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Nonparametric Statistics

» Nonparametric Statistics is a branch in statistics that
attempts to make inference without using a parametric form
of the underlying parameter of interest.

» Common topics: density estimation, regression, classification,
clustering, ...
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Nonparametric Statistics

» Nonparametric Statistics is a branch in statistics that
attempts to make inference without using a parametric form
of the underlying parameter of interest.

» Common topics: density estimation, regression, classification,
clustering, ...

» The spirit of nonparametrics also appears in other problem
such as causal inference, graphical models, and the analysis of
missing data (in particular, imputation).

> It offers a flexible way to investigate the underlying structures.

» Examples in today’s talk

1. Density estimation and the discovery of large-scale structures.
2. Analysis of bias from using the best fit (imputation).
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Part 1: Density estimation and detection of
large-scale structures.
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Cosmic Web: What Does Our Universe Look Like
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Here is what our data looks like:
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Filament finding problem

> In simulations, we saw that there are clear filamentary
structures.

> In the real data, we also saw some weakly filamentary forms in
the distribution.

» How to recover filaments from the data is an open problem.
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Consensus about Filaments

Different filament finders define filaments differently.
But there are some common properties that a filament should have
(Bond et al. 1996):
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Consensus about Filaments

Different filament finders define filaments differently.
But there are some common properties that a filament should have
(Bond et al. 1996):

> It is a curve-like structure.
» It characterizes high (matter) density area.

> It shows connectivity of the matter distribution.
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Density Ridges

We formalize the notion of filaments as density ridges.
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Example: Ridges in Mountains
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Example: Ridges in Smooth Functions
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Ridges: Local Modes in Subspace

» A generalized local mode in a
specific ‘subspace’.
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Finding ridges

» Original data.
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Finding ridges

» Original data.
» Density estimation.

» Thresholding (denoising).
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Finding ridges

Original data.

v

Density estimation.

v

Thresholding (denoising).

v

Ridge finding.
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Example for Estimated Density Ridges
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Example for Estimated Density Ridges
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3D Example for Estimated Ridges

Blue curves: density ridges.
Red points: density local modes.
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SDSS: Comparing to Clusters

» Blue: filaments. Red: galaxy clusters (redMaPPer).
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SDSS: Filament Effects VS Environments

Do filaments have an extra effect other than environments?
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SDSS: Filament Effects VS Environm

Do filaments have an extra effect other than environments?

— Yes!
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SDSS: Color
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Similar pattern also appears for other galaxy properties such as

brightness, size, and age.
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The Alignment of a Galaxy along a Filament - 1

Theorists have conjectured about the alignment of galaxy along
nearby filaments.

We now try to test such a conjecture.
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The Alignment of a Galaxy along a Filament - 2

We can easily define the orientation of filament because it is a
curve.
For each galaxy, we measure its orientation by fitting an ellipse.
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We are interested in the inner product between the major axis of a
galaxy and the orientation of the nearest filament.
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Excess Probability Density
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Y-axis: the ratio of observed angular distribution versus a uniform
distribution over [0, 90] deg.

If no alignment, the ratio should be 1.
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Part 2: The danger of using the best fit
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A common value-added data

Mass M. err Age A.err | RA  dec redshift others

Galaxy 1 M1 EM,l Al EA71 RA1 decl Zl Ol
Galaxy 2 M2 EM72 A2 EA72 RA2 dec2 22 02
Galaxy 3 M3 EM73 A3 EA73 RA3 deC3 Z3 03

Galaxy 4 M4 EM,4 A4 EA’4 RA4 dec4 Z4 04

» Blue variables: directly observed using the telescope.
» Red variables: unobserved, inferred from the observables.

» Q: is it reliable to use the inferred variables (often best fitted)
to make scientific conclusion?
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A motivating example: detecting filament effects

Here we attempted to analyze the effect from filaments on the
age-mass relation (regression coefficient).
We use the best fitted mass and age from the data.

Best fit only

Close to filaments
Away from filaments

Age-Mass coeff.
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Model prediction

> For a galaxy, let O denotes all its observed profiles.

» A model that associates O with age (A) and mass (M) can be
viewed as a distribution/likelihood of A, M given O :

p(A=a,M = m|0)
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Model prediction

> For a galaxy, let O denotes all its observed profiles.

> A model that associates O with age (A) and mass (M) can be
viewed as a distribution/likelihood of A, M given O :

p(A=a, M= m|O)

> In many data products, we have predicted mass and age of
each galaxy. Generally, the predicted mass and age are

(A, M) = argmax yp(A, M|O).

Namely, they are the best fitted values in the model.

> In our previous analysis, we were computing the association
between age and mass via the best fitted value A, M.

> Namely, we are ignoring the uncertainty of A, M in our
analysis. Will this be okay?
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Examining simulations

» To investigate the effect of ignoring the uncertainty, we use
simulation data.

» Here we use the MassiveBlack-Il simulation. We know the
true mass and age of each galaxy.
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Examining simulations

» To investigate the effect of ignoring the uncertainty, we use
simulation data.

» Here we use the MassiveBlack-Il simulation. We know the
true mass and age of each galaxy.

» To build a prediction model, we use the number density (here
we use the distance to the 50th nearest neighbor) as the
predictor.

» So our simulation data can be summarized as
(MlaAla Ol)a MR (Mna Am On)a

where M; is the true mass A; is the true age and O; is the
number density.

» To predict M, A from O, we consider a simple linear
regression and a 50-nearest neighbor (NN) regression.
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Simulations: updated data

Original Linear model 50-NN
Galaxy 1 | My A | Mima Arma | Miwn:  Ainina
Galaxy 2 | M2 Ax | Mimo  Awmp | Miw2  Akwi,2
Galaxy 3 | Mz A3 Mimz  Ams | Minnz A,z

Galaxy 4

My

Ay

Miva Aima

Minnag  Aknn,a

» The true regression coefficient is obtained by regressing

Y = A; with X = M,.

» Question: if we use the best fitted /predicted values from the
linear model or nonparametric model, will we obtain a similar

regression coefficients?
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Failure of best fitted method

MBIl simulation

e True

e Best fit (Linear) _ o
eamm» PBest fit (kNN) Error . 2353 A)

%l% )4

Error = 230.5%

T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12

Age—Mass Coefficient
No! It fails miserably! 28 /44



Why the best fitted values fail?

> Often the best predicted value of A, M from O is the
conditional mean E(A|O) and E(M|0).

> Regressing A with M is different from regressing E(A|O) with
E(M|0)!
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Why the best fitted values fail?

> Often the best predicted value of A, M from O is the
conditional mean E(A|O) and E(M|0).

> Regressing A with M is different from regressing E(A|O) with
E(M|0)!

» Take the covariance as an example, by law of total covariance,
Cov(A, M) = Cov(E(A|0),E(M|0)) + E(Cov(A, M|O)).

» The first term is what we compute when using the best fitted
value.

> But it ignores the second term!
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A simple remedy: random imputation

> Here is a simple remedy: instead of using the best fitted
value, we take a random draw from the conditional density
p(A, M|O) (known as random imputation)?.

MBII simulation

- True
e Random Imputation

e Best fit (Linear) _
= Best fit (kNN) Error = 235.3%

* X

Error = 0.3% Error = 230.5%

T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12

Age-Mass Coefficient
!Estimated by the 50-NN in this case.
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Why random imputation works? - 1

> In the ideal case where we get to observe the age and mass
directly, our data can be summarized as |ID random vectors

(MlvAla Ol)a Ty (MnaAna On) ~ p(m7 a, O)a

where p(m, a, 0) is the joint density of M, A, O.
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Why random imputation works? - 1

> In the ideal case where we get to observe the age and mass
directly, our data can be summarized as |ID random vectors

(M17A17 Ol)a Ty (MnaAna On) ~ p(m7 a, O)a

where p(m, a, 0) is the joint density of M, A, O.

> A measure of association between age and mass can often be
written as 6(M, A) and we are interested in the population
average

0 =EO(M,A) = /H(m, a)p(m, a)dmda,

where p(m, a) is the joint density of M, A.
> In practice, mass and age are missing, what we observe are
1D random elements

O1,--+,0p ~ p(0).
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Why random imputation works? - 2

» The decomposition

p(m, 4, O) = p(m, a|o)p(o)

implies that if we augment the /-th galaxy with random
numbers (M}, A7) from p(m, a|O;), the triplet can be viewed
from

(M* A7, O ) ~ p(m, a|o)p(o) = p(m, a, O)'
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implies that if we augment the /-th galaxy with random
numbers (M}, A7) from p(m, a|O;), the triplet can be viewed
from
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Why random imputation works? - 2

» The decomposition

p(m, 4, O) = p(m, a|o)p(o)

implies that if we augment the /-th galaxy with random
numbers (M}, A7) from p(m, a|O;), the triplet can be viewed
from

(M* A7, O ) ~ p(m, a|o)p(o) = p(m, a, O)'

» Thus, as long as we independently draw mass and age from
the conditional density, we obtain a dataset that behaves like
a fully observed data.

» Then we can use
(MikvA){)? T (M;:v AZ)

to accurately estimate 6 = E(6(M, A)).
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Why random imputation works? (Visually)

Mass—age (Linear best fit)
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Why random imputation works? (Visually)

Mass—age (kNN best fit)
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Why random imputation works? (Visually)

Mass-age (kNN Random Imputation)
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Multiple imputation and Monte Carlo errors

> Although the above procedure gives us an unbiased estimator,
it may suffer from the Monte Carlo errors if we only impute
the unobserved entries once.

> In general, we should repeat this imputation multiple times,
creating multiple imputed data, and compute the final
estimates.?

Zknown as the multiple imputation.
34 /44



Multiple imputation and Monte Carlo errors

> Although the above procedure gives us an unbiased estimator,
it may suffer from the Monte Carlo errors if we only impute
the unobserved entries once.

> In general, we should repeat this imputation multiple times,
creating multiple imputed data, and compute the final
estimates.?

> Luckily, in most Astronomy survey, the sample size is large so
the Monte Carlo errors are small.

Zknown as the multiple imputation.
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What if we only know the marginal error? - 1

Recall the original dataset:

Mass M. err Age A.err | RA  dec redshift others

Galaxy 1 Ml EIVI,l A1 EA,I RAl dec1 Zl 01
Galaxy 2 M2 EM,Q A2 EA72 RA2 deC2 22 02
Galaxy 3 M3 EM,3 A3 EA73 RA3 deC3 Z3 O3

Ga Iaxy 4 M4 EM74 A4 EA 4 RA4 dec4 Z4 04

> We do have the errors that represents the marginal
distribution of p(M|O) and p(A|O).

> If this is all we have, can we make a better inference?

» Note: Ep 1 can be viewed as the SD of p(M|O).
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What if we only know the marginal error? - 2

» If we assume that M|O and A|O follow a normal distribution,
then the above table gives us information about M;|O; and
A,“O,’Z

M;|O;j ~ N(M;, Epi),  AilOi ~ N(Aj, Eaj).

> It seems that we can generate from the distribution p(m, alo)
using this information.

36 /44
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What if we only know the marginal error? - 2

» If we assume that M|O and A|O follow a normal distribution,
then the above table gives us information about M;|O; and
A,“O,’Z

M;|O;j ~ N(M;, Epi),  AilOi ~ N(Aj, Eaj).

> It seems that we can generate from the distribution p(m, alo)
using this information.

» Actually, we CANNOT-we still need to know the (conditional)
correlation between the two random variables.

» Namely, we need Cor(A;, M;|O;) to reconstruct p(a, m|o).

36 /44



Sensitivity analysis: a partial solution

» Here is a simple method to roughly investigate the effect—we
assume a single number for all correlations and evaluate how
it influences our final result.
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» Here is a simple method to roughly investigate the effect—we
assume a single number for all correlations and evaluate how
it influences our final result.

MBII simulation

True

Random Imputation
Best fit (Linear)

Best fit (kNN)
Imputation (same corr)
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feoodono

T T T T
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Sensitivity analysis: a partial solution

» Here is a simple method to roughly investigate the effect—we
assume a single number for all correlations and evaluate how
it influences our final result.

MBIl simulation Distribution of Mass—Age Correlation

- True M
@ Random Imputation
e Best fit (Linear)
= Best fit (kNN) 7 |
Imputation (same corr)
,;/ hV4 RV
™~ 7N
r T T T T 1
T i i i -04 -02 0.0 0.2 0.4 0.6
-0.1 0.0 01 02
Age—-Mass Coefficient Conetaton
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Sensitivity analysis: a graphical illustration

Mass-age (same correlation)
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Sensitivity analysis: a graphical illustration
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Sensitivity analysis: a graphical illustration
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Sensitivity analysis: a graphical illustration
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Sensitivity analysis: a graphical illustration

Mass-age (same correlation)
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Sensitivity analysis: the SDSS data

Imputation Model Cor.= -1

@ Close to filaments
@ Away from filaments

Age—Mass coeff.
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Sensitivity analysis: the SDSS data

Imputation Model Cor.= -0.6
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Sensitivity analysis: the SDSS data
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Sensitivity analysis: the SDSS data

Imputation Model Cor.= -0.2
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Sensitivity analysis: the SDSS data

Imputation Model Cor.= 0
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Sensitivity analysis: the SDSS data

Imputation Model Cor.= 0.2
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Sensitivity analysis: the SDSS data

Imputation Model Cor.= 0.4
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Sensitivity analysis: the SDSS data

Imputation Model Cor.= 0.6
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Sensitivity analysis: the SDSS data

Imputation Model Cor.= 0.8

@ Close to filaments
@ Away from filaments

Age—Mass coeff.
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Sensitivity analysis: the SDSS data

Imputation Model Cor.= 1

@ Close to filaments
@ Away from filaments

Age—Mass coeff.
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Comments: sensitivity analysis

> As can be seen from the analysis on SDSS, the problem is
very severe!

» We saw that the effect (from filaments) may reverse the
direction if we incorrectly specify the correlation.
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Comments: sensitivity analysis

> As can be seen from the analysis on SDSS, the problem is
very severe!

» We saw that the effect (from filaments) may reverse the
direction if we incorrectly specify the correlation.

» And the error due to the imputation is way higher than the
estimation errors, which means that we should not ignore this
effect.

» Note: here we assume that the correlation is the same across
different galaxies, but in simulation, we know that they are
not the same.
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Challenges of random imputation - 1

> A seemly simple solution to the above issue is that when
releasing a value-added data, we also release the correlation
between any pair of inferred variables.
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Challenges of random imputation - 1

v

A seemly simple solution to the above issue is that when
releasing a value-added data, we also release the correlation
between any pair of inferred variables.

» However, this would increase the number of variables a lot—if
we have k inferred variables, we would have (’2‘) correlations.

» Moreover, this idea works only if the normal distribution
assumption is correct!

» The normal distribution may not be correct in practice, so
even if we have all correlations, our estimate may still be
inaccurate.
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Challenges of random imputation - 2

> Another approach to this problem is to include another set of
inferred variables that are randomly drawn from conditional
density.
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Challenges of random imputation - 2

> Another approach to this problem is to include another set of
inferred variables that are randomly drawn from conditional
density.

» Suppose that we have k inferred variables, this would only
require adding additionally k variables to the original data.

> As long as the sample size is sufficiently large, such procedure
will give us a reliable estimate (Monte Carlo error will not be
an issue).

» Of course, this idea relies on the assumption that the
conditional density is correct, which is another strong
assumption.
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Summary

1. Statistical methods offers new
exciting tools in Astronomy.

2. A good tool allows us to detect
weak signals.

3. When we are using multiple
derived variables, we need to be
careful.

MBII simulation

- True
@== Random Imputation
e Best fit (Linear)

= Best fit (kNN) Error = 235.3%

* X

Error = 0.3% Error = 230.5%
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MBII simulation

- True
@== Random Imputation

2. A good tool allows us to detect | == géctit (Linean

i = Best fit (kNN) Error = 235.3%
weak signals.

3. When we are using multiple
derived variables, we need to be *
careful.

X

4. Using the best fitted values may Error=0.3% Frror = 230.5%

result in bias in the estimation.
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1. Statistical methods offers new

. . MBII simulation
exciting tools in Astronomy.

- True
@== Random Imputation

2. A good tool allows us to detect | == géctit (Linean

i = Best fit (kNN) Error = 235.3%
weak signals.

3. When we are using multiple

derived variables, we need to be * X
careful.
4. Using the best fitted values may Frror=0.3% Error = 230.5%

result in bias in the estimation.

T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 012

5. Random imputation offers a Age-Mass Coefficient

solution to this problem.
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Thank you!
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Bandwidth Selection
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Bandwidth Selection

Ly distance are like the area of the shady regions.
We estimate this distance by data splitting or the bootstrap.
Reference: Chen et al. ‘Optimal Ridge Detection using Coverage
Risk’ (NIPS 2015).
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General Ridges

We can generalize ridges to higher dimensions. Pick

V() = V1 (), - va(x)]-
We define

r-Ridge(p) = {x : V,(x)V;(x)"Vp(x) = 0, \r41(x) < 0}.

V,(x) is a d x (d — r) matrix. There are d — r constraints.

By Implicit Function Theorem, r-ridges are r-manifolds.

In Astronomy, r = 2 can be used to model ‘Cosmic Sheets (Walls)'.
r = 0 coincides with the definition of local modes.
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Density Ridges on the SDSS data
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Density Ridges on the SDSS data
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of Number Density
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Curse of Number Density
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Curse of Number Density
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SDSS: Red and Blue Galaxies

> Redshift range: 0.05 < z < 0.20 (main sample galaxy).
» Color cut: (g —r) =0.8.
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SDSS: Red and Blue Galaxies

Filaments, MGS

Clusters (redMaPPer), MGS
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SDSS: Size for Galaxies

Hisrogram for Size distribution

1. Size: Effective Radii.
2. Data: LOWZ (0.20 < z < 0.43)

3. Partitioning galaxies into three
groups according to their size.

Number of Galaxies
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SDSS: Size for Galaxies

Filaments, LOWZ

Clusters (redMaPPer), LOWZ
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Galaxies
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Age for Galaxies

Filaments, CMASS
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Comparison: noi Model

All galaxies
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Comparison: Voronoi Model

Ridges and all galaxies
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Comparison: Voronoi Model
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Comparison: Voronoi Model
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Comparison: Voronoi Model

Ridges and Walls (Voronoi)
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Comparison: Voronoi Model

Ridges and Voids (Voronoi)
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