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A regular statistical problem

o We observe IID study variables Xi,---, X,, € R? from a
distribution F with a PDF p.

o Our goal is to make inference about a parameter of interest that
can be written as a statistical functional

0 = O(F).

o Common example: the mean vector, the covariance matrix, ...etc.
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A regular statistical problem

o We observe IID study variables Xi,---, X,, € R? from a
distribution F with a PDF p.

o Our goal is to make inference about a parameter of interest that
can be written as a statistical functional

0 = O(F).

o Common example: the mean vector, the covariance matrix, ...etc.

o A common (nonparametric) estimator: plug-in with the empirical
distribution function (EDF)

n

~ ~ =~ 1
Onave = O(F),  F(x) =~ > 1(X; < x).
i=1
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A toy example

ID X1 X, X3 X4
1 15 20 17 32
2 12 15 17 21
3 17 43 35 42
4 11 25 23 43
5 16 37 32 51
6 15 23 32 44
7 21 27 35 53
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A toy example

ID X,
1 15
2 12
3 17
4 11
5 16
6 15
7 21
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Missing data

o When there are missing entries in our data, the problem gets a lot
more complicated.

o What we observed is

Xl,ObSl Tty Xn,obs

where the original random variable can be decomposed as
Xi = (Xi obs, Xi,miss) and X; miss is the unobserved part.
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Missing data

o When there are missing entries in our data, the problem gets a lot
more complicated.

o What we observed is

Xl,ObSl Tty Xn,obs

where the original random variable can be decomposed as
Xi = (Xi obs, Xi,miss) and X; miss is the unobserved part.

o In this case, we cannot construct the EDF.

o Ignoring observations with missing entries (the complete-case
analysis) is a bad idea because the missingness may be dependent
with the study variable X.
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Monotone missing data

o To simplify the problem, we assume that the missingness is
monotone.

o This occurs in many medical research when participants dropout
from the study.
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Monotone missing data

o To simplify the problem, we assume that the missingness is
monotone.
o This occurs in many medical research when participants dropout
from the study.
o Let T; denotes the last observed variable of the i-th individual.
Then
Xiobs = Xi <1, = (Xij 1 j < T)).

o Thus, the observed data can be represented as
(Xl,ST1/ Tl)/ Tty (XH,ST”/ Tn)

o In contrast, we define the full data-the hypothetical dataset
without missingness:

(Xli Tl)/ Tty (Xn/ Tﬂ)
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Population models

o The population CDF of the study variable F(x) (also called the
full-data distribution') can be written as

F(x) = Z F(x|T = HP(T = t)
t
and its PDF can be written as
p(x)= > px|T =H)P(T = 1)
t

=3 plrsilxe, T = Hp(xseT = HP(T = b).
t

1Sometime the full-data distribution refers to F(x, t) = F(x|t)P(T = t).
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Population models

o The population CDF of the study variable F(x) (also called the
full-data distribution') can be written as

F(x) = Z F(x|T = HP(T = t)
t
and its PDF can be written as
p(x)= > px|T =H)P(T = 1)
t

=3 plrsilxe, T = Hp(xseT = HP(T = b).
f
o Extrapolation density: p(x>¢|x<;, T = t)

o Observed density: p(x<¢|T = t)P(T =t)

1Sometime the full-data distribution refers to F(x, t) = F(x|t)P(T = t).
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A toy example

Observed density generates what we observed. Extrapolation density
describes the density of the unobserved cells.

ID X, X, X3 X4
1 15 20

2 12

3 17 43 35 42
4 1 25

5 16 37 32 51
6 15 23 32

7 21 27 35
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Pattern mixture models

o The factorization:

p(x)= > p(xIT = P(T = 1)
t
= 3 plesilxzt, T = x| T = HP(T = 1),
t

is called the pattern mixture models (PMM) factorization (Little
(1993).
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(1993)-

o Extrapolation density p(xs¢|x<;, T = t): cannot be estimated using
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Pattern mixture models

o The factorization:

p(x)= > p(xIT = P(T = 1)
t
= 3 plesilxzt, T = x| T = HP(T = 1),
t

is called the pattern mixture models (PMM) factorization (Little
(1993)-

o Extrapolation density p(xs¢|x<;, T = t): cannot be estimated using
the observed data; it has to be identified by assumptions.

o Observed density p(x<¢|T = t)P(T = t): can be estimated using the
observed data.

o Key of the modeling strategy: try to identify the extrapolation
density.
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Selection models

o The pattern mixture model is a common approach to handling
missing not at random data.

o Another common approach is the selection models, which uses the
following factorization:

p(x, T =) = P(T = tx)p(x).
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Selection models

o The pattern mixture model is a common approach to handling
missing not at random data.

o Another common approach is the selection models, which uses the
following factorization:

p(x, T =t)=P(T = t|x)p(x).

o The quantity P(T = t|x) is called the selection probability or
missing mechanism (Little and Robin 2002).
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Selection models

o The pattern mixture model is a common approach to handling
missing not at random data.

o Another common approach is the selection models, which uses the
following factorization:

p(x, T =t)=P(T = t|x)p(x).

o The quantity P(T = t|x) is called the selection probability or
missing mechanism (Little and Robin 2002).

o Missing completely at random (MCAR): P(T = t|x) = P(T =t).
o Missing at random (MAR): P(T = t|x) = P(T = t|x<¢).
o Missing not at random (MNAR): other cases.

o We focus on pattern mixture models in this talk.
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Identifying the extrapolation density

o In PMM, we only need to identify the extrapolation density
p(xsilx<t, T =t).

o A common strategy is to equate this density to something that is
identifiable/estimatible.

o Note that we can factorize it as

d
plrsilra, T=t) = | | plslxas, T=1)

s=t+1

so it suffices to identify each p(xs|x<s, T = t) for s > ¢.
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Common restrictions

o Here are some common assumptions/restrictions people made.

o Complete-case missing value (CCMYV; Little 1993):

p(xslx<s, T =t) = p(xs]x<s, T = d).

10/ 33



Common restrictions

o Here are some common assumptions/restrictions people made.

o Complete-case missing value (CCMYV; Little 1993):
p(xslx<s, T =t) = p(xs]x<s, T = d).
o Nearsest-case missing value (NCMYV; Thijs et al. 2002):

p(x5|x<S/T = t) = p(xs|X<s, T = S).

10/ 33



Common restrictions

o Here are some common assumptions/restrictions people made.

(¢]

Complete-case missing value (CCMYV; Little 1993):

p(xs|x<s, T =t) = p(xs|x<s, T = d).

(e]

Nearsest-case missing value (NCMYV; Thijs et al. 2002):

p(x5|x<S/T = t) = p(xs|X<s, T = S).

@]

Available-case missing value (ACMYV; Molenberghs et al. 1998):

p(xs|x<s, T =t) = p(xs|x<s, T > 5).
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Common restrictions: a toy example

Xy
T=1 Obs.
T=2 Obs.
T=3 Obs.
T=4 Obs. Obs. Obs.

Obs.
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X1 Xo X3 X4
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T=3 Obs. Obs. Obs.
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Common restrictions: a toy example

Xy
T=1 Obs.
T=2 Obs.
T=3 Obs.
Tes4 Obs. Obs. Obs.  Obs.
ACMV
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Donor-based restrictions

o We can generalize these restrictions to a more general ‘donor” set
by restricting to

p(xs|x<s, T=t)= P(xs|x<s/T € dis),

where ;s € {s,s +1,---d} is called the donor set of pattern t and
variable s.
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variable s.
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Donor-based restrictions

o We can generalize these restrictions to a more general ‘donor” set
by restricting to

P(xs|x<s/ T = t) = p(x5|x<S/T € Sﬂts)/

where d;s C {s,s +1,---d} is called the donor set of pattern t and
variable s.

o Iftheset {dys:t=1,---,d-1;s=t+1,---}is given, then we can
identify the extrapolation density.

o CCMV is the case d;s = {d}.
o NCMV is the case d;s = {s}.
o ACMYV is the case s = {s,s+1,---,d}.
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Donor-based restrictions: a toy example

Xy
T=1 Obs.
T=2 Obs.
T=3 Obs.
T=4 Obs. Obs. Obs.

Obs.
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Donor-based restrictions: a toy example

X X, Xs Xy
T=1 Obs.
T=2 Obs. Obs.
T=3 Obs. Obs. Obs.
T=4 Obs. Obs. Obs.  Obs.
Donor 1
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Donor-based restrictions: a toy example

Xy
T=1 Obs.
T=2 Obs.
T=3 Obs.
T=4 Obs. Obs. Obs.  Obs.
"""""""""""""""""""" Donor 2
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Estimator under donor-based restrictions

o With a donor-based identifying restriction, we can easily estimate
the extrapolation density.

o We can assume a parametric model or use a nonparametric
estimator.
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Estimator under donor-based restrictions

o With a donor-based identifying restriction, we can easily estimate
the extrapolation density.

o We can assume a parametric model or use a nonparametric
estimator.

o We propose to use the conditional kernel density estimator
(CKDE), which can be expressed as

2 K (T K (T T, e i)

nK (Xf‘"h"‘“ ) I(T; € slys)

Pan(xslx<s, T =1t) =

=1

X,‘ - X
K (T) Wilx<s),

n

1

= .

i=1
where

K (F=57=) I(T: € otis)

Wi(x<s) = p X oot .
Zj:l K (T) I(T] S dts)
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Estimator of the full-data distribution

o With an estimator py ,(xs|x<s, T = t), we obtain an estimator of the
extrapolation density

d
PanCesilxa, T=8)= | | Pantxslres, T=1)

s=t+1

which defines a CDF estimator fA,h(x>t |x<¢, T =1).
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Estimator of the full-data distribution

o With an estimator py ,(xs|x<s, T = t), we obtain an estimator of the
extrapolation density

d
PanCesilxa, T=8)= | | Pantxslres, T=1)
s=t+1
which defines a CDF estimator fA,h(x>t |x<¢, T =1).
o Note that the CDF of the observed density p(x<|T = t)P(T = t)

can be estimated by

- _ 1 &
Fesl T= DP(T=1) =~ 21] I(Xi<t < x<t, Ti = 1).
1=
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Estimator of the full-data distribution

o Putting it altogether, the estimate of F(x) is

Fan(x) = > Fap(xsix<|T = OP(T = 1)
t
X<t - e
=> f Fan(xsilxl,, T = E(dx,|T = HP(T = t)
t —00

1=
= ; Z FA,h(x>T,-|Xi,§T,~r T= Ti)I(Xi,sTi < XsT,»)-
i=1
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Estimator of the full-data distribution

o Putting it altogether, the estimate of F(x) is

Fan(x) = > Fap(xsix<|T = OP(T = 1)
t
X<t . -
=> f Fan(xsilx’,, T = HE(dx,|T = P(T = t)
t —00

1=
= ; Z FA,h(x>T[|Xi,STi/ T = Ti)I(Xi,STi < xST{)'
i=1

o It can be interpreted as a combination of:

o unobserved variables: kernel CDF estimator.
o observed variables: EDF.
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Estimator of the full-data distribution

o Putting it altogether, the estimate of F(x) is

Fan(x) = > Fap(xsix<|T = OP(T = 1)
t
X<t . -
= Zf Fan(xsilx’,, T = HE(dx,|T = P(T = t)
t —00

1=
= E Z FA,h(x>T[|Xi,STi/ T = Ti)I(Xi,STi < xST{)'
i=1

o It can be interpreted as a combination of:

o unobserved variables: kernel CDF estimator.
o observed variables: EDF.

o The parameter of interest can be estimated via é\A,h = 9(? Ah)-
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Estimator of the full-data distribution

o Although we have a good estimator, computing an estimate of the
parameter of interest could be challenging.

o A major problem comes from the fact that the estimated
distribution of the unobserved entries F4 j(x>1,|Xi <1, T = T})
does not have a simple form.
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Estimator of the full-data distribution

o Although we have a good estimator, computing an estimate of the
parameter of interest could be challenging.

o A major problem comes from the fact that the estimated
distribution of the unobserved entries F4 j(x>1,|Xi <1, T = T})
does not have a simple form.

o Our solution: instead of analytically computing it, we use a Monte
Carlo approximation.
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Monte Carlo approximation

Here is a brief description of the Monte Carlo procedure.

o For each i, we generate X* _, from fA,h(x>T,. |Xi <1, T=T;i)to
replace the missing entries. This is identical to the imputation
procedure.
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Monte Carlo approximation

Here is a brief description of the Monte Carlo procedure.

o For each i, we generate X;’>Ti from fA,h(x>Ti |Xi <1, T=T;i)to
replace the missing entries. This is identical to the imputation
procedure.

o After imputing every missing entry, we construct a fully observed
(imputed) dataset. Denote the data as

Lo = {(X; oy, Xier) si =1, n}.

o To reduce the Monte Carlo errors, we repeat the above imputation

M . g
4 n

procedure V times, leading to X, ’, - - imputed datasets.
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Monte Carlo approximation

Here is a brief description of the Monte Carlo procedure.

(¢]

For each i, we generate X;’>Ti from fA,h(x>Ti |Xi <1, T=T;i)to
replace the missing entries. This is identical to the imputation
procedure.

After imputing every missing entry, we construct a fully observed
(imputed) dataset. Denote the data as

%n - {(XZ >T/Xi,STj) : l = 1/ ,7’1}.

To reduce the Monte Carlo errors, we repeat the above imputation

procedure V times, leading to %(11), : %(V)

Combine all datasets to form EI[V] = (X, (1) , %1(1V)) and compute
the estimator F, Flv ](x) using the EDF of EI[V]

imputed datasets.
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Monte Carlo approximation

Here is a brief description of the Monte Carlo procedure.

(¢]

For each i, we generate X;’>Ti from fA,h(x>Ti |Xi <1, T=T;i)to
replace the missing entries. This is identical to the imputation
procedure.

After imputing every missing entry, we construct a fully observed
(imputed) dataset. Denote the data as

%l’l - {(XZ >T/Xi,STj) : l = 1/ ,Tl}.

To reduce the Monte Carlo errors, we repeat the above imputation
procedure V times, leading to %,(11), . %(V)
Combine all datasets to form EI[V] = (X, (1) , %1(1V)) and compute

the estimator F, Flv ](x) using the EDF of EI[V]

imputed datasets.

Compute the estimator of the parameter of interest Q[V] G(F A h)
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Monte Carlo approximation: a toy example - 1

ID X,
1 15
2 12
3 17
4 11
5 16
6 15
7 21
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ID X1 Xo X3 Xy
1 15 20 30" 43*
3 17 43
4 11 25
5 16 37
6 15 23
7 21 27
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Monte Carlo approximation: a toy example - 1

ID X X5 X3
1 15 20
2 12 31*
3 17 43
4 11 25
5 16 37
6 15 23
7 21 27

Xy
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Monte Carlo approximation: a toy example - 1

ID X1 Xo X3 Xy

1 15 20 30" 43*

2 12 31* 32* -
3 17 43 35 42

5 16 37 32 51

6 15 23 32

7 21 27 35
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Monte Carlo approximation: a toy example - 1

ID X1 Xy X3 X4
1 15 20 30* 43*
2 12 31* 32* 42*
3 17 43
4 11 25
5 16 37
6 15 23
7 21 27
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Monte Carlo approximation: a toy example - 1

ID X1 X, X3 X4
1 15 20 30* 43*
2 12 31 32 42+
3 17 43 35 42
4 11 25 34* 41*
5 16 37 32 51

6 15 23 32 NA
7 21 27 35 NA
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Monte Carlo approximation: a toy example - 1

ID X1 X, X3 X4
1 15 20 30* 43*
2 12 31 32 42+
3 17 43 35 42
4 11 25 34* 41*
5 16 37 32 51

6 15 23 32 49*
7 21 27 35 45*
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Monte Carlo approximation: a toy example - 1

ID X1 X, X3 X4
1 15 20 32 41*
2 12 30 20 45*
3 17 43 35 42
4 11 25 34* 46*
5 16 37 32 51

6 15 23 32 42*
7 21 27 35 43*
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Monte Carlo approximation: a toy example - 1

ID X1 X, X3 X4
1 15 20 33* 43*
2 12 25* 36 42+
3 17 43 35 42
4 11 25 33* 41*
5 16 37 32 51

6 15 23 32 49*
7 21 27 35 52+

19/133



Monte Carlo approximation: a toy example - 2

D X X, X X. D X X X X. i X, X X X
1 15 20 a0 4 1 15 20 a2 a1 1 15 20 s 4
2 12 ar a 2 12 a0 2 a5 2 12 2 as P
3 ” 4 as @ 3 ” 4 as @ a ” a as @
4 " 2 au ar 4 " 2 au & 4 " 2 as @
5 16 E @ 51 5 16 E @ 51 5 1 a7 A 51
6 15 2 A o 6 15 2 A a2 5 15 2 E 1
7 2 2 as 45 7 2 2 as 4 7 21 2 as 52

We then combine these datasets to form a combine data and compute
its EDF FLV] h(x) and the corresponding estimator GI[L\V] G(F V]
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Multiple imputation as Monte Carlo approximation

o This procedure is essentially a multiple imputation procedure
(Rubin 1987).
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Multiple imputation as Monte Carlo approximation

o This procedure is essentially a multiple imputation procedure
(Rubin 1987).

o We can view our estimator as an estimator based on multiple
imputation and the imputation distribution is based on the
estimated extrapolation density.

o In fact, you can alway interpret the multiple imputation as a
Monte Carlo approximation to the EDF formed by imposing an
imputation distribution over the unobserved variables.
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Multiple imputation as Monte Carlo approximation

o This procedure is essentially a multiple imputation procedure
(Rubin 1987).

o We can view our estimator as an estimator based on multiple
imputation and the imputation distribution is based on the
estimated extrapolation density.

o In fact, you can alway interpret the multiple imputation as a
Monte Carlo approximation to the EDF formed by imposing an
imputation distribution over the unobserved variables.

o The imputation distribution is the extrapolation distribution in
PMM.

21 /133



Nonparametric Saturation

o In the missing data literature, an estimator of the full-data distribution
F(x, t) satisfies nonparametric saturation (NPS Robins, 1997)? if the implied
observed data distribution agrees with the EDF of the observed data.

2Also known as nonparametric identification, just identification.
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Nonparametric Saturation

o In the missing data literature, an estimator of the full-data distribution
F(x, t) satisfies nonparametric saturation (NPS Robins, 1997)? if the implied
observed data distribution agrees with the EDF of the observed data.

o Namely, an estimator fo(x, t) has NPS if
fo(xsw t) = ffo(xl tu(dxs;) = f(xg, t).

o The NPS can be viewed as a self-consistent property—the estimated
full-data distribution agrees with the distribution of the observed data.

Theorem (Chen and Sadinle (2019))

The proposed estimator F an(x, t) satisfies the NPS.

2Also known as nonparametric identification, just identification.
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Convergence rates

o Recall that 0 = O(F) is the true parameter of interest and we use
the estimator 04, = O(Fa p).
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the estimator 04, = O(Fa p).

o Their difference can be decomposed into three components:
§A,h -0= §A,h —Opp+0an—0a+04—0

and under good conditions (including IZ% — 0), we have the
following results.
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Convergence rates

o Recall that 0 = O(F) is the true parameter of interest and we use
the estimator 04, = O(Fa p).

o Their difference can be decomposed into three components:
§A,h -0= §A,h —Opp+0an—0a+04—0
and under good conditions (including IZ% — 0), we have the
following results.
2y A _ 1). . c -
o Oan— 04, =0p (\/; ) the stochastic variation.

o éA,h — 04 = O(h?): the bias of the smoothing.

o 04 — O : the bias of identifying restriction. It will be 0 if our
identifying restriction leads to the correct extrapolation density.
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Asymptotic normality

Theorem (Chen and Sadinle (2019))

1

Under reqularity conditions, when % —0and h — 0,

Vi(Fan(x) = Fan(x))
converges to a Gaussian process where
_ X=Xt
Fan=Y, [ Easooilila, T = DF@LIT = 0P(T =1,
t X ==
Fan(esilx<t, T =) % EFan(esilxs, T = ).
o Fu ;(x) behaves like the expected quantity of the estimator Fan(x).

o Oan=0(Fapn).
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Bootstrap method

o Sampling with replacement from the original data (including
missing entries) to obtain a bootstrap sample.
o Use the bootstrap sample to estimate the conditional density.
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Bootstrap method

o Sampling with replacement from the original data (including
missing entries) to obtain a bootstrap sample.

o Use the bootstrap sample to estimate the conditional density.

o Perform the Monte Carlo procedure (multiple imputation) for V
times. Compute the estimator 51[4‘/}][*

o Repeat the above procedure B times, leading to B bootstrap

estimates

BVIHD . BlVIB)
Ah :

7 7 A,/’l

o Compute the upper and the lower limits ({1_,, #1-4) of the
confidence interval using the quantiles. Namely, {p 1, = G Ya/2)
and up 1o = G'(1 — a/2) where

B

=~y 1 ~[V]«(b)
G(s)= 3 ;I(QM ).
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Confidence interval

Let u1-, and {1, be the upper and lower bound from the bootstrap
approach when the number of bootstrap replicates B — coand V — oo

Theorem (Chen and Sadinle (2019))

Under regularity conditions, when Tdn — 0and h — 0,

P(l1—q < Opp S Ui—g) > 1—a.
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Confidence interval

Let u1-, and {1, be the upper and lower bound from the bootstrap
approach when the number of bootstrap replicates B — coand V — co.

Theorem (Chen and Sadinle (2019))

Under regularity conditions, when —n — 0and h — 0,

P(l1—q < Opp S Ui—g) > 1—a.

o Namely, the bootstrap confidence interval is valid for
Oan = O(Fan).
o Note that

éA,h—QZéA,h—QA-f-QA—@

consists of the bias from smoothing and the bias from identifying
restriction. 26 /33



Bootstrap Diagram (Efron 1994)

Actual Bootstrap

Fobs e S =>Fobs—> S*=> A:bs

v v v
Fops Fopsh Ac;kbs,h

; ; ;
FA,h('l\ ) FA,h('lf ) Fﬁ,h('l’ )
Fap Fay Fi,

e e e
Oan Oan 0
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Bootstrap Diagram (Efron 1994)

Bootstrap

Fobs—l

v
Fobs,h

<

T
=>Fobs—> S*=> obs

v v
Fopsh obs.h

v v
FA,h('l| ) Fﬁ,h('l! )
Fyy, F h

; ;
Oan 0,

Original data
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Bootstrap Diagram (Efron 1994)
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Bootstrap Diagram (Efron 1994)

Actual Bootstrap

Fobs —_— S =..Fobs——> S*=> obs

. \
1 ' observed variables .
v v v
Il T
Fobs,h Fobs,h obs,h
unobskgrved variables
v v
n il %
Fan(-[+) Fan(-[+) FanC 1)
! i '
— — ‘ —_
Fyp Fyp Fi,
: i i
v v v
Oan Oan Oan
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27/33



Bootstrap Diagram (Efron 1994)

Actual Bootstrap

Fobs —_— S =>Fobs—> S*=> A:bs

v v v
Fopsh Fopsh F:bs,h

; ; ;
FA,h(‘l| ) FA,h('l| ) F\lh(l' )
Fap Fuy, F\th

a a e
Oan Oan 0

Estimator of the parameter of interest ,
27/33



Bootstrap Diagram (Efron 1994)
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Bootstrap Diagram (Efron 1994)

Actual Bootstrap

Fobs —_— S =>Fobs—> S*=> A:bs

v v
Fopsh Fopsh
7 v 7
Fy h(l| ) FA,h('ll ) F)i,h('ll )
Fap Fay Fiy,
i ; ;
Oan Oan 9§1,h
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Actual Bootstrap
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v v v
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FA,h('ll ) FA,h('ll ) Fﬁ,h('ll )
)
Fap Fuy, F h
i ; ;
Oan Oan 0

Bootstrap extrapolation distribution via smoothing
& the identifying restriction 27/33



Bootstrap Diagram (Efron 1994)

Actual Bootstrap observed variables
Fobs —_— S =>Fobs—> S* c;kbs
v v
Fobs,h Fobs,h
v v
Fan(- 1) Fan(- 1)
Fyp, Fup,
v v v
m Oan 0% 1

Bootstrap estimator of the full data distribution
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Fobs —_— S =>Fobs—> S*=> Ac;kbs
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This difference is how we do resampling inference
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Actual Bootstrap
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Bootstrap Diagram (Efron 1994)

Actual Bootstrap

Fobs —_— S =>Fobs—> S*=> A:bs

v v v
Fopsh Fopsh Fbsh

7 v 7
FA,h(‘l| ) FA,h('l| ) F\lh(l' )
Fap Fay Fi,

e a e
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Bootstrap Diagram (Efron 1994)

Actual Bootstrap

Fobs —_— S =>Fobs—> S*=> Ac;kbs

v v v
Fopsh Fopsh F:bs,h
a ; ;
Fau(- 1) FA,h('ll ) Fﬁ,h('ll )
}
Fap Fuy, F h
i ; ;
Oan Oan 0

The extrapolation distribution from smoothed CDF
& the identifying restriction 27/33



Bootstrap Diagram (Efron 1994)

observed variables Actual Bootstrap

Fobs — S =>Fobs—> S*=> :bs
|\ 1 1

v v v
il %
Fobs,h Fobs,h Fobs,h
unobserved variai)les
w ' '
n il %
Fanl(- 1) Fan(-1-) Finl 1)
v l l
_ 4 — —
Fan Fap Fi
; i i
v v
GAJL eAh 027}1

The full-data distribution
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A structural sensitivity analysis

o Since the bias 04 — 0 is hard to know in practice, the sensitivity
analysis is a common procedure to evaluate the stability of an
estimator.

o In the class of donor-based identifying restrictions, we may
perform the sensitivity analysis by perturbing a given restriction
within the class.

o For instance, the NCMYV requires sl;; = {s}. We may consider
perturbing it via considering the ‘k-NCMV’ restrictions

AN = trir >, t—s|<k-1}={s,s+1,---,s +k—1}.

o When k =1 this reduces to NCMV and when k = d, this becomes
ACMV.
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Decoupling modeling procedure and identifying restriction

o Our method is not limited to a nonparametric estimator; one can
use a parametric density estimator as well.

o All we need is an estimator of the conditional density, which can
be done parametrically or nonparametrically.

3When using a parametric model, the sequential imputation reduces to the
parametric sequential imputation described in p.60 of Liu (2008).
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Decoupling modeling procedure and identifying restriction

o Our method is not limited to a nonparametric estimator; one can
use a parametric density estimator as well.

o All we need is an estimator of the conditional density, which can
be done parametrically or nonparametrically.
o In our framework, the modeling strategy on the distribution and

the identifying restrictions are decoupled—one can choose any
distribution estimator and any donor-based identifying restriction.

o The Monte Carlo approximation (multiple imputation) and the
bootstrap can be done in a similar manner?.

3When using a parametric model, the sequential imputation reduces to the
parametric sequential imputation described in p.60 of Liu (2008).
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The flexibility and transparency of modeling

o When handling missing data, there are three modeling
components:

o Assumptions on missingness.
o Models on distributions.
o Formulation of the parameter of interest.
o Many classical methods would require all three components to be
dependent.

o Our methods allow them to all be independent.

o Also, our method leads to the model congenial property (Meng
1994)* as long as we are using a nonparametric estimator on the
distribution.

4In short, this means the model on missing data and the model used for
formulating parameter of interest are consistent.
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Conclusion

o We introduce a class called the donor-based identifying
restrictions for handling missing data.
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Conclusion

o We introduce a class called the donor-based identifying
restrictions for handling missing data.

o We proposed a nonparametric estimator of the full-data
distribution but a similar idea can be applied to a parametric
model. This estimator is nonparamteric saturated and model
congenial.

o Even if we cannot directly compute the estimator, we may use a
Monte Carlo approximation in the form of multiple imputation to
approximate it.

o In a sense, our work provides an alternative view of multiple
imputation—it can be viewed as a Monte Carlo approximation to a
PMM estimator.

o Our estimator has nice asymptotic property but there is an
identifying restriction bias we have to be cautious.
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Future work

o

Generalization to nonmonotone case (work in progress with
Mauricio).

(e]

How to interpret the donor-based identifying restriction?

(@]

How to do data analysis with multiple identifying restrictions?

o Missing covariates in regression/causal inference problem.

@]

Will the bootstrap always include the imputation uncertainty?

[¢]

Equivalent selection models and semi-parametric inference.

32/33



Thank You!

More details can be found in https://arxiv.org/abs/1904.11085.
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The sequential imputation

o Generating X’ _, from fA,h(x>T,- |Xi <1;, T = T;) can be done via a
sequential sampling from the conditional KDE.
o Note that sampling from F4 j,(x>71,|X; <1, T = T;) is the same as

sampling from its PDF
d
Pan(eor|Xisr, T=T)= [ | PanCeslxes, T=T)).
s=T;+1

o We can sample Xr,,1 and then sample Xrt,,> conditioned on the
previously sampled Xr,,1.
o Because

1 <& Xis—x

—~ .S s

pA,h(xS|x<S/ T = Tl) = E Z K (]T) Wj(x<s)/
j=1

sampling from can be done from a weighted smoothed bootstrap

procedure.
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Richness of donor-based identifications

One may be wondering how large the donor-based identification class.

The following theorem shows that this class contains many, many
distinct elements.

Theorem (Chen and Sadinle (2019+); in progress)

Suppose that there are d variables that are subject to monotone missingness.

Then there are .
=il
L= ]_I(Zd_t -1
t=0

numbers of distinct donor-based identifying restrictions.
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Richness of donor-based identifications

One may be wondering how large the donor-based identification class.

The following theorem shows that this class contains many, many
distinct elements.

Theorem (Chen and Sadinle (2019+); in progress)

Suppose that there are d variables that are subject to monotone missingness.

Then there are .
-1
L= ]_I(Zd_t -1
t=0
numbers of distinct donor-based identifying restrictions.

o Here are some numbers of L;:

Li=1,Ly=3,L3=21,Ly =315, L5 = 9765, Ls = 615195, L; > 7x10".
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PANSS Datasets - 1

Last Week Observed Last Week Observed = 4 Last Week Observed = 8
o1 2 a4 s 8

PANSS

lew Treatment Standard  Placeb
PANSS
70 75 80 85 90 95 100

o The purpose of the trial was to evaluate the effectiveness of four
different doses of a new treatment (N) compared with placebo (P)
and with a standard of care (S) in patients with chronic
schizophrenia.

o The Positive and Negative Syndrome Scale for Schizophrenia
(PANSS) score X; was measured on patients one week before, the
day of, and on weeks t =1, 2,4, 6, and 8 after randomization.

o We are interested in estimating average treatment effects (ATEs)

over time yfl — yfz = E(X{|G1) — E(X¢|G>), where 37/33



PANSS Datasets - 2

-10 0 5

-30 -20 -10 0 5
P! L
AN A

-30 -20 -10 0 5
P! L

-30 -20

o Dashed lines: N — uP; dotted lines: ¥ — uf’; and solid lines:
N_ S
e = He-
o We use Gaussian kernels in conditional KDE with Silverman’s rule
(Silverman 1986) for the bandwidth.
o We consider the AC, 3NC and NC identifying restrictions.

o 95% Confidence intervals are constructed using the bootstrap.
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Assumptions

(A1) The true full-data distribution function F(x, t) has a density function fo(x, t) satisfying
1. infyex fo(x,t) > 0foreacht=1,--- ,d.
2. fo(x,t) e UBCy foreacht=1,---,d.

(A2) The statistical functional 0 is Hadamard differentiable.

(K1) K(z) has at least second-order bounded derivative and

fzzK(z)y(dz) < 00, sz(z)y(dz) < oo,

(K2) LetX = {z — K (Z;Lw) cweR,i>h> O}, for some fixed constant /1. We assume that % is

a VC-type class. Namely, there exists constants A, v and a constant envelope by such that

A v
2
sup N 2%Q) e < ()

where N(T, dt, €) is the e-covering number for a semi-metric set T with metric dr, and
£2(Q) is the Ly norm with respect to the probability measure Q.
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