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Probability model under missingness

o The variable of interest (also called a study variable) is a random
variable L = (Ly,--- ,Ly) € R4,

o We represent the missingness of L using a binary response vector
R e {0,1}4.
o Rj=1if L;is observed.
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Probability model under missingness

o The variable of interest (also called a study variable) is a random
variable L = (Ly,--- ,Ly) € R4,

o We represent the missingness of L using a binary response vector
R e {0,1}4.

o Rj=1if L;is observed.

o Wedenote Lr = (L; : Rj = 1) be the observed variable when the
response pattern is R.

o The joint distribution of (L, R), F(¢, r), is called the full-data
distribution. The corresponding density p(¢, r) is called full-data
density.

o We are often interested in some characteristic of F(¢), the
distribution of L.
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Response indicator
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Challenge of missing data

o A challenge in missing data is that F({) or F(¢{, r) or p({, r) are
often unidentifiable.

o Namely, even with infinite amount of data, we still cannot
accurately estimate them.
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Challenge of missing data

o A challenge in missing data is that F(¢) or F(¢,r) or p({, r) are
often unidentifiable.

o Namely, even with infinite amount of data, we still cannot
accurately estimate them.

o To see this, let1; = (1,1, -, 1) be the special response pattern
that corresponds to fully observed case.

o We denote R =1, — R as flipping 0 and 1 in R. Then, Ly is the
unobserved variables under pattern R.

o The challenge of missing data comes from the fact that the PDF
pUUIR = 1) =p(Lr, tr|R = 1) = p(¢5|Lr, R = 1)p(&IR = 1)
involves unobserved part p(¢z|{,, R = 7).
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Response indicator, again
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Strategy in missing data: selection models

o Selection models (SMs): attempt to identify the selection
probability (missing data mechanism)

P(R = r|L)

from making assumptions (known as identifying restrictions).
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Strategy in missing data: selection models

o Selection models (SMs): attempt to identify the selection
probability (missing data mechanism)
P(R =r|L)
from making assumptions (known as identifying restrictions).
o Motivation: consider the problem of estimating a mean
O(L)I(R =14)
=E(OL)) =E|(——Fi+—
60 = (0(L)) ( -0

o If we can identify (L) = P(R = 1,4|L), we can construct an inverse
probability weighting (IPW) estimator

Z O(L)I(R; =14)
n(L;) ’

Note that here (L1, R1),-- -, (Ln, R,) denotes the observed study
variable and its response pattern of different individuals.

) (L) = P(R = 14]L).
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Strategy in missing data: missing at random

o Missing completely at random (MCAR):
P(R=r|L)=P(R =7).
o Missing at random (MAR; Little and Rubin 2002):

P(R = r|L) = P(R = r|L,).

(¢]

Missing not at random (MNAR) is the case where the probability
P(R = r|L) may depends on the unobserved L;.

(e]

In this talk, the identifying restrictions we construct are mostly
MNAR.

7/53



Strategy in missing data: pattern mixture models

o Pattern mixture models (PMMs): decompose the full-data
density via

p(€,r)=p(l:ty, R =1)p(€;|R =7)P(R =7).

o p(tz|€;, R =r) : the extrapolation density (unidentifiable).
o p(¢y|R =r)P(R =r) : the observed-data density (identifiable).
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Pattern mixture models (PMMs): decompose the full-data
density via

p(€,r)=p(ls|€;, R =71)p(£|R =1r)P(R =r1).

@]

p(€:|tr, R = r) : the extrapolation density (unidentifiable).
p(¢;|R =r)P(R =r) : the observed-data density (identifiable).
We attempt to identify p(¢7|{,, R = r) by making assumptions.
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Strategy in missing data: pattern mixture models

o Pattern mixture models (PMMs): decompose the full-data
density via

p(€,r)=p(ls|€;, R =71)p(£|R =1r)P(R =r1).

o p(tz|€;, R =r) : the extrapolation density (unidentifiable).
o p(¢y|R =r)P(R =r) : the observed-data density (identifiable).
o We attempt to identify p({7|{;, R = r) by making assumptions.

o Complete-case missing value (CCMYV; Little 1993 and Tchetgen et
al. 2016) restriction:

p(fﬂfr,R =r)= P(fflgr/R =1y).
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Pattern graphs and
identification
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Regular pattern graph

o Let % c {0,1}“ is the response set that P(R € &) = 1.

o A pattern graph is a directed graph G with vertex set being &.

o Namely, a pattern graph is a graph representing the relationship
between different patterns.
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A node/vertex of a graph is called a source if it has no parents.
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o If there is an arrow from s — 7, s is a parent of r and r is a child of
s. We denote PA, as the parents of r.

o A node/vertex of a graph is called a source if it has no parents.

o For two patterns s, r € {0, 1}4, we write r > s if rj 2 sjforall j and
there is at least one coordinate j* such that 7« > s-.

o A pattern graph is called a regular pattern graph if

(G1) pattern1; =(1,1,---,1) is the only source.
(G2) if s » r,thens > r.
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Regular pattern graph

o Let % c {0,1}“ is the response set that P(R € &) = 1.

o A pattern graph is a directed graph G with vertex set being &.

o Namely, a pattern graph is a graph representing the relationship
between different patterns.

[¢]

If there is an arrow from s — r, s is a parent of r and r is a child of
s. We denote PA, as the parents of r.

(¢]

A node/vertex of a graph is called a source if it has no parents.

@]

For two patterns s, r € {0, 1}d, we write r > s if r; > s; for all j and
there is at least one coordinate j* such that 7« > s-.
o A pattern graph is called a regular pattern graph if

(G1) pattern1; =(1,1,---,1) is the only source.

(G2) ifs — r,thens > r.
o (Gz) implies that the resulting graph is a directed acyclic graph
(DAG).
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Examples of regular pattern graphs
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Examples of regular pattern graphs
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Pattern graph and selection odds model

o We say that the selection odds model of (L, R) factorizes with
respect to G if

PR=rll)  P(R=7|L,) _
P(R € PA,|L) ~ P(R € PA,|L,) Or(Ly)-
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Pattern graph and selection odds model

o We say that the selection odds model of (L, R) factorizes with
respect to G if

PR=rll)  P(R=7|L,) _
P(R € PA,|L) ~ P(R € PA,|L,) Or(Ly)-

o Namely, the graph factorization requires that the selection odds

(against parents) is observable.
o The selection odds model implies
PR =7|L) = Z P(R = s|L)Oy(L,).
sePA,

The chance of observing a particular pattern equals the
summation of all its parents’ probability multiplied by an
observed factor O,(L,).

o Note: pattern graphs are not the conventional graphical model!
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Selection odds model and identifications

Suppose that the selection odds model of (L, R) factorizes with respect to a
reqular pattern graph G. Let Q,(L) = % and Q1,(L) = 1. Then (L)
is identifiable and is defined via

n(L) = QL) = Oy(Ly) Y, Qu(L).

sePA,

_
2 Qr(D)’

o This provides a recursive approach to identify m(L).
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Example: Conditional MAR

o LetL =(Z,Y1,Y>,Y3) where Z is a covariate and Y; is measured at
different time points. Also, we define R, = R; and T = R + R3 + Ry.

o Both Z and Y; are subject to missing and the missingness of Y; is
monotone.
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Example: Conditional MAR

o LetL =(Z,Y1,Y>,Y3) where Z is a covariate and Y; is measured at
different time points. Also, we define R, = Ry and T = R, + R3 + Ry.

o Both Z and Y; are subject to missing and the missingness of Y; is
monotone.

— T
1111——=1110——=1100

01111—>0110—>0100
P
o Then the above pattern graph implies the following conditional MAR:
P(T=tR,=1,L)=P(T=tR;=1,Z,Y1,---,Y}), t=1,2,3
P(T=tR,=0,L)=P(T=¢t|R, =0,Yy,---,Ys), t=1,2,3
P(R, =0|T =3,Y1,Y2,Y3)
PR, =1IT =3,Y1,Y2,Y3)

P(R,=0|T =3,L)=P(R, =1|T =3,L)-
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Path identification interpretation -1

o A (directed) path E in a graph G is a set of vertices r1,7,73,- -+, 1y such
that the edge 7y — 141 exists in G.
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Path identification interpretation -1

o A (directed) path E in a graph G is a set of vertices r1,7,73,- -+, 1y such
that the edge 7y — 141 exists in G.

o We define I, to be the collection of all paths from 1, to r and let
ITy, = {14, 14}. We also define IT = U,IT, to be the collection of all paths.

o The selection odds model implies an interesting representation of the
selection probability:

Suppose that the selection odds model of (L, R) factorizes with respect to a
regular pattern graph G. Then

1= > n0)| |osLs)

Hell HE
PR=rlL)= ) n(L)] ] Os(L)
Bell, SEX
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Path identification interpretation -2

o The two equations

1= ) n0)[ [0u(Ls)

Hell s€ER
PR=rlL)= > =D)[ [Ou(Lo)
Eell, sel

show an interesting interpretation.
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as the probability of selecting = from I1.
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Path identification interpretation -2

o The two equations

1= ) n0)[ [0u(Ls)

Hell s€ER
PR=rlL)= > =D)[ [Ou(Lo)
Hell, sel

show an interesting interpretation.

o First, for & € I1, we can interpret

n(L) | [ Ou(Lo) = x(EIL)

SEE
as the probability of selecting = from I1.

o Then the second equation implies P(R = r|L) = Y,zcpy, ®(E|L), i.e.,
P(R = r|L) is the summation of contributions from all paths ending at .
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Path identification: an example

11

/N

10 01

N\

00

17/53



Path identification: an example

o There are 5 paths and each corresponds to

11 probability:
/ \ x(11 — 11|L) = n(L)
x(11 — 10|L) = 7(L)O10(L10)
10 01 x(11 — 01|L) = 7t(L)Oo1(Lo1)
\ x(11 — 00|L) = 7(L)Ogo(Loo)
00 x(11 — 10 — 00|L) = 7t(L)O10(L10)Oo0(Loo)
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Path identification: an example

o There are 5 paths and each corresponds to

11 probability:
/ \ x(11 — 11|L) = n(L)
x(11 — 10|L) = 7(L)O10(L10)
10 01 x(11 — 01|L) = 7t(L)Oo1(Lo1)
\ x(11 — 00|L) = 7(L)Ogo(Loo)
00 x(11 — 10 — 00|L) = 7t(L)O10(L10)Oo0(Loo)

o So the chance of observing each pattern is
P(R=11|L) = n(L), P(R =10|L) = n(L)O10(L10),
P(R = 01|L) = 7(L)Oo1(Lo1)

P(R = 00|L) = 7(L)Ooo(Loo) + 7(L)O10(L10)Ovo(Lo0)-  ,, +,



Pattern graph and pattern mixture model - 1

(e]

Recall that PMMs decompose the joint density via

p(€,r)=p(l:tr, R =1)p(€;|R =7)P(R =7).

@]

p(€:|tr, R = r) : the extrapolation density (unidentifiable).
p(¢;|R =r)P(R = r) : the observed-data density (identifiable).
Strategy of PMMs: try to identify the extrapolation density.

o

(¢]
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Pattern graph and pattern mixture model - 2

o We say that the pattern mixture model of (L, R) factorizes with
respect to G if

p(L:|t,, R =1) = p(t;|€,, R € PA,).

o Namely, the extrapolation density is the same as the same
variables’ conditional density in the parent patterns.
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Pattern graph and pattern mixture model - 2

o We say that the pattern mixture model of (L, R) factorizes with
respect to G if

p(L:|t,, R =1) = p(t;|€,, R € PA,).

o Namely, the extrapolation density is the same as the same
variables” conditional density in the parent patterns.

Suppose that the pattern mixture model of (L, R) factorizes with respect to a
reqular pattern graph G. Then the full-data density p(€, r) is (nonparamet-
rically) identifiable.

o Namely, we can estimate the joint distribution of (L, R) and the
resulting distribution will agree with the observed data
(nonparametrically identifiable).
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Equivalence of the graph factorizations

If G is a reqular pattern graph and p(€,,r) > 0 for all €, and v € R, then
the following two statements are equivalent:

o the selection odds model of (L, R) factorizes with respect to G.
o the pattern mixture model of (L, R) factorizes with respect to G.
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Equivalence of the graph factorizations

If G is a reqular pattern graph and p(€,,r) > 0 for all €, and v € R, then
the following two statements are equivalent:

o the selection odds model of (L, R) factorizes with respect to G.

o

the pattern mixture model of (L, R) factorizes with respect to G.

o The condition, p(¢,,r) > 0 for all £, and r € R, can be viewed as a
positivity condition.

o Therefore, we can interpret the result using either a selection odds
model perspective or a pattern mixture model perspective.

o Note that Robins et al. (2000) had shown that certain selection
odds models and pattern mixture models are equivalent.
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Estimation with pattern graphs
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IPW estimator and graph factorization - 1

o With a slight abuse of notation, the observations are denoted as

(Ll,R1/ Rl)/ Tty (Li’l,Rnl Rl’l)
o Recall that the IPW estimator is

1 Z O(L)I(R; = 14)
n(ly

o Often 7t(€) is unknown and has to be estimated.
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IPW estimator and graph factorization - 1

o With a slight abuse of notation, the observations are denoted as

(Ll,er Rl)/ Tty (Ln,Rnl Rl’l)
o Recall that the IPW estimator is

1 Z O(L)I(R; = 14)
n(ly

o Often 7t(€) is unknown and has to be estimated.

o With the selection odds model, we can estimate it by estimating

each odds O,(L,) = %.
o This can be done by applying a generative classifier or a regression

model comparing two classes
R =rvs. R €PA,

using only the variables L,.
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IPW estimator and graph factorization - 2

o Let O(L,) = O(Ly; 1,) be the estimated odds and 7, € ©, is the
corresponding parameter.

o Note: logistic regression leads to O(L,; 7,) = exp(LI7,).
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o Let O(L,) = O(Ly; 1,) be the estimated odds and 7, € ©, is the
corresponding parameter.

o Note: logistic regression leads to O(L,; 7,) = exp(LI7,).

o This implies an estimator 7(L) = 7t(L; 1), where 1 = (7], : r € R).

o The IPW estimator is

n

~ 1 Z O(L)I(R; = 14)

Oipw =
n & 7t(L;; )
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IPW estimator and graph factorization - 2

o Let O(L,) = O(Ly; 1,) be the estimated odds and 7, € ©, is the
corresponding parameter.

o Note: logistic regression leads to O(L,; 7,) = exp(LI7,).

o This implies an estimator 7(L) = 7t(L; 1), where 1 = (7], : r € R).

o The IPW estimator is

n

~ 15 OL)IR; =14)
Oipw = 1:21 —T((Li) T

n
Theorem

Suppose that parametric models are correctly specified. Then under regular-
ity conditions,

i D
Vn(Opw — 00) = N(0, ayy)-
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Recursive computation of 7t(L)

o Here is a simple approach to compute 7t(L) from estimators O, (L)
(not limited to parametric models).
o Recall that
_ 1 ~ ~ ~
)= Q=0 > Q1)

r <r ) sePA,

and Qy,(L) = 1.
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Recursive computation of 7t(L)

o Here is a simple approach to compute 7t(L) from estimators O, (L)
(not limited to parametric models).
o Recall that
_ 1 ~ ~ ~
AL)=—=—, Q/(L)=0,(L,) > QL)
Zr F(L) sePA,
and Qld(L) =1.
o We first evaluate 6,(Lr) for each r.

o Then we sequentially compute ér(L) for|rj=d-1,d-2,---,1
using the recursive relation where |r| = 3}, 7; is the number of
observed patterns.
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Graphical representation of the recursive computation

111 O111 Q111
110 101 011 O10/ O11 Opin Quo/ Q1 Qou

o<

100 010 001 Owo  Ooio O Qo Qoo Qoo

\/

000 Oooo Qooo

o Consider the above graph and the corresponding O,, Q.
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Graphical representation of the recursive computation

110 101 011 O110

— T 71\

010 001 O100

O111
O11 O
Oo10 Ooos
Oono

Identifiable| ;|

I
Quo/ Q1 Qou

o<

Qo Qoo Qom
/

AN

Qooo

o All these quantities are identifiable/computable (Q111(L) = 1).
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Graphical representation of the recursive computation

111

,///// 1 \\\\\‘
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Graphical representation of the recursive computation
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Augmented IPW -1

o Itis known that we can improve the efficiency of the IPW via
augmentation (Tsiatis 2007).
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Augmented IPW -1

o Itis known that we can improve the efficiency of the IPW via
augmentation (Tsiatis 2007).

o A general form of augmentation is

OL)I(R =14)

20 +W(Lg, R),

where E(W(Lg, R)) = 0 and E(W?(Lg, R)) < c.
o Because we are modeling the selection odds to be observable,
consider another augmentation:

OL)I(R =14)

D+ 2R =)= O,(LIIR < PA)GHLY),

r#ly

where E(¢p2(L,)) < oo for each r.
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Augmented IPW -2

o All possible augmentations:
o [OWIR=1y)

- (L)
o Augmentations using selection odds:

_[OL)IR =1y)
g‘{ (L)

+W(Lg,R): E(W(Lg,R)) =0, E(W*(Lg, R)) < oo} )

+ DR =7) = OAL)I(R € PA)G(Ly) :

r#ly

E($7(Ly)) < 00}-
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Augmented IPW -2

o All possible augmentations:
o [OWIR=1y)

- (L)
o Augmentations using selection odds:

F = {G(L)I(R =14)
n(L)

+W(Lg,R): E(W(Lg,R)) =0, E(W*(Lg, R)) < oo} )

+ ) IR =7) = O/L)I(R € PA)G/(L,) :

r#ly

E($7(Ly)) < 00}-

Suppose that (L, R) factorizes with respect to a reqular pattern graph and
and p(€y,r) > 0 forall €, and r € R. Then 6 = F.
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Improving efficiency - 1

o Although the previous theorem characterizes the augmentation
space, it is hard to derive the most efficient estimator in F.
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Improving efficiency - 1

o Although the previous theorem characterizes the augmentation
space, it is hard to derive the most efficient estimator in F.

o The challenge comes from the product of indicator functions
I(R =r)and I(R € PA,).

o To show the augmentation improves the efficiency, we consider
the case that we only augment it with one term:
O(I(R = 14)

=0T (I(R = 1) = OH(LA)I(R € PA/))p/(Ly).
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Improving efficiency - 2

o Augmentation with one term:

G {G(L)I(R =14)

(L) +(I(R=7) = Ox(L)I(R € PA))p,(Ly) :

H#@M<w}
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Improving efficiency - 2

o Augmentation with one term:

F, = {G(L)I(R =1y

(L) +(I(R=7) = Ox(L)I(R € PA))p,(Ly) :

E(¢(Ly)) < oo}.

Assume (L, R) factorizes with respect to a reqular pattern graph G. Let F,
be defined as the above. Then the choice

E(O(L)IL,)
P(R € {r} UPA,|L,)

O(L
E(2BIL,, R =14) 7(Ly)

~ T T P(Re{rlUPAL,) I(1a € PA,)

(P;(Lr) == I(14 € PA,)

leads to the most efficient estimator in F,.
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Improving efficiency - 3

o An equivalent expression of the optimal ¢;:

0, if 1, ¢ PA,.
. E(XY L, R=1
(PV(LI’) = —(711(L+(Lr)d), lf pAr = {1d}
E(O(L)|Ly)

- m , otherwise.
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- m , otherwise.

o If 1, is not a parent of r, single augmentation does not improve the
efficiency.

o If 1; is the only parent, the augmentation has a simple and elegant
form.

o Note that for any patterns r that contains only one missing entry
(ie., |r] =d = 1), 1; will always be its only parent.
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Improving efficiency - 3

o An equivalent expression of the optimal ¢;:

0, if 1, ¢ PA,.
. E(2Lr, R=1
(Pr(Li’) = —%, lf pAr = {1d}
E(O(L)IL,)

- m , otherwise.

o If 1, is not a parent of r, single augmentation does not improve the
efficiency.

o If 1; is the only parent, the augmentation has a simple and elegant
form.

o Note that for any patterns r that contains only one missing entry
(ie., |r] =d = 1), 1; will always be its only parent.

o The CCMV restriction is the case that 1, is the only parent for any
pattern other than 1,.
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Improving efficiency: illustration

111
1o / 101 o1 0, if 15 ¢ PA,.
“(L,) = [E(%lL,,R:ld) )
1000 010 o001 Prllr) = =255, if PA = {14}
E(O(L)IL,) .
\ 000 / —m, otherwise.

o Augmentation via patterns 110,101, 011 is recommended.
o Augmentation via patterns 010, 001, 000 does not help.

o Augmentation via 100 is helpful but hard to compute.
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Regression adjustment and PMMs

o In addition to the IPW, we can rewrite
0o = E(O(L)) = E(E(O(L)|LRr, R)) = E(m(Lg, R)),

where m(Lgr, R) = E(6(L)|Lg, R) is the regression function under
pattern R.
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o In addition to the IPW, we can rewrite
0o = E(O(L)) = E(E(O(L)|LRr, R)) = E(m(Lg, R)),

where m(Lgr, R) = E(6(L)|Lg, R) is the regression function under
pattern R.

o If we have estimator n?(L R, R), then we can estimate the parameter

of interest via
n

~ 1 —
GRA = ; Z m(Li,Ri/Ri)‘
i=1
o We estimate m(Lg, R) by the pattern graph and PMMs
formulation.
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Regression adjustment and PMMs

o In addition to the IPW, we can rewrite
0o = E(O(L)) = E(E(O(L)|LRr, R)) = E(m(Lg, R)),

where m(Lgr, R) = E(6(L)|Lg, R) is the regression function under
pattern R.

o If we have estimator n?(L R, R), then we can estimate the parameter

of interest via
n

~ 1 —~
GRA = ; Zl m(Li,Ri/Ri)‘
i=

o We estimate m(Lg, R) by the pattern graph and PMMs
formulation.

o You can show that if we use a Monte Carlo approximation to
m(L; r,, R;), this is identical to the multiple imputation method.
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Sensitivity analysis
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Sensitivity analysis - 1

o Sensitivity analysis attempts to perturb our identifying restrictions
a bit and study how the final estimator change with respect to the
perturbation.

34/53



Sensitivity analysis - 1

o Sensitivity analysis attempts to perturb our identifying restrictions
a bit and study how the final estimator change with respect to the
perturbation.

o A common approach in sensitivity analysis is the exponential
tilting (Kim and Yu 2011).

34/53



Sensitivity analysis - 1

o Sensitivity analysis attempts to perturb our identifying restrictions
a bit and study how the final estimator change with respect to the
perturbation.

o A common approach in sensitivity analysis is the exponential
tilting (Kim and Yu 2011).

o For SMs, this can be written as

P(R=r|L)  P(R=r|L;)

= LT5;),
PR PAIL) - P(R € PAIL,) SPL707)

where 65 is a given vector.

34/53



Sensitivity analysis - 1

o Sensitivity analysis attempts to perturb our identifying restrictions
a bit and study how the final estimator change with respect to the
perturbation.

o A common approach in sensitivity analysis is the exponential
tilting (Kim and Yu 2011).
o For SMs, this can be written as
P(R=r|L)  P(R=r|L;)

= LT5;),
PR PAIL) - P(R € PAIL,) SPL707)

where 65 is a given vector.

o When 67 = 0, we recover the original restriction.

34/53



Sensitivity analysis - 1

o Sensitivity analysis attempts to perturb our identifying restrictions
a bit and study how the final estimator change with respect to the
perturbation.

o A common approach in sensitivity analysis is the exponential
tilting (Kim and Yu 2011).
o For SMs, this can be written as
P(R=r|L)  P(R=r|L;)

= LTs5),
PR PAIL) - P(R € PAIL,) SPL707)

where 65 is a given vector.
o When 67 = 0, we recover the original restriction.
o For PMMs, we can use
p(C:l€,, R =) = p(Lrl €y, R € PA,) exp(LI 67).
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Sensitivity analysis - 2

o Here is an interesting result-perturbing the selection odds and
perturbing the pattern mixture models are equivalent.

Let r be a response pattern and g(r) be any function of the unobserved
entries. Then the assumption

PR=rl) _ PR=rlt)
P(R € PA,[0) _ P(R € PA,|(,)

g(¢7)
is equivalent to the assumption

p(€zl€;, R = 1) = p(€:lt;, R € PA,) - g(€7).
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Sensitivity analysis: perturbing graph - 1

o We can also perform sensitivity analysis via perturbing the graph.

o Before doing so, we first note that the number of identifying
restrictions generated by regular pattern graphs is huge.
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If all the study variable L € R are subjected to missing, then there are

d-1
M = Md = 1—[(22d_k—l = 1)(?)
k=0

distinct graphs satisfying conditions (G1-2) .
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Sensitivity analysis: perturbing graph - 1

o We can also perform sensitivity analysis via perturbing the graph.

o Before doing so, we first note that the number of identifying
restrictions generated by regular pattern graphs is huge.

If all the study variable L € R are subjected to missing, then there are
d-1
M=M, = 1—[(22‘“‘—1 NG
k=0
distinct graphs satisfying conditions (G1-2) .

o Here are the first few values of M = My:

My=1, My=7, Ms=43561, My > 10'.
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Sensitivity analysis: perturbing graph - 2

o Because the regular pattern graphs span a large class of
identifying restriction, we can perturb the graph to perform
sensitivity analysis.

o Define

A1G ={G": |G’ = G| =1, condition (G1-2) holds for G’},

where |G’ — G| = 1 means that the two graphs only differ by one
edge (arrow).
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Sensitivity analysis: perturbing graph - 2

o Because the regular pattern graphs span a large class of
identifying restriction, we can perturb the graph to perform
sensitivity analysis.

o Define

A G ={G":|G" - G| =1, condition (G1-2) holds for G’},
where |G’ — G| = 1 means that the two graphs only differ by one
edge (arrow).

o The class A1G can be decomposed into

AG=A1GUA_ G,
where
Ay1G={G :|G' =G| =1, G is aregular pattern graph, G ¢ G'},
A_1G ={G" : |G’ - G| =1,G is aregular pattern graph, G’ ¢ G}.

37/53



Sensitivity analysis: perturbing graph - 3

Let s, r be vertices of G and es_,, be the edge/arrow from s to r. We define
G & e5_ to be the graph where edge es_,, is added and G © es_,, to be the
graph where edge es_,, is moved. Then

A1G={G®es—,:s>71,s¢PA},
A1G={GSess : s €PA,, |PA| > 1}

o This proposition provides a simple way to characterize the two
perturbed classes of graphs.
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Generalized pattern graphs
and equivalence classes
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Generalized pattern graphs

o A pattern graph is called a generalized pattern graph if

(G1) pattern1; =(1,1,---,1) is the only source.
(DAG) the graph is a DAG.
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For a graph G that satisfies (G1) and (DAG) and p(¢,,r) > 0 for all £, and
r € R, then

1. selection odds model and pattern mixture model factorizations are
equivalent.
2. it leads to an (nonparametrically) identifiable full-data distribution.
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Generalized pattern graphs

o A pattern graph is called a generalized pattern graph if

(G1) pattern1; =(1,1,---,1) is the only source.
(DAG) the graph is a DAG.

For a graph G that satisfies (G1) and (DAG) and p(¢,,r) > 0 for all £, and
r € R, then

1. selection odds model and pattern mixture model factorizations are
equivalent.
2. it leads to an (nonparametrically) identifiable full-data distribution.

o The above theorem shows a powerful result-as long as the pattern
graph has unique source 1; and is a DAG, it can be used to
represent an identifying restriction.
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Example: equivalence classes

11 11 11 11
/ SN S /
10 01 10 01 10 01 10 — 01
N / \
00 00 00 00
Gy G G3 Gy

o These are generalized pattern graphs and each of them represent
an identifying restriction.

41/53



Example: equivalence classes

11 11 11 11
/ SN S /
10 01 10 01 10 01 10 — 01
N / \
00 00 00 00
Gy G G3 Gy

o These are generalized pattern graphs and each of them represent
an identifying restriction.

o Interestingly, G1 and G, represent the same restriction; Gz and G4
represent the same restriction.

o Namely, G1 and G belong to the same equivalence class and G3
and G4 belong to another class.
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A characterization of equivalence classes - 1

Let G be a generalized pattern graph. For a pattern r and another pattern s
such that s # PA,. This graph is equivalent to the graph G’ such that

G =G®es, 0{ers,: T €PA}

if the following conditions holds

1. (blocking) all paths from 1, to r intersects s.

2. (uninformative) for any pattern q that is on a path froms tor, q <r.
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A characterization of equivalence classes - 2

Theorem

Let G be a generalized pattern graph. For a pattern r and another pattern s such that s # PA,. This graph
is equivalent to the graph G’ such that

G =G®es—r ©{ersr: T €PA}

if the following conditions holds

1. (blocking) all paths from 14 to r intersects s.

2. (uninformative) for any pattern q that is on a path from s tor, q < r.

1111 1111 1111
¥ N ¥ N ¥ N
0101 0()*10 0101 0()*10 0101 0()*10
\ (0110 \ (0110 \ (0110
OO&» /0111 OO£,>/—>0111 O()i‘ 0111
0001 0001 0001
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Choice of pattern graph and PISA data - 1

o The choice of pattern graph reflects our knowledge on how the
missingness is generated.

o We use the Programme for International Student Assessment
(PISA) data at year 2009 as an example.

o Itis a survey on students” ability on math, science, and literature
from different countries.
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Choice of pattern graph and PISA data - 1

o The choice of pattern graph reflects our knowledge on how the
missingness is generated.

o We use the Programme for International Student Assessment
(PISA) data at year 2009 as an example.

o Itis a survey on students” ability on math, science, and literature

from different countries.
o We focus on Germany and focus on three variables:
o MATH: the math score (always observed).
o FA: father’s education level (H/L; may be missing).
o MA: mother’s education label (H/L; may be missing).

o Here is the table of the response pattern (Rrs, Rua):

(RFA/ RMA) = 11 10 01 00

n= 3282 230 340 1126
Proportion=65.9% 4.6% 6.8% 22.6%
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Choice of pattern graph and PISA data - 2

o Variables FA and MA are collected by questionnaire before a student
took the exam.

o Suppose that a participant is asked about father’s education first
and then mother’s education.
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o Before asking any questions, every individual is expected to
answer all questions so every one start with a response pattern
(1,1). Then when asked a question, the participant will decide
answer it or not.
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Choice of pattern graph and PISA data - 2

o Variables FA and MA are collected by questionnaire before a student
took the exam.

o Suppose that a participant is asked about father’s education first
and then mother’s education.

o Before asking any questions, every individual is expected to
answer all questions so every one start with a response pattern
(1,1). Then when asked a question, the participant will decide
answer it or not.

o Then there will be 4 possible scenarios that an individual respond:

Answer FA and then answer MA = 11> 11> 11
Answer FA and then not answer MA = 11> 11> 10
Not answer FA but then answer MA = 11> 01» 01
Not answer FA and then not answer MA = 11> 01> 00
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Choice of pattern graph and PISA data - 3

Answer FA and then answer MA = 11> 11> 11
= path=11 - 11
Answer FA and then not answer MA = 11> 11> 10
= path=11 — 10
Not answer FA but then answer MA = 11> 01> 01
= path=11 — 01
Not answer FA and then not answer MA = 11> 01> 00
= path =11 — 01 — 00.

o The notation » denotes the decision of answering one question or
not.

o r1» 1, will becomes an arrow in a DAG when rq # 7.

o The only exception is the scenario that 1, > 1,4 > - - - » 1; in this case
we denote itas 1; — 1,. 46/ 53



Choice of pattern graph and PISA data - 4

11
7N\
10 01

/

00
G

o The above plot is the pattern graph that corresponds to these
scenarios:
Report FA and then report MA = path =11 — 11
Report FA and then not report MA = path =11 — 10
Not report FA but then report MA = path =11 — 01
Not report FA and then not report MA = path =11 — 01 — 00.
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Choice of pattern graph and PISA data - 5

11

RN

10 01

S

00
Go

o Suppose that there are some individuals who would skip any
questions relating to parent’s education level.

o This can be represented by a path 11 — 00.
o Then the above graph will be a better description.
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Choice of pattern graph and PISA data - 6

MATHAVOq
460 480 500 52 540 560

G G LL LH HL HH
1 2 Parents' Education

o The left two panels show the two possible pattern graphs.

o The right panel displays the average score of mathematics,
separated by different parents” education level.

o The estimator is obtained by the IPW with logistic regression;
uncertainty is obtained by the bootstrap.
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Conclusion
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Conclusion

o Pattern graph provides a theoretical framework for missing data.

o Identification, interpretation, estimation, efficiency, computation,
sensitivity analysis all depend on the underlying pattern graph.

o Itis a new graph-based model for data analysis.
o And it opens several new research directions.

o Note again: the pattern graph is not a conventional graphical
model.
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Future work

o Pattern separation and missing data: if a set of patterns A
separates B and C, what does this mean?

o Semi-parametric inference: how to find the underlying efficient
estimator with graph-based augmentation?

o Merging patterns to avoid small sample size: what should we do
when some patten only has a few observations.

o Deeper understanding on the equivalence class: given a pattern
graph, how to find other patterns in the same class?

o Inference with multiple graphs: what should we do if we have
many identifying restrictions?
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Thank You!

More details can be found in https://arxiv.org/abs/2004.00744
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Assumptions on the IPW estimator

Letn =(n, : r € R) € O be any parameter value, where © is the total
parameter space. We assume the following conditions:
(L1) there exists O, O such that
0<0<O(r;n) <0 <0
forall {, € S;and r € R and 1 € O.
(L2) there exists n* = (1)} : ¥ € R) in the interior of © such that

. P(R=r|(,
O,(ty;m") = m and

Vi - ) — N, 02, f 02(0)(0,(£,37) - Oy (6 1)PE(dE) = 0p(1),

for some 02 > 0 for all r.
(L3) for every 7, the class { f;,(£;) = O,({,; n;) : 1 € ©,} is a Donsker class.

(Lg) for every r, the differentiation of O,(¢,; 1) with respect to 7,
Oy (tr;1r) = Vi, O:(€r; 1), exists and f 1O;.(¢; nIIF(d€,) < oo for a ball

B(n*, 7o) for some 7o > 0. 55 /53



Assumptions on the regression adjustments

The regression adjustment estimator has asymptotic normality under
the following conditions:

(R1) There exists A; € A, such that the true conditional density
p({;|R=71) =p({;|R =r; A}) for every .
(R2) For every r, the class

{falty)y=m(l:,1;A): A € A}

is a Donsker class.
(R3) Foreveryr, q,(A) =E(m(L,, r; A)I(R = r)) is bounded
twice-differentiable and

f (m(Cy, 1; %) = m(Cy, 73 MF(L,, 7) = 0p(1)

Vi(A, = A}) = N0, 0?).
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Regression adjustment and PMMs - 1

o In addition to the IPW, we can rewrite
0o = E(O(L)) = E(E(O(L)|LR, R)) = E(m(Lg, R)),

where m(Lg, R) = E(6(L)|Lg, R) is the regression function under
pattern R.
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Regression adjustment and PMMs - 1

o In addition to the IPW, we can rewrite
0o = E(O(L)) = E(E(O(L)|LR, R)) = E(m(Lg, R)),

where m(Lg, R) = E(6(L)|Lg, R) is the regression function under
pattern R.

o If we have estimator 7 (Lg, R), then we can estimate the parameter

of interest via
n

-~ 1 —
Ora = - Zl m(L;r,;, R;).
i=
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Regression adjustment and PMMs - 2

o The regression function

m(Lgr, R) = E(O(L)|Lgr, R) = f 0Lz, Lr)p(€x|Lr, R)d €y

is essentially the integral of O(L) with respect to the extrapolation
density.
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o The regression function
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is essentially the integral of O(L) with respect to the extrapolation
density.

o With a PMM, we can identify this regression function using an
estimator p({|Lg, R).
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Regression adjustment and PMMs - 2

o The regression function

m(Lgr, R) = E(O(L)|Lgr, R) = f 0Lz, Lr)p(€x|Lr, R)d €y

is essentially the integral of O(L) with respect to the extrapolation
density.

o With a PMM, we can identify this regression function using an
estimator p({|Lg, R).
o This leads to

rTz(LR,R):f@(fR,LR)ﬁ(fﬁlLR,R)de.

58 /53



Monte Carlo approximation and multiple imputation

o The integral

ﬁ(LR,R):fG(ZR,LR);?(leLR,R)dKR

is hard to compute in general.
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Monte Carlo approximation and multiple imputation

o The integral

ﬁ(LR,R):f6(€R,LR);7(€R|LR,R)d€R

is hard to compute in general.

o But we can numerically approximate it with Monte Carlo method.
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Monte Carlo approximation and multiple imputation

o The integral
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is hard to compute in general.
o But we can numerically approximate it with Monte Carlo method.
o We generate

L;_{,ll Tty L*R,N ~ ﬁ(gl_{lLRl R)
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Monte Carlo approximation and multiple imputation

o The integral

ﬁ(LR,R):f6(€R,LR);7(€R|LR,R)d€R

is hard to compute in general.
o But we can numerically approximate it with Monte Carlo method.
o We generate
L}{,ll Tty L*R,N ~ ﬁ(gl_{lLR/ R)
o Then use the average

N

1 ) _

N Z Q(Ll_{,k’ LR) ~ m(LRIR)
k=1
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Monte Carlo approximation and multiple imputation

o The integral

ﬁi(LR,R):f@({’R,LR)ﬁ(fﬁlLR,R)dKR

is hard to compute in general.
o But we can numerically approximate it with Monte Carlo method.
o We generate
L}{,ll Tty L*R,N ~ ﬁ(gﬁlLR/ R)
o Then use the average

N

1 ) _

N Z Q(Ll_{,k’ LR) ~ m(LRIR)
k=1

o You can show that this is identical to the multiple imputation
method!
59 /53



Sampling from PMMs

o The PMM factorization implies

ﬁ(f;lLr,R = 1") = ﬁ([flLr,R S PAr)

= Z P(R =s|R € PA,,L,) - p(¢;|Ly, R = s).
sePA,
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o The PMM factorization implies

ﬁ(f;lLr,R = 1") = ﬁ([flLr,R S PAr)

= Z P(R =s|R € PA,,L,) - p(¢;|Ly, R = s).
sePA,

o Moreover,

ﬁ([flLr,R = S) = ﬁ({s_'fs_r, Lr,R = S)ﬁ(fs-r'Lr,R = S).
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o The PMM factorization implies

ﬁ(f;|Lr,R = 1") = ﬁ(fflLr,R S PAr)

= Z P(R =s|R € PA,,L,) - p(¢;|Ly, R = s).
sePA,

o Moreover,
ﬁ([flLr,R = S) = ﬁ({s_'fs_r, Lr,R = S)ﬁ(fs-r'Lr,R = S).

o It implies that we first choose a parent pattern s € PA, with a
probability of P(R = s|R € PA,, L;).
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o The PMM factorization implies
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sePA,

o Moreover,
ﬁ([flLr,R = S) = ﬁ(fs_'fs_r, Lr,R = S)ﬁ(fs-r'Lr,R = S).

o It implies that we first choose a parent pattern s € PA, with a
probability of P(R = s|R € PA,, L;).
o Then we fill-in variable ¢;_, by sampling from p({s_,|L,, R = s).
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Sampling from PMMs

o The PMM factorization implies

ﬁ(fi'Lr,R = 1") = ﬁ([flLr,R S PAr)

= Z P(R =s|R € PA,,L,) - p(¢;|Ly, R = s).
sePA,

o Moreover,

ﬁ([flLr,R = S) = ﬁ(fs_'fs_r, Lr,R = S)ﬁ(fs-r'Lr,R = S).

(e]

It implies that we first choose a parent pattern s € PA, with a
probability of P(R = s|R € PA,, L;).
Then we fill-in variable ¢;_, by sampling from p({s_,|L,, R = s).

o

o

And treat this observation as the one with pattern R = s.

60/ 53



lllustration: sampling from PMMs

011

001 |

o Suppose we have an individual without
any observed variables.

o It has two parents: 100 and 001 (red).

o We will randomly choose one parent as
our next pattern.
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lllustration: sampling from PMMs

000

Suppose that pattern 100 is chosen.

We will generate variable Ligg from
p(£100|R = 100).

Then we will treat this as an observation
with pattern 100.

Now we continue to randomly choose one
pattern from the two parents (red).
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lllustration: sampling from PMMs

111
110 101 011
100 010 001

\/

000

Suppose that pattern 101 is chosen.

We will generate variable Loy from
p(Loo1|L100, R = 100) because it is still
missing.

Then we will treat this as an observation
with pattern 101.

Now we continue to randomly choose one
pattern from the parent set.
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lllustration: sampling from PMMs

o Because there is only one parent 111, we

will alway move to this node.

110 101 011 © We generate variable Lgjo from
p(fo10lL101, R = 111).
100 001 o Now the pattern is 111 so we have finished

\ / the sampling/imputation.
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lllustration: sampling from PMMs

011 © Note that at the pattern 100, it is possible
to directly move to 111.

010 001

/

000
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lllustration: sampling from PMMs

o In this case, we will generate Lgi1 from
110 101 011 p(to11|L100, R = 111).

o And the sampling/imputation process is
100 010 001 done.

\/

000
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Exponential tilting on the PISA data

PISA MATH (Germany), pattem graph: G1 PISA MATH (Germany), pattem graph: G2
C e FAMA =LY C e FAMA =LY
24 . ® (FA, MA) = (LH) 24 . ® (FA, MA) = (LH)
@ i ® (FA, MA) = (H,L) @ N ® (FA, MA) = (H,L)
o ! FAMA=(HA) [ ! (FA, MA) = (HH)
3 . 3 |
o ' o '
51 : 231 .
z | z !
<B4 ' = | <8 ' -
=8 ! =3 )
o N o N
84 84
N ' N '
2 ' 2 '
2 ' g7 '
-10 -05 00 05 10 -10 -05 00 05 10
Sensitivity parameter Sensitivity parameter

o We use the same sensitivity parameter for all pattern and all
values, i.e., every element of 9; is the same.

o Note that because only FA and MA are subject to missing, the
sensitivity parameter only applies to these two variables.

o Inboth panels we see that the group (L, L) is unaffected by the
sensitivity parameter. This is because when both FA and MA are L
(the binary representation of L is 0 and H is 1).
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