PATTERN GRAPH: A GRAPHICAL APPROACH TO NONMONOTONE MISSING DATA

Yen-Chi Chen

Department of Statistics University of Washington o Joint work with Mauricio Sadinle

- o Supported by NSF DMS 1810960

A typical missing data

ID	L_1	L_2	L_3	
1	15	20	NA	
2	12	NA	NA	
3	NA	43	35	
4	11	25	NA	
5	NA	37	NA	
6	15	23	32	
7	NA	27	35	

- The variable of interest (also called a study variable) is a random variable $L = (L_1, \dots, L_d) \in \mathbb{R}^d$.
- We represent the missingness of *L* using a binary response vector $R \in \{0,1\}^d$.
- $R_i = 1$ if L_i is observed.

- The variable of interest (also called a study variable) is a random variable $L = (L_1, \dots, L_d) \in \mathbb{R}^d$.
- We represent the missingness of L using a binary response vector $R \in \{0,1\}^d$.
- $R_i = 1$ if L_i is observed.
- We denote $L_R = (L_j : R_j = 1)$ be the observed variable when the response pattern is R.

- The variable of interest (also called a study variable) is a random variable $L = (L_1, \dots, L_d) \in \mathbb{R}^d$.
- We represent the missingness of *L* using a binary response vector $R \in \{0,1\}^d$.
- $R_i = 1$ if L_i is observed.
- We denote $L_R = (L_j : R_j = 1)$ be the observed variable when the response pattern is R.
- The joint distribution of (L,R), $F(\ell,r)$, is called the full-data distribution. The corresponding density $p(\ell,r)$ is called full-data density.

- The variable of interest (also called a study variable) is a random variable $L = (L_1, \dots, L_d) \in \mathbb{R}^d$.
- We represent the missingness of *L* using a binary response vector $R \in \{0,1\}^d$.
- $R_i = 1$ if L_i is observed.
- We denote $L_R = (L_j : R_j = 1)$ be the observed variable when the response pattern is R.
- The joint distribution of (L, R), $F(\ell, r)$, is called the full-data distribution. The corresponding density $p(\ell, r)$ is called full-data density.
- We are often interested in some characteristic of $F(\ell)$, the distribution of L.

Response indicator

ID	L_1	L_2	L_3	R
1	15	20	NA	110
2	12	NA	NA	100
3	NA	43	35	011
4	11	25	NA	110
5	NA	37	NA	101
6	15	23	32	111
7	NA	27	35	011

- A challenge in missing data is that $F(\ell)$ or $F(\ell, r)$ or $p(\ell, r)$ are often unidentifiable.
- Namely, even with infinite amount of data, we still cannot accurately estimate them.

- A challenge in missing data is that $F(\ell)$ or $F(\ell, r)$ or $p(\ell, r)$ are often unidentifiable.
- Namely, even with infinite amount of data, we still cannot accurately estimate them.
- To see this, let $1_d = (1, 1, \dots, 1)$ be the special response pattern that corresponds to fully observed case.

- A challenge in missing data is that $F(\ell)$ or $F(\ell, r)$ or $p(\ell, r)$ are often unidentifiable.
- Namely, even with infinite amount of data, we still cannot accurately estimate them.
- To see this, let $1_d = (1, 1, \dots, 1)$ be the special response pattern that corresponds to fully observed case.
- We denote $\bar{R} = 1_d R$ as flipping 0 and 1 in R. Then, $L_{\bar{R}}$ is the unobserved variables under pattern R.

- A challenge in missing data is that $F(\ell)$ or $F(\ell, r)$ or $p(\ell, r)$ are often unidentifiable.
- Namely, even with infinite amount of data, we still cannot accurately estimate them.
- To see this, let $1_d = (1, 1, \dots, 1)$ be the special response pattern that corresponds to fully observed case.
- We denote $\bar{R} = 1_d R$ as flipping 0 and 1 in R. Then, $L_{\bar{R}}$ is the unobserved variables under pattern R.
- o The challenge of missing data comes from the fact that the PDF

$$p(\ell|R=r) = p(\ell_{\bar{r}}, \ell_r|R=r) = p(\ell_{\bar{r}}|\ell_r, R=r)p(\ell_r|R=r)$$

involves unobserved part $p(\ell_{\bar{r}}|\ell_r, R = r)$.

Response indicator, again

ID	L_1	L_2	L_3	R
1	15	20	NA	110
2	12	NA	NA	100
3	NA	43	35	011
4	11	25	NA	110
5	NA	37	NA	101
6	15	23	32	111
7	NA	27	35	011

Strategy in missing data: selection models

 Selection models (SMs): attempt to identify the selection probability (missing data mechanism)

$$P(R = r|L)$$

from making assumptions (known as identifying restrictions).

Strategy in missing data: selection models

 Selection models (SMs): attempt to identify the selection probability (missing data mechanism)

$$P(R = r|L)$$

from making assumptions (known as identifying restrictions).

Motivation: consider the problem of estimating a mean

$$\theta_0 = \mathbb{E}(\theta(L)) = \mathbb{E}\left(\frac{\theta(L)I(R=1_d)}{\pi(L)}\right), \pi(L) = P(R=1_d|L).$$

Strategy in missing data: selection models

 Selection models (SMs): attempt to identify the selection probability (missing data mechanism)

$$P(R = r|L)$$

from making assumptions (known as identifying restrictions).

Motivation: consider the problem of estimating a mean

$$\theta_0 = \mathbb{E}(\theta(L)) = \mathbb{E}\left(\frac{\theta(L)I(R=1_d)}{\pi(L)}\right), \pi(L) = P(R=1_d|L).$$

• If we can identify $\pi(L) = P(R = 1_d | L)$, we can construct an inverse probability weighting (IPW) estimator

$$\widehat{\theta}_0 = \frac{1}{n} \sum_{i=1}^n \frac{\theta(L_i)I(R_i = 1_d)}{\pi(L_i)}.$$

Note that here $(L_1, R_1), \dots, (L_n, R_n)$ denotes the observed study variable and its response pattern of different individuals.

Strategy in missing data: missing at random

• Missing completely at random (MCAR):

$$P(R = r|L) = P(R = r).$$

• Missing at random (MAR; Little and Rubin 2002):

$$P(R = r|L) = P(R = r|L_r).$$

- Missing not at random (MNAR) is the case where the probability P(R = r|L) may depends on the unobserved $L_{\bar{r}}$.
- In this talk, the identifying restrictions we construct are mostly MNAR.

Strategy in missing data: pattern mixture models

 Pattern mixture models (PMMs): decompose the full-data density via

$$p(\ell,r) = p(\ell_{\bar{r}}|\ell_r, R=r)p(\ell_r|R=r)P(R=r).$$

- $p(\ell_{\bar{r}}|\ell_r, R = r)$: the extrapolation density (unidentifiable).
- $p(\ell_r|R=r)P(R=r)$: the observed-data density (identifiable).

Strategy in missing data: pattern mixture models

 Pattern mixture models (PMMs): decompose the full-data density via

$$p(\ell,r) = p(\ell_{\bar{r}}|\ell_r, R=r)p(\ell_r|R=r)P(R=r).$$

- $p(\ell_{\bar{r}}|\ell_r, R = r)$: the extrapolation density (unidentifiable).
- $p(\ell_r|R=r)P(R=r)$: the observed-data density (identifiable).
- We attempt to identify $p(\ell_{\bar{r}}|\ell_r, R = r)$ by making assumptions.

Strategy in missing data: pattern mixture models

 Pattern mixture models (PMMs): decompose the full-data density via

$$p(\ell,r) = p(\ell_{\bar{r}}|\ell_r, R=r)p(\ell_r|R=r)P(R=r).$$

- $p(\ell_{\bar{r}}|\ell_r, R = r)$: the extrapolation density (unidentifiable).
- $p(\ell_r|R=r)P(R=r)$: the observed-data density (identifiable).
- We attempt to identify $p(\ell_{\bar{r}}|\ell_r, R = r)$ by making assumptions.
- Complete-case missing value (CCMV; Little 1993 and Tchetgen et al. 2016) restriction:

$$p(\ell_{\bar{r}}|\ell_r, R=r) = p(\ell_{\bar{r}}|\ell_r, R=1_d).$$

Pattern graphs and identification

- Let $\Re \subset \{0,1\}^d$ is the response set that $P(R \in \Re) = 1$.
- A pattern graph is a directed graph G with vertex set being \Re .
- Namely, a pattern graph is a graph representing the relationship between different patterns.

- Let $\Re \subset \{0,1\}^d$ is the response set that $P(R \in \Re) = 1$.
- A pattern graph is a directed graph G with vertex set being \Re .
- Namely, a pattern graph is a graph representing the relationship between different patterns.
- If there is an arrow from $s \to r$, s is a parent of r and r is a child of s. We denote PA_r as the parents of r.

- Let $\Re \subset \{0,1\}^d$ is the response set that $P(R \in \Re) = 1$.
- A pattern graph is a directed graph G with vertex set being \Re .
- Namely, a pattern graph is a graph representing the relationship between different patterns.
- If there is an arrow from $s \to r$, s is a parent of r and r is a child of s. We denote PA_r as the parents of r.
- A node/vertex of a graph is called a *source* if it has no parents.

- Let $\Re \subset \{0,1\}^d$ is the response set that $P(R \in \Re) = 1$.
- A pattern graph is a directed graph G with vertex set being \Re .
- Namely, a pattern graph is a graph representing the relationship between different patterns.
- If there is an arrow from $s \to r$, s is a parent of r and r is a child of s. We denote PA_r as the parents of r.
- A node/vertex of a graph is called a *source* if it has no parents.
- For two patterns $s, r \in \{0, 1\}^d$, we write r > s if $r_j \ge s_j$ for all j and there is at least one coordinate j^* such that $r_{j^*} > s_{j^*}$.

- Let $\Re \subset \{0,1\}^d$ is the response set that $P(R \in \Re) = 1$.
- A pattern graph is a directed graph G with vertex set being \Re .
- Namely, a pattern graph is a graph representing the relationship between different patterns.
- If there is an arrow from $s \to r$, s is a parent of r and r is a child of s. We denote PA_r as the parents of r.
- A node/vertex of a graph is called a *source* if it has no parents.
- For two patterns $s, r \in \{0, 1\}^d$, we write r > s if $r_j \ge s_j$ for all j and there is at least one coordinate j^* such that $r_{j^*} > s_{j^*}$.
- A pattern graph is called a regular pattern graph if
 (G1) pattern 1_d = (1,1,····,1) is the only source.
 (G2) if s → r, then s > r.

- Let $\Re \subset \{0,1\}^d$ is the response set that $P(R \in \Re) = 1$.
- A pattern graph is a directed graph G with vertex set being \Re .
- Namely, a pattern graph is a graph representing the relationship between different patterns.
- If there is an arrow from $s \to r$, s is a parent of r and r is a child of s. We denote PA_r as the parents of r.
- A node/vertex of a graph is called a *source* if it has no parents.
- For two patterns $s, r \in \{0, 1\}^d$, we write r > s if $r_j \ge s_j$ for all j and there is at least one coordinate j^* such that $r_{j^*} > s_{j^*}$.
- A pattern graph is called a **regular pattern graph** if (G1) pattern $1_d = (1, 1, \dots, 1)$ is the only source. (G2) if $s \to r$, then s > r.
- (G2) implies that the resulting graph is a directed acyclic graph (DAG).

Examples of regular pattern graphs

Examples of regular pattern graphs

 We say that the selection odds model of (L, R) factorizes with respect to G if

$$\frac{P(R=r|L)}{P(R\in\mathsf{PA}_r|L)} = \frac{P(R=r|L_r)}{P(R\in\mathsf{PA}_r|L_r)} \equiv O_r(L_r).$$

 We say that the selection odds model of (L, R) factorizes with respect to G if

$$\frac{P(R=r|L)}{P(R \in \mathsf{PA}_r|L)} = \frac{P(R=r|L_r)}{P(R \in \mathsf{PA}_r|L_r)} \equiv O_r(L_r).$$

• Namely, the graph factorization requires that the selection odds (against parents) is observable.

 We say that the selection odds model of (*L*, *R*) factorizes with respect to *G* if

$$\frac{P(R=r|L)}{P(R\in\mathsf{PA}_r|L)} = \frac{P(R=r|L_r)}{P(R\in\mathsf{PA}_r|L_r)} \equiv O_r(L_r).$$

- Namely, the graph factorization requires that the selection odds (against parents) is observable.
- The selection odds model implies

$$P(R = r|L) = \sum_{s \in \mathsf{PA}_r} P(R = s|L) O_r(L_r).$$

The chance of observing a particular pattern equals the summation of all its parents' probability multiplied by an observed factor $O_r(L_r)$.

 We say that the selection odds model of (L, R) factorizes with respect to G if

$$\frac{P(R=r|L)}{P(R\in\mathsf{PA}_r|L)} = \frac{P(R=r|L_r)}{P(R\in\mathsf{PA}_r|L_r)} \equiv O_r(L_r).$$

- Namely, the graph factorization requires that the selection odds (against parents) is observable.
- The selection odds model implies

$$P(R = r|L) = \sum_{s \in \mathsf{PA}_r} P(R = s|L) O_r(L_r).$$

The chance of observing a particular pattern equals the summation of all its parents' probability multiplied by an observed factor $O_r(L_r)$.

• Note: pattern graphs are not the conventional graphical model!

Selection odds model and identifications

Theorem

Suppose that the selection odds model of (L,R) factorizes with respect to a regular pattern graph G. Let $Q_r(L) = \frac{P(R=r|L)}{P(R=1_d|L)}$ and $Q_{1_d}(L) = 1$. Then $\pi(L)$ is identifiable and is defined via

$$\pi(L) = \frac{1}{\sum_r Q_r(L)}, \quad Q_r(L) = O_r(L_r) \sum_{s \in \mathsf{PA}_r} Q_s(L).$$

• This provides a recursive approach to identify $\pi(L)$.

Example: Conditional MAR

- Let $L = (Z, Y_1, Y_2, Y_3)$ where Z is a covariate and Y_t is measured at different time points. Also, we define $R_z = R_1$ and $T = R_2 + R_3 + R_4$.
- Both Z and Y_t are subject to missing and the missingness of Y_t is monotone.

Example: Conditional MAR

• Let $L = (Z, Y_1, Y_2, Y_3)$ where Z is a covariate and Y_t is measured at different time points. Also, we define $R_z = R_1$ and $T = R_2 + R_3 + R_4$.

Both Z and Y_t are subject to missing and the missingness of Y_t is

monotone.

Example: Conditional MAR

- Let $L = (Z, Y_1, Y_2, Y_3)$ where Z is a covariate and Y_t is measured at different time points. Also, we define $R_z = R_1$ and $T = R_2 + R_3 + R_4$.
- Both Z and Y_t are subject to missing and the missingness of Y_t is monotone.

Then the above pattern graph implies the following conditional MAR:

$$P(T = t | R_z = 1, L) = P(T = t | R_z = 1, Z, Y_1, \dots, Y_t), \qquad t = 1, 2, 3$$

$$P(T = t | R_z = 0, L) = P(T = t | R_z = 0, Y_1, \dots, Y_t), \qquad t = 1, 2, 3$$

$$P(R_z = 0 | T = 3, L) = P(R_z = 1 | T = 3, L) \cdot \frac{P(R_z = 0 | T = 3, Y_1, Y_2, Y_3)}{P(R_z = 1 | T = 3, Y_1, Y_2, Y_3)}$$

• A (directed) path Ξ in a graph G is a set of vertices $r_1, r_2, r_3, \dots, r_k$ such that the edge $r_t \to r_{t+1}$ exists in G.

- A (directed) path Ξ in a graph G is a set of vertices $r_1, r_2, r_3, \dots, r_k$ such that the edge $r_t \to r_{t+1}$ exists in G.
- We define Π_r to be the collection of all paths from 1_d to r and let $\Pi_{1_d} = \{1_d, 1_d\}$. We also define $\Pi = \bigcup_r \Pi_r$ to be the collection of all paths.

- A (directed) path Ξ in a graph G is a set of vertices $r_1, r_2, r_3, \dots, r_k$ such that the edge $r_t \to r_{t+1}$ exists in G.
- We define Π_r to be the collection of all paths from 1_d to r and let $\Pi_{1_d} = \{1_d, 1_d\}$. We also define $\Pi = \cup_r \Pi_r$ to be the collection of all paths.
- The selection odds model implies an interesting representation of the selection probability:

- A (directed) path Ξ in a graph G is a set of vertices $r_1, r_2, r_3, \dots, r_k$ such that the edge $r_t \to r_{t+1}$ exists in G.
- We define Π_r to be the collection of all paths from 1_d to r and let $\Pi_{1_d} = \{1_d, 1_d\}$. We also define $\Pi = \cup_r \Pi_r$ to be the collection of all paths.
- The selection odds model implies an interesting representation of the selection probability:

Theorem

Suppose that the selection odds model of (L,R) factorizes with respect to a regular pattern graph G. Then

$$1 = \sum_{\Xi \in \Pi} \pi(L) \prod_{s \in \Xi} O_s(L_s)$$

$$P(R = r|L) = \sum_{\Xi \in \Pi_r} \pi(L) \prod_{s \in \Xi} O_s(L_s)$$

The two equations

$$1 = \sum_{\Xi \in \Pi} \pi(L) \prod_{s \in \Xi} O_s(L_s)$$

$$P(R = r|L) = \sum_{\Xi \in \Pi_r} \pi(L) \prod_{s \in \Xi} O_s(L_s)$$

show an interesting interpretation.

The two equations

$$1 = \sum_{\Xi \in \Pi} \pi(L) \prod_{s \in \Xi} O_s(L_s)$$

$$P(R = r|L) = \sum_{\Xi \in \Pi_r} \pi(L) \prod_{s \in \Xi} O_s(L_s)$$

show an interesting interpretation.

• First, for $\Xi \in \Pi$, we can interpret

$$\pi(L) \prod_{s \in \Xi} O_s(L_s) = \kappa(\Xi|L)$$

as the probability of selecting Ξ from Π .

The two equations

$$1 = \sum_{\Xi \in \Pi} \pi(L) \prod_{s \in \Xi} O_s(L_s)$$

$$P(R = r|L) = \sum_{\Xi \in \Pi_r} \pi(L) \prod_{s \in \Xi} O_s(L_s)$$

show an interesting interpretation.

• First, for $\Xi \in \Pi$, we can interpret

$$\pi(L) \prod_{s \in \Xi} O_s(L_s) = \kappa(\Xi|L)$$

as the probability of selecting Ξ from Π .

• Then the second equation implies $P(R = r|L) = \sum_{\Xi \in \Pi_r} \kappa(\Xi|L)$, i.e., P(R = r|L) is the summation of contributions from all paths ending at r.

Path identification: an example

Path identification: an example

 There are 5 paths and each corresponds to probability:

$$\kappa(11 \to 11|L) = \pi(L)$$

$$\kappa(11 \to 10|L) = \pi(L)O_{10}(L_{10})$$

$$\kappa(11 \to 01|L) = \pi(L)O_{01}(L_{01})$$

$$\kappa(11 \to 00|L) = \pi(L)O_{00}(L_{00})$$

$$\kappa(11 \to 10 \to 00|L) = \pi(L)O_{10}(L_{10})O_{00}(L_{00})$$

Path identification: an example

 There are 5 paths and each corresponds to probability:

$$\kappa(11 \to 11|L) = \pi(L)$$

$$\kappa(11 \to 10|L) = \pi(L)O_{10}(L_{10})$$

$$\kappa(11 \to 01|L) = \pi(L)O_{01}(L_{01})$$

$$\kappa(11 \to 00|L) = \pi(L)O_{00}(L_{00})$$

$$\kappa(11 \to 10 \to 00|L) = \pi(L)O_{10}(L_{10})O_{00}(L_{00})$$

17 / 53

So the chance of observing each pattern is

$$P(R = 11|L) = \pi(L), \quad P(R = 10|L) = \pi(L)O_{10}(L_{10}),$$

$$P(R = 01|L) = \pi(L)O_{01}(L_{01})$$

$$P(R = 00|L) = \pi(L)O_{00}(L_{00}) + \pi(L)O_{10}(L_{10})O_{00}(L_{00}).$$

• Recall that PMMs decompose the joint density via

$$p(\ell,r) = p(\ell_{\bar{r}}|\ell_r,R=r)p(\ell_r|R=r)P(R=r).$$

- $p(\ell_{\bar{r}}|\ell_r, R = r)$: the extrapolation density (unidentifiable).
- $p(\ell_r|R=r)P(R=r)$: the observed-data density (identifiable).
- Strategy of PMMs: try to identify the extrapolation density.

 We say that the pattern mixture model of (L, R) factorizes with respect to G if

$$p(\ell_{\bar{r}}|\ell_r, R=r) = p(\ell_{\bar{r}}|\ell_r, R \in \mathsf{PA}_r).$$

• Namely, the extrapolation density is the same as the same variables' conditional density in the parent patterns.

 We say that the pattern mixture model of (L, R) factorizes with respect to G if

$$p(\ell_{\bar{r}}|\ell_r, R=r) = p(\ell_{\bar{r}}|\ell_r, R \in \mathsf{PA}_r).$$

• Namely, the extrapolation density is the same as the same variables' conditional density in the parent patterns.

Theorem

Suppose that the pattern mixture model of (L,R) factorizes with respect to a regular pattern graph G. Then the full-data density $p(\ell,r)$ is (nonparametrically) identifiable.

 We say that the pattern mixture model of (L, R) factorizes with respect to G if

$$p(\ell_{\bar{r}}|\ell_r, R=r) = p(\ell_{\bar{r}}|\ell_r, R \in \mathsf{PA}_r).$$

• Namely, the extrapolation density is the same as the same variables' conditional density in the parent patterns.

Theorem

Suppose that the pattern mixture model of (L,R) factorizes with respect to a regular pattern graph G. Then the full-data density $p(\ell,r)$ is (nonparametrically) identifiable.

• Namely, we can estimate the joint distribution of (L, R) and the resulting distribution will agree with the observed data (nonparametrically identifiable).

Equivalence of the graph factorizations

Theorem

If G is a regular pattern graph and $p(\ell_r, r) > 0$ for all ℓ_r and $r \in \Re$, then the following two statements are equivalent:

- the selection odds model of (L, R) factorizes with respect to G.
- \circ the pattern mixture model of (L, R) factorizes with respect to G.

Equivalence of the graph factorizations

Theorem

If G is a regular pattern graph and $p(\ell_r, r) > 0$ for all ℓ_r and $r \in \Re$, then the following two statements are equivalent:

- the selection odds model of (L, R) factorizes with respect to G.
- the pattern mixture model of (L, R) factorizes with respect to G.
- The condition, $p(\ell_r, r) > 0$ for all ℓ_r and $r \in \Re$, can be viewed as a positivity condition.

Equivalence of the graph factorizations

Theorem

If G is a regular pattern graph and $p(\ell_r, r) > 0$ for all ℓ_r and $r \in \Re$, then the following two statements are equivalent:

- the selection odds model of (L, R) factorizes with respect to G.
- the pattern mixture model of (L, R) factorizes with respect to G.
- The condition, $p(\ell_r, r) > 0$ for all ℓ_r and $r \in \mathcal{R}$, can be viewed as a positivity condition.
- Therefore, we can interpret the result using either a selection odds model perspective or a pattern mixture model perspective.
- Note that Robins et al. (2000) had shown that certain selection odds models and pattern mixture models are equivalent.

Estimation with pattern graphs

With a slight abuse of notation, the observations are denoted as

$$(L_{1,R_1}, R_1), \cdots, (L_{n,R_n}, R_n).$$

Recall that the IPW estimator is

$$\frac{1}{n}\sum_{i=1}^n \frac{\theta(L_i)I(R_i=1_d)}{\pi(L_i)}.$$

• Often $\pi(\ell)$ is unknown and has to be estimated.

With a slight abuse of notation, the observations are denoted as

$$(L_{1,R_1}, R_1), \cdots, (L_{n,R_n}, R_n).$$

• Recall that the IPW estimator is

$$\frac{1}{n}\sum_{i=1}^n \frac{\theta(L_i)I(R_i=1_d)}{\pi(L_i)}.$$

- Often $\pi(\ell)$ is unknown and has to be estimated.
- With the selection odds model, we can estimate it by estimating each odds $O_r(L_r) = \frac{P(R=r|L_r)}{P(R\in PA_r|L_r)}$.

With a slight abuse of notation, the observations are denoted as

$$(L_{1,R_1}, R_1), \cdots, (L_{n,R_n}, R_n).$$

• Recall that the IPW estimator is

$$\frac{1}{n}\sum_{i=1}^n \frac{\theta(L_i)I(R_i=1_d)}{\pi(L_i)}.$$

- Often $\pi(\ell)$ is unknown and has to be estimated.
- With the selection odds model, we can estimate it by estimating each odds $O_r(L_r) = \frac{P(R=r|L_r)}{P(R \in PA_r|L_r)}$.
- This can be done by applying a generative classifier or a regression model comparing two classes

$$R = r \text{ v.s. } R \in \mathsf{PA}_r$$

using only the variables L_r .

- Let $O(L_r) = O(L_r; \widehat{\eta}_r)$ be the estimated odds and $\widehat{\eta}_r \in \Theta_r$ is the corresponding parameter.
- Note: logistic regression leads to $O(L_r; \widehat{\eta}_r) = \exp(L_r^T \widehat{\eta}_r)$.

- Let $O(L_r) = O(L_r; \widehat{\eta}_r)$ be the estimated odds and $\widehat{\eta}_r \in \Theta_r$ is the corresponding parameter.
- Note: logistic regression leads to $O(L_r; \widehat{\eta}_r) = \exp(L_r^T \widehat{\eta}_r)$.
- This implies an estimator $\widehat{\pi}(L) = \pi(L; \widehat{\eta})$, where $\widehat{\eta} = (\widehat{\eta}_r : r \in \mathcal{R})$.

- Let $\widehat{O}(L_r) = O(L_r; \widehat{\eta}_r)$ be the estimated odds and $\widehat{\eta}_r \in \Theta_r$ is the corresponding parameter.
- Note: logistic regression leads to $O(L_r; \widehat{\eta}_r) = \exp(L_r^T \widehat{\eta}_r)$.
- This implies an estimator $\widehat{\pi}(L) = \pi(L; \widehat{\eta})$, where $\widehat{\eta} = (\widehat{\eta}_r : r \in \mathcal{R})$.
- The IPW estimator is

$$\widehat{\theta}_{\mathsf{IPW}} = \frac{1}{n} \sum_{i=1}^{n} \frac{\theta(L_i) I(R_i = 1_d)}{\pi(L_i; \widehat{\eta})}.$$

- Let $\widehat{O}(L_r) = O(L_r; \widehat{\eta}_r)$ be the estimated odds and $\widehat{\eta}_r \in \Theta_r$ is the corresponding parameter.
- Note: logistic regression leads to $O(L_r; \widehat{\eta}_r) = \exp(L_r^T \widehat{\eta}_r)$.
- This implies an estimator $\widehat{\pi}(L) = \pi(L; \widehat{\eta})$, where $\widehat{\eta} = (\widehat{\eta}_r : r \in \mathcal{R})$.
- The IPW estimator is

$$\widehat{\theta}_{\mathsf{IPW}} = \frac{1}{n} \sum_{i=1}^{n} \frac{\theta(L_i) I(R_i = 1_d)}{\pi(L_i; \widehat{\eta})}.$$

Theorem

Suppose that parametric models are correctly specified. Then under regularity conditions,

$$\sqrt{n}(\widehat{\theta}_{\mathsf{IPW}} - \theta_0) \xrightarrow{D} N(0, \sigma_{\mathsf{IPW}}^2).$$

Recursive computation of $\widehat{\pi}(L)$

- Here is a simple approach to compute $\widehat{\pi}(L)$ from estimators $\widehat{O}_r(L_r)$ (not limited to parametric models).
- Recall that

$$\widehat{\pi}(L) = \frac{1}{\sum_r \widehat{Q}_r(L)}, \quad \widehat{Q}_r(L) = \widehat{O}_r(L_r) \sum_{s \in \mathsf{PA}_r} \widehat{Q}_s(L)$$

and
$$\widehat{Q}_{1_d}(L) = 1$$
.

Recursive computation of $\widehat{\pi}(L)$

- Here is a simple approach to compute $\widehat{\pi}(L)$ from estimators $\widehat{O}_r(L_r)$ (not limited to parametric models).
- Recall that

$$\widehat{\pi}(L) = \frac{1}{\sum_r \widehat{Q}_r(L)}, \quad \widehat{Q}_r(L) = \widehat{O}_r(L_r) \sum_{s \in PA_r} \widehat{Q}_s(L)$$

and
$$\widehat{Q}_{1_d}(L) = 1$$
.

• We first evaluate $\widehat{O}_r(L_r)$ for each r.

Recursive computation of $\widehat{\pi}(L)$

- Here is a simple approach to compute $\widehat{\pi}(L)$ from estimators $\widehat{O}_r(L_r)$ (not limited to parametric models).
- Recall that

$$\widehat{\pi}(L) = \frac{1}{\sum_r \widehat{Q}_r(L)}, \quad \widehat{Q}_r(L) = \widehat{O}_r(L_r) \sum_{s \in \mathsf{PA}_r} \widehat{Q}_s(L)$$

and
$$\widehat{Q}_{1_d}(L) = 1$$
.

- We first evaluate $\widehat{O}_r(L_r)$ for each r.
- Then we sequentially compute $\widehat{Q}_r(L)$ for $|r| = d 1, d 2, \cdots, 1$ using the recursive relation where $|r| = \sum_j r_j$ is the number of observed patterns.

• Consider the above graph and the corresponding O_r , Q_r .

• All these quantities are identifiable/computable ($Q_{111}(L) = 1$).

Graphical representation of the recursive computation

• We compute Q_r using the parent(s) and the selection odds.

Graphical representation of the recursive computation

• Having computed all Q_r , we can compute $\pi(L) = \frac{1}{\sum_r Q_r}$.

• It is known that we can improve the efficiency of the IPW via augmentation (Tsiatis 2007).

- It is known that we can improve the efficiency of the IPW via augmentation (Tsiatis 2007).
- A general form of augmentation is

$$\frac{\theta(L)I(R=1_d)}{\pi(L)} + \Psi(L_R,R),$$

where $\mathbb{E}(\Psi(L_R, R)) = 0$ and $\mathbb{E}(\Psi^2(L_R, R)) < \infty$.

- It is known that we can improve the efficiency of the IPW via augmentation (Tsiatis 2007).
- A general form of augmentation is

$$\frac{\theta(L)I(R=1_d)}{\pi(L)} + \Psi(L_R, R),$$

where
$$\mathbb{E}(\Psi(L_R, R)) = 0$$
 and $\mathbb{E}(\Psi^2(L_R, R)) < \infty$.

 Because we are modeling the selection odds to be observable, consider another augmentation:

$$\frac{\theta(L)I(R=1_d)}{\pi(L)} + \sum_{r\neq 1_d} (I(R=r) - O_r(L_r)I(R \in \mathsf{PA}_r))\phi_r(L_r),$$

where $\mathbb{E}(\phi_r^2(L_r)) < \infty$ for each r.

• All possible augmentations:

$$\mathcal{G} = \left\{ \frac{\theta(L)I(R=1_d)}{\pi(L)} + \Psi(L_R,R) : \mathbb{E}(\Psi(L_R,R)) = 0, \mathbb{E}(\Psi^2(L_R,R)) < \infty \right\}.$$

Augmentations using selection odds:

$$\mathcal{F} = \left\{ \frac{\theta(L)I(R=1_d)}{\pi(L)} + \sum_{r \neq 1_d} (I(R=r) - O_r(L_r)I(R \in \mathsf{PA}_r))\phi_r(L_r) : \\ \mathbb{E}(\phi_r^2(L_r)) < \infty \right\}.$$

• All possible augmentations:

$$\mathcal{G} = \left\{ \frac{\theta(L)I(R=1_d)}{\pi(L)} + \Psi(L_R,R) : \mathbb{E}(\Psi(L_R,R)) = 0, \mathbb{E}(\Psi^2(L_R,R)) < \infty \right\}.$$

Augmentations using selection odds:

$$\mathcal{F} = \left\{ \frac{\theta(L)I(R=1_d)}{\pi(L)} + \sum_{r \neq 1_d} (I(R=r) - O_r(L_r)I(R \in \mathsf{PA}_r))\phi_r(L_r) : \\ \mathbb{E}(\phi_r^2(L_r)) < \infty \right\}.$$

Theorem

Suppose that (L, R) factorizes with respect to a regular pattern graph and and $p(\ell_r, r) > 0$ for all ℓ_r and $r \in \Re$. Then $\mathscr{G} = \mathscr{F}$.

• Although the previous theorem characterizes the augmentation space, it is hard to derive the most efficient estimator in \mathcal{F} .

- Although the previous theorem characterizes the augmentation space, it is hard to derive the most efficient estimator in \mathcal{F} .
- The challenge comes from the product of indicator functions I(R = r) and $I(R \in PA_r)$.

- Although the previous theorem characterizes the augmentation space, it is hard to derive the most efficient estimator in \mathcal{F} .
- The challenge comes from the product of indicator functions I(R = r) and $I(R \in PA_r)$.
- To show the augmentation improves the efficiency, we consider the case that we only augment it with one term:

$$\frac{\theta(L)I(R=1_d)}{\pi(L)} + (I(R=r) - O_r(L_r)I(R \in \mathsf{PA}_r))\phi_r(L_r).$$

Augmentation with one term:

$$\mathcal{F}_r = \left\{ \frac{\theta(L)I(R=1_d)}{\pi(L)} + (I(R=r) - O_r(L_r)I(R \in \mathsf{PA}_r))\phi_r(L_r) : \\ \mathbb{E}(\phi_r^2(L_r)) < \infty \right\}.$$

Augmentation with one term:

$$\mathcal{F}_r = \left\{ \frac{\theta(L)I(R=1_d)}{\pi(L)} + (I(R=r) - O_r(L_r)I(R \in \mathsf{PA}_r))\phi_r(L_r) : \\ \mathbb{E}(\phi_r^2(L_r)) < \infty \right\}.$$

Theorem

Assume (L, R) factorizes with respect to a regular pattern graph G. Let \mathcal{F}_r be defined as the above. Then the choice

$$\phi_r^*(L_r) = -\frac{\mathbb{E}(\theta(L)|L_r)}{P(R \in \{r\} \cup \mathsf{PA}_r|L_r)} I(1_d \in \mathsf{PA}_r)$$

$$= -\frac{\mathbb{E}\left(\frac{\theta(L)}{\pi(L)}|L_r, R = 1_d\right) \pi(L_r)}{P(R \in \{r\} \cup \mathsf{PA}_r|L_r)} I(1_d \in \mathsf{PA}_r)$$

leads to the most efficient estimator in \mathcal{F}_r .

• An equivalent expression of the optimal ϕ_r^* :

$$\phi_r^*(L_r) = \begin{cases} 0, & \text{if } 1_d \notin \mathsf{PA}_r. \\ -\frac{\mathbb{E}\left(\frac{\theta(L)}{\pi(L)}|L_r,R=1_d\right)}{1+O_r(L_r)}, & \text{if } \mathsf{PA}_r = \{1_d\}. \\ -\frac{\mathbb{E}(\theta(L)|L_r)}{P(R\in\{r\}\cup\mathsf{PA}_r|L_r)}, & \text{otherwise.} \end{cases}$$

• An equivalent expression of the optimal ϕ_r^* :

$$\phi_r^*(L_r) = \begin{cases} 0, & \text{if } 1_d \notin \mathsf{PA}_r. \\ -\frac{\mathbb{E}\left(\frac{\theta(L)}{\pi(L)}|L_r,R=1_d\right)}{1+O_r(L_r)}, & \text{if } \mathsf{PA}_r = \{1_d\}. \\ -\frac{\mathbb{E}(\theta(L)|L_r)}{P(R\in\{r\}\cup\mathsf{PA}_r|L_r)}, & \text{otherwise.} \end{cases}$$

• If 1_d is not a parent of r, single augmentation does not improve the efficiency.

• An equivalent expression of the optimal ϕ_r^* :

$$\phi_r^*(L_r) = \begin{cases} 0, & \text{if } 1_d \notin \mathsf{PA}_r. \\ -\frac{\mathbb{E}\left(\frac{\theta(L)}{\pi(L)}|L_r,R=1_d\right)}{1+O_r(L_r)}, & \text{if } \mathsf{PA}_r = \{1_d\}. \\ -\frac{\mathbb{E}(\theta(L)|L_r)}{P(R\in\{r\}\cup\mathsf{PA}_r|L_r)}, & \text{otherwise.} \end{cases}$$

- If 1_d is not a parent of r, single augmentation does not improve the efficiency.
- If 1_d is the only parent, the augmentation has a simple and elegant form.
- Note that for any patterns r that contains only one missing entry (i.e., |r| = d 1), 1_d will always be its only parent.

• An equivalent expression of the optimal ϕ_r^* :

$$\phi_r^*(L_r) = \begin{cases} 0, & \text{if } 1_d \notin \mathsf{PA}_r. \\ -\frac{\mathbb{E}\left(\frac{\theta(L)}{\pi(L)}|L_r,R=1_d\right)}{1+O_r(L_r)}, & \text{if } \mathsf{PA}_r = \{1_d\}. \\ -\frac{\mathbb{E}(\theta(L)|L_r)}{P(R\in\{r\}\cup\mathsf{PA}_r|L_r)}, & \text{otherwise.} \end{cases}$$

- If 1_d is not a parent of r, single augmentation does not improve the efficiency.
- If 1_d is the only parent, the augmentation has a simple and elegant form.
- Note that for any patterns r that contains only one missing entry (i.e., |r| = d 1), 1_d will always be its only parent.
- The CCMV restriction is the case that 1_d is the only parent for any pattern other than 1_d .

Improving efficiency: illustration

- Augmentation via patterns 110, 101, 011 is recommended.
- Augmentation via patterns 010, 001, 000 does not help.
- Augmentation via 100 is helpful but hard to compute.

• In addition to the IPW, we can rewrite

$$\theta_0 = \mathbb{E}(\theta(L)) = \mathbb{E}(\mathbb{E}(\theta(L)|L_R,R)) = \mathbb{E}(m(L_R,R)),$$

where $m(L_R, R) = \mathbb{E}(\theta(L)|L_R, R)$ is the regression function under pattern R.

In addition to the IPW, we can rewrite

$$\theta_0 = \mathbb{E}(\theta(L)) = \mathbb{E}(\mathbb{E}(\theta(L)|L_R,R)) = \mathbb{E}(m(L_R,R)),$$

where $m(L_R, R) = \mathbb{E}(\theta(L)|L_R, R)$ is the regression function under pattern R.

• If we have estimator $\widehat{m}(L_R, R)$, then we can estimate the parameter of interest via

$$\widehat{\theta}_{RA} = \frac{1}{n} \sum_{i=1}^{n} \widehat{m}(L_{i,R_i}, R_i).$$

In addition to the IPW, we can rewrite

$$\theta_0 = \mathbb{E}(\theta(L)) = \mathbb{E}(\mathbb{E}(\theta(L)|L_R,R)) = \mathbb{E}(m(L_R,R)),$$

where $m(L_R, R) = \mathbb{E}(\theta(L)|L_R, R)$ is the regression function under pattern R.

• If we have estimator $\widehat{m}(L_R, R)$, then we can estimate the parameter of interest via

$$\widehat{\theta}_{\mathsf{RA}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{m}(L_{i,R_i}, R_i).$$

• We estimate $m(L_R, R)$ by the pattern graph and PMMs formulation.

In addition to the IPW, we can rewrite

$$\theta_0 = \mathbb{E}(\theta(L)) = \mathbb{E}(\mathbb{E}(\theta(L)|L_R,R)) = \mathbb{E}(m(L_R,R)),$$

where $m(L_R, R) = \mathbb{E}(\theta(L)|L_R, R)$ is the regression function under pattern R.

• If we have estimator $\widehat{m}(L_R, R)$, then we can estimate the parameter of interest via

$$\widehat{\theta}_{\mathsf{RA}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{m}(L_{i,R_i}, R_i).$$

- We estimate $m(L_R, R)$ by the pattern graph and PMMs formulation.
- You can show that if we use a Monte Carlo approximation to $\widehat{m}(L_{i,R_i}, R_i)$, this is identical to the multiple imputation method.

 Sensitivity analysis attempts to perturb our identifying restrictions a bit and study how the final estimator change with respect to the perturbation.

- Sensitivity analysis attempts to perturb our identifying restrictions a bit and study how the final estimator change with respect to the perturbation.
- A common approach in sensitivity analysis is the exponential tilting (Kim and Yu 2011).

- Sensitivity analysis attempts to perturb our identifying restrictions a bit and study how the final estimator change with respect to the perturbation.
- A common approach in sensitivity analysis is the exponential tilting (Kim and Yu 2011).
- For SMs, this can be written as

$$\frac{P(R=r|L)}{P(R \in \mathsf{PA}_r|L)} = \frac{P(R=r|L_r)}{P(R \in \mathsf{PA}_r|L_r)} \exp(L_{\bar{r}}^T \delta_{\bar{r}}),$$

where $\delta_{\bar{r}}$ is a given vector.

- Sensitivity analysis attempts to perturb our identifying restrictions a bit and study how the final estimator change with respect to the perturbation.
- A common approach in sensitivity analysis is the exponential tilting (Kim and Yu 2011).
- For SMs, this can be written as

$$\frac{P(R=r|L)}{P(R \in \mathsf{PA}_r|L)} = \frac{P(R=r|L_r)}{P(R \in \mathsf{PA}_r|L_r)} \exp(L_{\bar{r}}^T \delta_{\bar{r}}),$$

where $\delta_{\bar{r}}$ is a given vector.

• When $\delta_{\bar{r}} = 0$, we recover the original restriction.

- Sensitivity analysis attempts to perturb our identifying restrictions a bit and study how the final estimator change with respect to the perturbation.
- A common approach in sensitivity analysis is the exponential tilting (Kim and Yu 2011).
- For SMs, this can be written as

$$\frac{P(R=r|L)}{P(R \in \mathsf{PA}_r|L)} = \frac{P(R=r|L_r)}{P(R \in \mathsf{PA}_r|L_r)} \exp(L_{\bar{r}}^T \delta_{\bar{r}}),$$

where $\delta_{\bar{r}}$ is a given vector.

- When $\delta_{\bar{r}} = 0$, we recover the original restriction.
- o For PMMs, we can use

$$p(\ell_{\bar{r}}|\ell_r, R = r) = p(\ell_{\bar{r}}|\ell_r, R \in \mathsf{PA}_r) \exp(L_{\bar{r}}^T \delta_{\bar{r}}).$$

 Here is an interesting result–perturbing the selection odds and perturbing the pattern mixture models are equivalent.

Theorem

Let r be a response pattern and $g(\ell_{\bar{r}})$ be any function of the unobserved entries. Then the assumption

$$\frac{P(R=r|\ell)}{P(R\in\mathsf{PA}_r|\ell)} = \frac{P(R=r|\ell_r)}{P(R\in\mathsf{PA}_r|\ell_r)} \cdot g(\ell_{\bar{r}})$$

is equivalent to the assumption

$$p(\ell_{\bar{r}}|\ell_r, R = r) = p(\ell_{\bar{r}}|\ell_r, R \in \mathsf{PA}_r) \cdot g(\ell_{\bar{r}}).$$

- We can also perform sensitivity analysis via perturbing the graph.
- Before doing so, we first note that the number of identifying restrictions generated by regular pattern graphs is huge.

- We can also perform sensitivity analysis via perturbing the graph.
- Before doing so, we first note that the number of identifying restrictions generated by regular pattern graphs is huge.

Proposition

If all the study variable $L \in \mathbb{R}^d$ are subjected to missing, then there are

$$M = M_d = \prod_{k=0}^{d-1} (2^{2^{d-k}-1} - 1)^{\binom{d}{k}}$$

distinct graphs satisfying conditions (G1-2).

- We can also perform sensitivity analysis via perturbing the graph.
- Before doing so, we first note that the number of identifying restrictions generated by regular pattern graphs is huge.

Proposition

If all the study variable $L \in \mathbb{R}^d$ are subjected to missing, then there are

$$M = M_d = \prod_{k=0}^{d-1} (2^{2^{d-k}-1} - 1)^{\binom{d}{k}}$$

distinct graphs satisfying conditions (G1-2).

• Here are the first few values of $M = M_d$:

$$M_1 = 1$$
, $M_2 = 7$, $M_3 = 43561$, $M_4 > 10^{18}$.

- Because the regular pattern graphs span a large class of identifying restriction, we can perturb the graph to perform sensitivity analysis.
- Define

$$\Delta_1 G = \{G' : |G' - G| = 1, \text{ condition (G1-2) holds for } G'\},$$
 where $|G' - G| = 1$ means that the two graphs only differ by one edge (arrow).

- Because the regular pattern graphs span a large class of identifying restriction, we can perturb the graph to perform sensitivity analysis.
- Define

$$\Delta_1 G = \{G' : |G' - G| = 1, \text{ condition (G1-2) holds for } G'\},$$

where |G' - G| = 1 means that the two graphs only differ by one edge (arrow).

• The class $\Delta_1 G$ can be decomposed into

$$\Delta_1 G = \Delta_{+1} G \cup \Delta_{-1} G,$$

where

$$\Delta_{+1}G = \{G' : |G' - G| = 1, G' \text{ is a regular pattern graph, } G \subset G'\},$$

 $\Delta_{-1}G = \{G' : |G' - G| = 1, G' \text{ is a regular pattern graph, } G' \subset G\}.$

Proposition

Let s, r be vertices of G and $e_{s \to r}$ be the edge/arrow from s to r. We define $G \oplus e_{s \to r}$ to be the graph where edge $e_{s \to r}$ is added and $G \ominus e_{s \to r}$ to be the graph where edge $e_{s \to r}$ is moved. Then

$$\begin{split} &\Delta_{+1}G = \{G \oplus e_{s \to r} : s > r, s \notin \mathsf{PA}_r\}, \\ &\Delta_{-1}G = \{G \ominus e_{s \to r} : s \in \mathsf{PA}_r, |\mathsf{PA}_r| > 1\}. \end{split}$$

 This proposition provides a simple way to characterize the two perturbed classes of graphs.

Generalized pattern graphs and equivalence classes

Generalized pattern graphs

• A pattern graph is called a **generalized pattern graph** if (G1) pattern $1_d = (1, 1, \dots, 1)$ is the only source. (DAG) the graph is a DAG.

Generalized pattern graphs

- A pattern graph is called a **generalized pattern graph** if
 - (G1) pattern $1_d = (1, 1, \dots, 1)$ is the only source.
- (DAG) the graph is a DAG.

Theorem

For a graph G that satisfies (G1) and (DAG) and $p(\ell_r, r) > 0$ for all ℓ_r and $r \in \Re$, then

- 1. selection odds model and pattern mixture model factorizations are equivalent.
- 2. it leads to an (nonparametrically) identifiable full-data distribution.

Generalized pattern graphs

- A pattern graph is called a **generalized pattern graph** if
 - (G1) pattern $1_d = (1, 1, \dots, 1)$ is the only source.
- (DAG) the graph is a DAG.

Theorem

For a graph G that satisfies (G1) and (DAG) and $p(\ell_r, r) > 0$ for all ℓ_r and $r \in \mathcal{R}$, then

- 1. selection odds model and pattern mixture model factorizations are equivalent.
- 2. it leads to an (nonparametrically) identifiable full-data distribution.
- The above theorem shows a powerful result—as long as the pattern graph has unique source 1_d and is a DAG, it can be used to represent an identifying restriction.

Example: equivalence classes

 These are generalized pattern graphs and each of them represent an identifying restriction.

Example: equivalence classes

- These are generalized pattern graphs and each of them represent an identifying restriction.
- Interestingly, G_1 and G_2 represent the same restriction; G_3 and G_4 represent the same restriction.
- Namely, G_1 and G_2 belong to the same equivalence class and G_3 and G_4 belong to another class.

A characterization of equivalence classes - 1

Theorem

Let G be a generalized pattern graph. For a pattern r and another pattern s such that $s \neq PA_r$. This graph is equivalent to the graph G' such that

$$G' = G \oplus e_{s \to r} \ominus \{e_{\tau \to r} : \tau \in \mathsf{PA}_r\}$$

if the following conditions holds

- 1. **(blocking)** all paths from 1_d to r intersects s.
- **2.** (uninformative) for any pattern q that is on a path from s to r, q < r.

A characterization of equivalence classes - 2

Theorem

Let G be a generalized pattern graph. For a pattern r and another pattern s such that $s \neq \mathsf{PA}_r$. This graph is equivalent to the graph G' such that

$$G' = G \oplus e_{S \to r} \ominus \{e_{\tau \to r} : \tau \in \mathsf{PA}_r\}$$

if the following conditions holds

- 1. **(blocking)** all paths from 1_d to r intersects s.
- **2. (uninformative)** *for any pattern q that is on a path from s to r, q < r.*

- The choice of pattern graph reflects our knowledge on how the missingness is generated.
- We use the Programme for International Student Assessment (PISA) data at year 2009 as an example.
- It is a survey on students' ability on math, science, and literature from different countries.

- The choice of pattern graph reflects our knowledge on how the missingness is generated.
- We use the Programme for International Student Assessment (PISA) data at year 2009 as an example.
- It is a survey on students' ability on math, science, and literature from different countries.
- We focus on Germany and focus on three variables:
 - MATH: the math score (always observed).
 - FA: father's education level (H/L; may be missing).
 - \circ MA: mother's education label (H/L; may be missing).

- The choice of pattern graph reflects our knowledge on how the missingness is generated.
- We use the Programme for International Student Assessment (PISA) data at year 2009 as an example.
- It is a survey on students' ability on math, science, and literature from different countries.
- We focus on Germany and focus on three variables:
 - MATH: the math score (always observed).
 - \circ FA: father's education level (H/L; may be missing).
 - MA: mother's education label (H/L; may be missing).
- Here is the table of the response pattern (R_{FA} , R_{MA}):

$(R_{FA}, R_{MA}) =$	11	10	01	00
n =	3282	230	340	1126
Proportion=	65.9%	4.6%	6.8%	22.6%

- Variables FA and MA are collected by questionnaire before a student took the exam.
- Suppose that a participant is asked about father's education first and then mother's education.

- Variables FA and MA are collected by questionnaire before a student took the exam.
- Suppose that a participant is asked about father's education first and then mother's education.
- Before asking any questions, every individual is expected to answer all questions so every one start with a response pattern (1,1). Then when asked a question, the participant will decide answer it or not.

- Variables FA and MA are collected by questionnaire before a student took the exam.
- Suppose that a participant is asked about father's education first and then mother's education.
- Before asking any questions, every individual is expected to answer all questions so every one start with a response pattern (1, 1). Then when asked a question, the participant will decide answer it or not.
- Then there will be 4 possible scenarios that an individual respond:

Answer FA and then answer MA \Rightarrow 11 > 11 > 11

Answer FA and then not answer MA \Rightarrow 11 > 11 > 10

Not answer FA but then answer MA \Rightarrow 11 > 01 > 01

Not answer FA and then not answer MA \Rightarrow 11 > 01 > 00

Answer FA and then answer MA
$$\Rightarrow$$
 11 \triangleright 11 \triangleright 11 \Rightarrow path = 11 \rightarrow 11 Answer FA and then not answer MA \Rightarrow 11 \triangleright 11 \triangleright 10 \Rightarrow path = 11 \rightarrow 10 Not answer FA but then answer MA \Rightarrow 11 \triangleright 01 \triangleright 01 \Rightarrow path = 11 \rightarrow 01 Not answer FA and then not answer MA \Rightarrow 11 \triangleright 01 \triangleright 00 \Rightarrow path = 11 \rightarrow 01 \rightarrow 00.

- The notation ▶ denotes the decision of answering one question or not.
- ∘ r_1 ▶ r_2 will becomes an arrow in a DAG when $r_1 \neq r_2$.
- The only exception is the scenario that $1_d \triangleright 1_d \triangleright \cdots \triangleright 1_d$; in this case we denote it as $1_d \rightarrow 1_d$.

• The above plot is the pattern graph that corresponds to these scenarios:

Report FA and then report MA \Rightarrow path = 11 \rightarrow Report FA and then not report MA \Rightarrow path = 11 \rightarrow Not report FA but then report MA \Rightarrow path = 11 \rightarrow Not report FA and then not report MA \Rightarrow path = 11 \rightarrow 01 \rightarrow 00.

- Suppose that there are some individuals who would skip any questions relating to parent's education level.
- This can be represented by a path $11 \rightarrow 00$.
- Then the above graph will be a better description.

- The left two panels show the two possible pattern graphs.
- The right panel displays the average score of mathematics, separated by different parents' education level.
- The estimator is obtained by the IPW with logistic regression; uncertainty is obtained by the bootstrap.

Conclusion

Conclusion

- Pattern graph provides a theoretical framework for missing data.
- Identification, interpretation, estimation, efficiency, computation, sensitivity analysis all depend on the underlying pattern graph.
- It is a new graph-based model for data analysis.
- And it opens several new research directions.
- Note again: the pattern graph is not a conventional graphical model.

Future work

- **Pattern separation and missing data:** if a set of patterns *A* separates *B* and *C*, what does this mean?
- Semi-parametric inference: how to find the underlying efficient estimator with graph-based augmentation?
- **Merging patterns to avoid small sample size:** what should we do when some patten only has a few observations.
- Deeper understanding on the equivalence class: given a pattern graph, how to find other patterns in the same class?
- Inference with multiple graphs: what should we do if we have many identifying restrictions?

Thank You!

More details can be found in https://arxiv.org/abs/2004.00744.

References

- 1. Chen, Y. C. (2020). Pattern graphs: a graphical approach to nonmonotone missing data. arXiv preprint arXiv:2004.00744.
- 2. Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. J. Am. Statist. Assoc., 88(421), 125-134.
- 3. Little, R. J. A., & Rubin, D. B. (2002). Statistical Analysis with Missing Data. Hoboken, New Jersey: Wiley, 2nd ed.
- Little, R. (1995). Modeling the drop-out mechanism in longitudinal studies. Journal of the American Statistical Association, 90(1), 1.
- Tchetgen, E. J. T., Wang, L., & Sun, B. (2018). Discrete choice models for nonmonotone nonignorable missing data: Identification and inference. Statistica Sinica, 28(4), 2069-2088.
- Thijs, H., Molenberghs, G., Michiels, B., Verbeke, G., & Curran, D. (2002). Strategies to fit pattern-mixture models. Biostatistics, 3(2), 245-265.
- Molenberghs, G., Michiels, B., Kenward, M. G., & Diggle, P. J. (1998). Monotone missing data and pattern-mixture models. Statistica Neerlandica, 52(2), 153-161.
- 8. Rubin, D. B. (2004). Multiple imputation for nonresponse in surveys (Vol. 81). John Wiley & Sons.
- Robins, J. M. (1997). Non-response models for the analysis of non-monotone non-ignorable missing data. Statistics in Medicine, 16(1), 21-37.
- Efron, B. (1994). Missing data, imputation, and the bootstrap. Journal of the American Statistical Association, 89(426), 463-475.
- 11. Liu, J. S. (2008). Monte Carlo strategies in scientific computing. Springer Science & Business Media.
- Kim, J. K., & Yu, C. L. (2011). A semiparametric estimation of mean functionals with nonignorable missing data. Journal
 of the American Statistical Association, 106(493), 157-165. 2011.

Assumptions on the IPW estimator

Let $\eta = (\eta_r : r \in \mathcal{R}) \in \Theta$ be any parameter value, where Θ is the total parameter space. We assume the following conditions:

(L1) there exists O, \overline{O} such that

$$0 < O \le O_r(\ell_r; \eta) \le \overline{O} < \infty$$

for all $\ell_r \in \mathbb{S}_r$ and $r \in \mathcal{R}$ and $\eta \in \Theta$.

(L2) there exists $\eta^* = (\eta_r^* : r \in \mathcal{R})$ in the interior of Θ such that $O_r(\ell_r; \eta^*) = \frac{P(R=r|\ell_r)}{P(R\in \mathsf{PA}_r|\ell_r)}$ and

$$\sqrt{n}(\widehat{\eta}_r - \eta_r^*) \to N(0, \sigma_r^2), \quad \int \theta^2(\ell) (O_r(\ell_r; \widehat{\eta}) - O_r(\ell_r; \eta^*))^2 F(d\ell) = o_P(1),$$
 for some $\sigma_r^2 > 0$ for all r .

- (L3) for every r, the class $\{f_{\eta_r}(\ell_r) = O_r(\ell_r; \eta_r) : \eta_r \in \Theta_r\}$ is a Donsker class.
- (L4) for every r, the differentiation of $O_r(\ell_r; \eta_r)$ with respect to η_r , $O'_r(\ell_r; \eta_r) = \nabla_{\eta_r} O_r(\ell_r; \eta_r)$, exists and $\int \|O'_r(\ell_r; \eta_r)\| F(d\ell_r) < \infty$ for a ball $B(\eta^*, \tau_0)$ for some $\tau_0 > 0$.

Assumptions on the regression adjustments

The regression adjustment estimator has asymptotic normality under the following conditions:

- (R1) There exists $\lambda_r^* \in \Lambda_r$ such that the true conditional density $p(\ell_r|R=r) = p(\ell_r|R=r;\lambda_r^*)$ for every r.
- (R2) For every r, the class

$$\{f_{\lambda}(\ell_r)=m(\ell_r,r;\lambda):\lambda\in\Lambda\}$$

is a Donsker class.

(R3) For every r, $q_r(\lambda) = \mathbb{E}(m(L_r, r; \lambda)I(R = r))$ is bounded twice-differentiable and

$$\int (m(\ell_r, r; \widehat{\lambda}) - m(\ell_r, r; \lambda))^2 F(d\ell_r, r) = o_P(1)$$
$$\sqrt{n}(\widehat{\lambda}_r - \lambda_r^*) \to N(0, \sigma_r^2).$$

• In addition to the IPW, we can rewrite

$$\theta_0 = \mathbb{E}(\theta(L)) = \mathbb{E}(\mathbb{E}(\theta(L)|L_R,R)) = \mathbb{E}(m(L_R,R)),$$

where $m(L_R, R) = \mathbb{E}(\theta(L)|L_R, R)$ is the regression function under pattern R.

• In addition to the IPW, we can rewrite

$$\theta_0 = \mathbb{E}(\theta(L)) = \mathbb{E}(\mathbb{E}(\theta(L)|L_R,R)) = \mathbb{E}(m(L_R,R)),$$

where $m(L_R, R) = \mathbb{E}(\theta(L)|L_R, R)$ is the regression function under pattern R.

• If we have estimator $\widehat{m}(L_R, R)$, then we can estimate the parameter of interest via

$$\widehat{\theta}_{\mathsf{RA}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{m}(L_{i,R_i}, R_i).$$

The regression function

$$m(L_R, R) = \mathbb{E}(\theta(L)|L_R, R) = \int \theta(\ell_{\bar{R}}, L_R) p(\ell_{\bar{R}}|L_R, R) d\ell_{\bar{R}}$$

is essentially the integral of $\theta(L)$ with respect to the extrapolation density.

The regression function

$$m(L_R, R) = \mathbb{E}(\theta(L)|L_R, R) = \int \theta(\ell_{\bar{R}}, L_R) p(\ell_{\bar{R}}|L_R, R) d\ell_{\bar{R}}$$

is essentially the integral of $\theta(L)$ with respect to the extrapolation density.

• With a PMM, we can identify this regression function using an estimator $\widehat{p}(\ell_{\bar{R}}|L_R,R)$.

The regression function

$$m(L_R, R) = \mathbb{E}(\theta(L)|L_R, R) = \int \theta(\ell_{\bar{R}}, L_R) p(\ell_{\bar{R}}|L_R, R) d\ell_{\bar{R}}$$

is essentially the integral of $\theta(L)$ with respect to the extrapolation density.

- With a PMM, we can identify this regression function using an estimator $\widehat{p}(\ell_{\bar{R}}|L_R,R)$.
- This leads to

$$\widehat{m}(L_R,R) = \int \theta(\ell_{\bar{R}},L_R) \widehat{p}(\ell_{\bar{R}}|L_R,R) d\ell_{\bar{R}}.$$

• The integral

$$\widehat{m}(L_R, R) = \int \theta(\ell_{\bar{R}}, L_R) \widehat{p}(\ell_{\bar{R}} | L_R, R) d\ell_{\bar{R}}$$

is hard to compute in general.

The integral

$$\widehat{m}(L_R, R) = \int \theta(\ell_{\bar{R}}, L_R) \widehat{p}(\ell_{\bar{R}} | L_R, R) d\ell_{\bar{R}}$$

is hard to compute in general.

• But we can numerically approximate it with Monte Carlo method.

The integral

$$\widehat{m}(L_R, R) = \int \theta(\ell_{\bar{R}}, L_R) \widehat{p}(\ell_{\bar{R}} | L_R, R) d\ell_{\bar{R}}$$

is hard to compute in general.

- But we can numerically approximate it with Monte Carlo method.
- We generate

$$L_{\bar{R},1}^*,\cdots,L_{\bar{R},N}^*\sim\widehat{p}(\ell_{\bar{R}}|L_R,R).$$

The integral

$$\widehat{m}(L_R, R) = \int \theta(\ell_{\bar{R}}, L_R) \widehat{p}(\ell_{\bar{R}} | L_R, R) d\ell_{\bar{R}}$$

is hard to compute in general.

- But we can numerically approximate it with Monte Carlo method.
- We generate

$$L_{\bar{R},1}^*,\cdots,L_{\bar{R},N}^*\sim\widehat{p}(\ell_{\bar{R}}|L_R,R).$$

Then use the average

$$\frac{1}{N}\sum_{k=1}^{N}\theta(L_{\bar{R},k}^{*},L_{R})\approx\widehat{m}(L_{R},R).$$

The integral

$$\widehat{m}(L_R, R) = \int \theta(\ell_{\bar{R}}, L_R) \widehat{p}(\ell_{\bar{R}} | L_R, R) d\ell_{\bar{R}}$$

is hard to compute in general.

- But we can numerically approximate it with Monte Carlo method.
- We generate

$$L_{\bar{R},1}^*,\cdots,L_{\bar{R},N}^*\sim\widehat{p}(\ell_{\bar{R}}|L_R,R).$$

Then use the average

$$\frac{1}{N}\sum_{k=1}^N \theta(L_{\bar{R},k}^*, L_R) \approx \widehat{m}(L_R, R).$$

You can show that this is identical to the multiple imputation method!

• The PMM factorization implies

$$\begin{split} \widehat{p}(\ell_{\bar{r}}|L_r,R=r) &= \widehat{p}(\ell_{\bar{r}}|L_r,R\in\mathsf{PA}_r) \\ &= \sum_{s\in\mathsf{PA}_r} P(R=s|R\in\mathsf{PA}_r,L_r) \cdot \widehat{p}(\ell_{\bar{r}}|L_r,R=s). \end{split}$$

• The PMM factorization implies

$$\begin{split} \widehat{p}(\ell_{\bar{r}}|L_r,R=r) &= \widehat{p}(\ell_{\bar{r}}|L_r,R\in\mathsf{PA}_r) \\ &= \sum_{s\in\mathsf{PA}_r} P(R=s|R\in\mathsf{PA}_r,L_r) \cdot \widehat{p}(\ell_{\bar{r}}|L_r,R=s). \end{split}$$

o Moreover,

$$\widehat{p}(\ell_{\bar{r}}|L_r,R=s)=\widehat{p}(\ell_{\bar{s}}|\ell_{s-r},L_r,R=s)\widehat{p}(\ell_{s-r}|L_r,R=s).$$

• The PMM factorization implies

$$\begin{split} \widehat{p}(\ell_{\bar{r}}|L_r,R=r) &= \widehat{p}(\ell_{\bar{r}}|L_r,R\in\mathsf{PA}_r) \\ &= \sum_{s\in\mathsf{PA}_r} P(R=s|R\in\mathsf{PA}_r,L_r) \cdot \widehat{p}(\ell_{\bar{r}}|L_r,R=s). \end{split}$$

Moreover,

$$\widehat{p}(\ell_{\bar{r}}|L_r,R=s)=\widehat{p}(\ell_{\bar{s}}|\ell_{s-r},L_r,R=s)\widehat{p}(\ell_{s-r}|L_r,R=s).$$

• It implies that we first choose a parent pattern $s \in \mathsf{PA}_r$ with a probability of $P(R = s | R \in \mathsf{PA}_r, L_r)$.

• The PMM factorization implies

$$\begin{split} \widehat{p}(\ell_{\bar{r}}|L_r,R=r) &= \widehat{p}(\ell_{\bar{r}}|L_r,R\in\mathsf{PA}_r) \\ &= \sum_{s\in\mathsf{PA}_r} P(R=s|R\in\mathsf{PA}_r,L_r) \cdot \widehat{p}(\ell_{\bar{r}}|L_r,R=s). \end{split}$$

Moreover,

$$\widehat{p}(\ell_{\bar{r}}|L_r,R=s)=\widehat{p}(\ell_{\bar{s}}|\ell_{s-r},L_r,R=s)\widehat{p}(\ell_{s-r}|L_r,R=s).$$

- It implies that we first choose a parent pattern $s \in \mathsf{PA}_r$ with a probability of $P(R = s | R \in \mathsf{PA}_r, L_r)$.
- Then we fill-in variable ℓ_{s-r} by sampling from $\widehat{p}(\ell_{s-r}|L_r, R=s)$.

The PMM factorization implies

$$\begin{split} \widehat{p}(\ell_{\bar{r}}|L_r,R=r) &= \widehat{p}(\ell_{\bar{r}}|L_r,R\in\mathsf{PA}_r) \\ &= \sum_{s\in\mathsf{PA}_r} P(R=s|R\in\mathsf{PA}_r,L_r) \cdot \widehat{p}(\ell_{\bar{r}}|L_r,R=s). \end{split}$$

Moreover,

$$\widehat{p}(\ell_{\bar{r}}|L_r,R=s)=\widehat{p}(\ell_{\bar{s}}|\ell_{s-r},L_r,R=s)\widehat{p}(\ell_{s-r}|L_r,R=s).$$

- It implies that we first choose a parent pattern $s \in \mathsf{PA}_r$ with a probability of $P(R = s | R \in \mathsf{PA}_r, L_r)$.
- Then we fill-in variable ℓ_{s-r} by sampling from $\widehat{p}(\ell_{s-r}|L_r, R=s)$.
- And treat this observation as the one with pattern R = s.

- Suppose we have an individual without any observed variables.
- It has two parents: 100 and 001 (red).
- We will randomly choose one parent as our next pattern.

- Suppose that pattern 100 is chosen.
- We will generate variable L_{100} from $\widehat{p}(\ell_{100}|R=100)$.
- Then we will treat this as an observation with pattern 100.
- Now we continue to randomly choose one pattern from the two parents (red).

- Suppose that pattern 101 is chosen.
- We will generate variable L_{001} from $\widehat{p}(\ell_{001}|L_{100},R=100)$ because it is still missing.
- Then we will treat this as an observation with pattern 101.
- Now we continue to randomly choose one pattern from the parent set.

- Because there is only one parent 111, we will alway move to this node.
- We generate variable L_{010} from $\widehat{p}(\ell_{010}|L_{101},R=111)$.
- Now the pattern is 111 so we have finished the sampling/imputation.

• Note that at the pattern 100, it is possible to directly move to 111.

- In this case, we will generate L_{011} from $\widehat{p}(\ell_{011}|L_{100},R=111)$.
- And the sampling/imputation process is done.

Exponential tilting on the PISA data

- We use the same sensitivity parameter for all pattern and all values, i.e., every element of $\delta_{\bar{r}}$ is the same.
- Note that because only FA and MA are subject to missing, the sensitivity parameter only applies to these two variables.
- In both panels we see that the group (L, L) is unaffected by the sensitivity parameter. This is because when both FA and MA are L (the binary representation of L is 0 and H is 1).