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Solution manifolds

◦ A solution manifold is a manifold formed by the solutions of a
system of equations (Rheinboldt 1988).

◦ LetΨ : Rd
→ Rs be a system of s equations with d augments.

◦ The solution manifold generated byΨ is

M � {x : Ψ(x) � 0}.
◦ Namely, the solution manifold is the solution set of a system of

functions.

◦ We calledΨ the generator (function) of M.

◦ Although the construct of a solution manifold seems to be
abstract, it appears in many statistical problems.
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Example: constrained likelihood

◦ Let Y1 , · · · ,Yn ∼ N(µ, σ2), where µ and σ2 are unknown
parameters.

◦ Suppose that we want to test the hypothesis

H0 : P(−5 < Y1 < 2) � 0.5.

◦ There is one constraint (s � 1) and we have two parameters (d � 2).

◦ So the parameter space under H0 forms a solution manifold.

◦ In this case,

Ψ(µ, σ2) � 1
√

2πσ2

∫ 2

−5
e−

(y−µ)2
2σ2 dy − 0.5.
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Example: mixture models with moment constraints

◦ Let Y1 , · · · ,Yn ∈ R be IID random variables from an unknown
distribution.

◦ We fit a 2-Gaussian mixture model to the data; namely, the PDF
can be written as

p(y) � ρφ(y; µ1 , σ
2
2) + (1 − ρ)φ(y; µ2 , σ

2
2),

where φ(y; µ, σ2) is the PDF of a normal distribution with mean µ
variance σ2.

◦ There are a total of 5 parameters (µ1 , µ2 , σ2
1 , σ

2
2 , ρ).

◦ Consider matching the first two moments to the data:

1
n

n∑
i�1

Yi � ρµ1 + (1 − ρ)µ2 ,

1
n

n∑
i�1

Y2
i � ρ(µ2

1 + σ2
1) + (1 − ρ)(µ2

2 + σ2
2)
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Example: geometric features

◦ Consider a nonparametric density estimation problem where
X1 , · · · ,Xn ∼ p, where p is the underlying unknown PDF.

◦ Many geometric features of p are solution manifolds.

◦ The λ-level set (Polonik 1995, Walther 1997):

{x : p(x) − λ � 0}.
◦ The critical points:

{x : ∇p(x) � 0}.
◦ The k-ridges (Genovese et al. 2014):

{x : Vk(x)∇p(x) � 0, λd−k < 0},
where Vk(x) is the matrix of eigenvectors of the Hessian matrix
corresponding to the (d − k) smallest eigenvalues.
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Solution manifolds

◦ In this talk, we will discuss both geometric and computational
properties of solution manifolds.

◦ We will propose a gradient descent algorithm to compute the
manifold.

◦ Geometric properties:

◦ Smoothness: how smooth the manifold is?
◦ Stability: if we perturb the generator a bit, how much the manifold

can change?

◦ Computational properties:

◦ Gradient flow convergence: when will the gradient flow converges
to the manifold?

◦ Local manifold properties: will the basin of attraction of a point on
the manifold forms another manifold?

◦ Gradient descent algorithm convergence: will the gradient
descent converges? how fast it converges?
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Assumptions

◦ Let the gradient and Hessian be
GΨ(x) � ∇Ψ(x) ∈ Rs×d , HΨ(x) � ∇∇Ψ(x) ∈ Rs×d×d .

◦ Define

‖Ψ‖∗2,∞ � max
{

sup
x

‖Ψ(x)‖max , sup
x

‖GΨ(x)‖max , sup
x

‖HΨ(x)‖max

}
.

◦ For a set A, define A ⊕ r � {x : d(x ,A) ≤ r}.
◦ Consider the following assumptions:

(F1) Ψ is three-times bounded differentiable.
(F2) There exists λ0 , δ0 , c0 > 0 such that

1. λmin(GΨ(x)GΨ(x)T ) ≥ λ2
0 for all x ∈ M ⊕ δ0.

2. ‖Ψ(x)‖max > c0 for all x < M ⊕ δ0.
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Smoothness of a solution manifold

Theorem (Smoothness theorem)

Assume (F1-2). Then

reach(M) ≥ min



δ0
2
,

λ0
‖Ψ‖∗2,∞




◦ Reach (Federer 1959): the maximal distance that every point
within this distance to M has a unique projection on M.

◦ This theorem links the smoothness of the generatorΨ into the
smoothness of the solution manifold.
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Stability of a solution manifold

◦ Let Haus(A, B) � max{supx∈A d(x , B), supx∈B d(x ,A)} be the
Hausdorff distance between A and B.

◦ Let Ψ̃ : Rd
→ Rs be another generator function with at least

bounded twice differentiable and M̃ be its solution manifold.

Theorem (Stability theorem)

Assume (F1-2) ofΨ. When ‖Ψ − Ψ̃‖∗2,∞ is sufficiently small,

◦ Haus(M, M̃) � O
(
supx ‖Ψ(x) − Ψ̃(x)‖max

)
.

◦ reach(M̃) ≥ min
{
δ0
2 ,

λ0
‖Ψ‖∗2,∞

}
+ O

(‖Ψ − Ψ̃‖∗2,∞)
.
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Consistency of a manifold estimator

◦ The stability theorem implies the consistency of a manifold
estimator.

◦ Consider the 2-Gaussian mixture examples where the population
solution manifold M is formed by

E(Y1) � ρµ1 + (1 − ρ)µ2 , E(Y2
1 ) � ρ(µ2

1 + σ2
1) + (1 − ρ)(µ2

2 + σ2
2)

◦ The estimator of the solution manifold M̂n will be the one based
on empirical moments:

1
n

n∑
i�1

Yi � ρµ1 + (1 − ρ)µ2 ,

1
n

n∑
i�1

Y2
i � ρ(µ2

1 + σ2
1) + (1 − ρ)(µ2

2 + σ2
2)

◦ The stability theorem shows that Haus(M̂n ,M) � OP

(√
1
n

)
.
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Computing a solution manifold

◦ The above results characterize geometric properties of a solution
manifold.

◦ But in practice, how do we numerically find the manifold?

◦ Here we propose a simple gradient descent algorithm to find the
manifold (Boyd and Vandenberghe 2004).

◦ Let
f (x) � Ψ(x)TΨ(x) � ‖Ψ(x)‖2

∈ R.

◦ One may notice that

M � {x : Ψ(x) � 0} � {x : f (x) � 0}.
◦ So we will find M by minimizing f .
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A gradient descent algorithm

1. Randomly choose an initial point x0 ∼ Q, where Q is a
distribution over the region of interest K.

2. Iterates
xt+1 ← xt − γ∇ f (xt)

until convergence. Let x∞ be the convergent point.

3. IfΨ(x∞) � 0 (or sufficiently small), we keep x∞; otherwise, discard
x∞.

4. Repeat the above procedure until we obtain enough points for
approximating M.
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Gradient descent: illustration
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Gradient descent: illustration
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Gradient descent: illustration
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Gradient descent: illustration
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Gradient flow

◦ To study how the gradient descent algorithm works, we first
analyze the (continuous-time) gradient flow π : R→ Rd

πx(0) � x , π′x(t) � −∇ f (πx(t)).

◦ πx(∞) � limt→∞ πx(t) is called the destination of πx .

◦ Also, let vx(t) � π′x(t)
‖π′x(t)‖ be the directional vector at time t and

vx(∞) � limt→∞ vx(t).
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Consistency of the gradient flow

Theorem (Gradient flow convergence)

Assume (F1-2) and let

δc � min



δ0
2
,

1
8d

λ2
0

‖Ψ‖∗2,∞‖Ψ‖∗3,∞


.

Then

◦ Convergence radius. If x ∈ M ⊕ δc , πx(∞) ∈ M.

◦ Terminal flow orientation. If πx(∞) ∈ M, then vx(∞) ⊥ M at
πx(∞).

◦ Namely, if the initial point is within δc distance to M, the gradient
flow converges to M.

14 / 21



Local stable manifold theorem

◦ For a point z ∈ M, its basin of attraction is

A(z) � {x : πx(∞) � z}.
◦ Namely, A(z) is the collection of points converging to z by the

gradient flow.

◦ Interestingly, A(z) forms another manifold, known as the local
stable manifold of a gradient flow (Perko 2001).

Theorem (Local stable manifold theorem)
Assume (F1-2). Then A(z) forms an s-dimensional manifold for each z ∈ M.
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Implication on manifold data

◦ Here is an interesting implication.

◦ If we initialize from a regular PDF q over Rd , the convergent
points forms a distribution Qπ over M such that Qπ has an
(d − s)-dimensional Hausdorff density (Preiss 1987).

◦ Specifically, suppose we have initial points x1 , · · · , xn ∼ q and let
z1 , · · · , zn be the corresponding points on the manifold M by the
gradient flow.

◦ Then z1 , · · · , zn can be viewed as IID from a density on M.

◦ This becomes a scenario that IID observations on a manifold is a
reasonable model.

16 / 21



Implication on manifold data

◦ Here is an interesting implication.

◦ If we initialize from a regular PDF q over Rd , the convergent
points forms a distribution Qπ over M such that Qπ has an
(d − s)-dimensional Hausdorff density (Preiss 1987).

◦ Specifically, suppose we have initial points x1 , · · · , xn ∼ q and let
z1 , · · · , zn be the corresponding points on the manifold M by the
gradient flow.

◦ Then z1 , · · · , zn can be viewed as IID from a density on M.

◦ This becomes a scenario that IID observations on a manifold is a
reasonable model.

16 / 21



Implication on manifold data

◦ Here is an interesting implication.

◦ If we initialize from a regular PDF q over Rd , the convergent
points forms a distribution Qπ over M such that Qπ has an
(d − s)-dimensional Hausdorff density (Preiss 1987).

◦ Specifically, suppose we have initial points x1 , · · · , xn ∼ q and let
z1 , · · · , zn be the corresponding points on the manifold M by the
gradient flow.

◦ Then z1 , · · · , zn can be viewed as IID from a density on M.

◦ This becomes a scenario that IID observations on a manifold is a
reasonable model.

16 / 21



Implication on manifold data

◦ Here is an interesting implication.

◦ If we initialize from a regular PDF q over Rd , the convergent
points forms a distribution Qπ over M such that Qπ has an
(d − s)-dimensional Hausdorff density (Preiss 1987).

◦ Specifically, suppose we have initial points x1 , · · · , xn ∼ q and let
z1 , · · · , zn be the corresponding points on the manifold M by the
gradient flow.

◦ Then z1 , · · · , zn can be viewed as IID from a density on M.

◦ This becomes a scenario that IID observations on a manifold is a
reasonable model.

16 / 21



Theory of gradient descent algorithm

◦ In reality, we use a discrete time gradient descent algorithm;
namely, we use the discrete update:

xt+1 � xt − γ∇ f (xt)
and γ > 0 is the step size.

◦ When γ ≈ 0, the algorithm behaves just like the gradient flow.
◦ We proved that when γ is sufficiently small and x0 is properly

initialized,

f (xK) ≤ f (x0) · *
,
1 − γ

λ4
0

‖Ψ‖∗2,∞
+
-

K

d(xK ,M) ≤ d(x0 ,M) · �1 − γλ2
0
�K/2

.

for each K � 1, 2, 3, · · · .
◦ An interesting fact: f is a non-convex function so we are using

gradient descent on a non-convex function.
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A 2D manifold example
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◦ This is the density level sets in a 3D data (GvHD data in R); the
level sets form 2-dimensional manifolds.

◦ The three panels are three different view of the level sets.
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Discussion: assumptions

◦ One may notice that all five theorems rely on the same set of
assumptions:
(F1) Ψ is three-times bounded differentiable.
(F2) There exists λ0 , δ0 , c0 > 0 such that

1. λmin(GΨ(x)GΨ(x)T ) ≥ λ0 for all x ∈ M ⊕ δ0.
2. ‖Ψ(x)‖max > c0 for all x < M ⊕ δ0.

◦ This shows that the smoothness, stability, gradient flow, and
gradient descent algorithm are all implicitly related.

◦ In fact, this is a generic result that other M-estimator also share but
somehow we did not emphasize this in statistics.

◦ Note: for some theorems, these two assumptions are often
stronger than what we actually need but unifying them give us
some new insights.
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Discussion: connections to other fields

◦ Econometrics. The generalized method of moments (Hansen
1982) is tightly connected to solution manifolds. In particular, they
are often using the minimizer of a function f as a numerical
method for finding a solution.

◦ Dynamical system. The local stable manifold theorem is from
dynamical system literature (Perko 2001). Here we present a new
use of this theorem on data analysis.

◦ Computational geometry. Numerically computing a manifold is a
classical problem in computational geometry (Dey 2006). Here we
present a set of new procedures for this purposes and analyze the
underlying algorithmic properties.

◦ Optimization. We show that for a particular family of non-convex
function f , the gradient descent may still converge quickly. This
may reveal a new class of non-convex problem that is easy to solve.

20 / 21



Discussion: connections to other fields

◦ Econometrics. The generalized method of moments (Hansen
1982) is tightly connected to solution manifolds. In particular, they
are often using the minimizer of a function f as a numerical
method for finding a solution.

◦ Dynamical system. The local stable manifold theorem is from
dynamical system literature (Perko 2001). Here we present a new
use of this theorem on data analysis.

◦ Computational geometry. Numerically computing a manifold is a
classical problem in computational geometry (Dey 2006). Here we
present a set of new procedures for this purposes and analyze the
underlying algorithmic properties.

◦ Optimization. We show that for a particular family of non-convex
function f , the gradient descent may still converge quickly. This
may reveal a new class of non-convex problem that is easy to solve.

20 / 21



Discussion: connections to other fields

◦ Econometrics. The generalized method of moments (Hansen
1982) is tightly connected to solution manifolds. In particular, they
are often using the minimizer of a function f as a numerical
method for finding a solution.

◦ Dynamical system. The local stable manifold theorem is from
dynamical system literature (Perko 2001). Here we present a new
use of this theorem on data analysis.

◦ Computational geometry. Numerically computing a manifold is a
classical problem in computational geometry (Dey 2006). Here we
present a set of new procedures for this purposes and analyze the
underlying algorithmic properties.

◦ Optimization. We show that for a particular family of non-convex
function f , the gradient descent may still converge quickly. This
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Thank You!

More details can be found in https://arxiv.org/abs/2002.05297.
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Reach of a manifold

◦ By the implicit function theorem, if the rank of the matrix ∇Ψ(x) is
s, the same as the number of equations, then M is an (d − s)
dimensional manifold.

◦ But this does not tell us anything about the smoothness of M

◦ To quantify the smoothness, we use the concept of reach:

reach(M) � sup{r : x has a unique projection onto M for all d(x ,M) ≤ r},

where d(x ,M) � infy∈M ‖x − y‖ is the projection distance from x
to M.

◦ A simple way to think of a reach is via its ball-rolling property.
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Example: reach

M M

◦ If r is less than the reach, then a ball with radius r can roll freely
around the manifold (left panel).

◦ If r is larger than the reach, then a ball with radius r cannot roll
freely around the manifold (right panel).
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Theory of gradient descent algorithm - 1

Theorem (Convergence of gradient decent algorithm)

Assume (F1-2) and let δc be the same as the theorem of gradient flow. Suppose
that the step size satisfies

γ < min



1
‖Ψ‖∗2,∞

,
‖Ψ‖∗2,∞

4λ2
0
, δc




and d(x0 ,M) ≤ δc . Then for each T � 1, 2, 3, · · ·

f (xT) ≤ f (x0) · *
,
1 − γ

λ4
0

‖Ψ‖∗2,∞
+
-

T

d(xT ,M) ≤ d(x0 ,M) · �1 − γλ2
0
�T/2

.
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Theory of gradient descent algorithm - 2

f (xT) ≤ f (x0) · *
,
1 − γ

λ4
0

‖Ψ‖∗2,∞
+
-

T

d(xT ,M) ≤ d(x0 ,M) · �1 − γλ2
0
�T/2

◦ An equivalent statement is that the algorithm takes O(log(1/ε)) to
converges to ε-error to the minimum.

◦ The above convergence is also known as the linear convergence, a
common result in convex optimization.

◦ An interesting fact: f is a non-convex function so we are using
gradient descent on a non-convex function. But we still obtain a
similar result to a convex problem.
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Extension 1: manifold-constraint maximization

◦ In likelihood inference, finding the manifold is often not the final
goal.

◦ What we need is the MLE on the manifold.

◦ Here we propose an alternating algorithm consisting of two major
steps: ascent of likelihood and descent to the manifold.
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Manifold-constraint maximizing algorithm

1. Randomly choose an initial point θ(0)0 � θ(0)∞ ∈ Θ.
2. For m � 1, 2, · · · , do step 3-6:
3. Ascent of likelihood. Update

θ(m)
0 � θ(m−1)

∞ + α∇`(θ(m−1)
∞ |X1 , · · · ,Xn),

where α > 0 is the step size of the gradient ascent over likelihood
function and `(θ|X1 , · · · ,Xn) is the log-likelihood function.

4. Descent to manifold. For each t � 0, 1, 2, · · · iterates

θ(m)
t+1 ← θ(m)

t − γ∇ f (θ(m)
t )

until convergence. Let θ(m)
∞ be the convergent point.

5. IfΨ(θ(m)
∞ ) � 0 (or sufficiently small), we keep θ(m)

∞ ; otherwise,
discard θ(m)

∞ and return to step 1.
6. If ∇`(θ(m)

∞ |X1 , · · · ,Xn) belongs to the row space of ∇Ψ(θ(m)
∞ ), we

stop and output θ(m)
∞ .

28 / 21



Illustration: manifold-constraint maximization
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Extension 2: approximating a posterior on a manifold

◦ Suppose that we place a prior distribution π(θ) over a solution
manifold M, i.e.,

π(θ) � 0 if θ < M.

◦ And then we observe data Y1 , · · · ,Yn so we will update the prior
to be the posterior distribution π(θ|Y1 , · · · ,Yn).

◦ One may be wondering how do we represent the posterior
distribution in this case.

◦ Here we propose a simple approach to approximate the posterior
distribution.
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Approximated manifold posterior algorithm

1. Generate many points Z1 , · · · , ZN ∈ M by the gradient descent.

2. Estimate a density score of Zi using

ρ̂i ,N �
1
N

N∑
j�1

K
( ‖Zi − Z j‖

h

)
,

where h > 0 is a tuning parameter and K is a smooth function
such as a Gaussian.

3. Compute the posterior density score of Zi as

ω̂i ,N �
1
ρ̂i ,N

· π̂i ,N , π̂i ,N � π(Zi) ·
n∏

j�1
p(X j |Zi),

4. Return: Weighted point clouds (Z1 , ω̂i ,N), · · · , (ZN , ω̂N,N).
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Illustration: approximated manifold posterior

Prior only
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