II||(1 )
2,00

d(xr, M) < d(xo, M) - (1 - yA2)'

o An equivalent statement is that the algorithm takes O(log(1/€)) to
converges to e-error to the minimum.

o The above convergence is also known as the linear convergence, a
common result in convex optimization.

o An interesting fact: f is a non-convex function so we are using
gradient descent on a non-convex function. But we still obtain a

similar result to a convex problem.
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Extension 1: manifold-constraint maximization

o In likelihood inference, finding the manifold is often not the final
goal.

o What we need is the MLE on the manifold.

o Here we propose an alternating algorithm consisting of two major
steps: ascent of likelihood and descent to the manifold.
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Manifold-constraint maximizing algorithm

1. Randomly choose an initial point 9(0) o c .
2. Form=1,2,---,do step 3-6:
3. Ascent of likelihood. Update

0" =0l +ave ol IXy, -, Xa),

where a > 0 is the step size of the gradient ascent over likelihood
function and €(0|X;, - - - , X,) is the log-likelihood function.
4. Descent to manifold. Foreacht =0,1,2,--- iterates

0" — 0" — Vo)

until convergence. Let 6" be the convergent point.

5. If W( GC(,T )) = 0 (or sufficiently small), we keep GC(,T ) ; otherwise,
discard 6" and return to step 1.

6. If V{’(Gg")|X1, ---, X;;) belongs to the row space of V‘I’(Qg’f)), we

stop and output o,
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Illustration: manifold-constraint maximization

g
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I | | |
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Extension 2: approximating a posterior on a manifold

o Suppose that we place a prior distribution 71(0) over a solution
manifold M, i.e.,
n(0)=0if 6 ¢ M.
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o And then we observe data Y7, --- , Y, so we will update the prior
to be the posterior distribution 77(0|Y1, -+, Yy).
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Extension 2: approximating a posterior on a manifold

o Suppose that we place a prior distribution 71(0) over a solution
manifold M, i.e.,
n(0)=0if 6 ¢ M.
o And then we observe data Y7, --- , Y, so we will update the prior
to be the posterior distribution 77(0|Y1, -+, Yy).

o One may be wondering how do we represent the posterior
distribution in this case.

o Here we propose a simple approach to approximate the posterior
distribution.
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Approximated manifold posterior algorithm

1. Generate many points Z1,--- ,Zny € M by the gradient descent.

2. Estimate a density score of Z; using

N
_ 1 1Zi = Zjl
per_ﬁ;K( h ’

where I > 0 is a tuning parameter and K is a smooth function
such as a Gaussian.

3. Compute the posterior density score of Z; as

_ 1 _ -
WiN==—" TN, TiN=T1(Z;)- l_[ p(X;lZ),
Pi,N j=1

4. Return: Weighted point clouds (Z1, @i N), - , (ZN, ONN).
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lllustration: approximated manifold posterior
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