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A regular statistical problem

◦ We observe IID study variables X1 , · · · ,Xn ∈ R
d from a

distribution F with a PDF p.

◦ Our goal is to make inference about a parameter of interest that
can be written as a statistical functional

θ � θ(F).
◦ Common example: the mean vector, the covariance matrix, ...etc.

◦ A common (nonparametric) estimator: plug-in with the empirical
distribution function (EDF)

θ̂naive � θ(F̂), F̂(x) � 1
n

n∑
i�1

I(Xi ≤ x).
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A toy example

ID

1 15 20 17 32

2 12 15 17 21

3 17 43 35 42

4 11 25 23 43

5 16 37 32 51

6 15 23 32 44

7 21 27 35 53

X2 X3 X4X1
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ID
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2 12 NA NA NA
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Missing data

◦ When there are missing entries in our data, the problem gets a lot
more complicated.

◦ What we observed is

X1,obs , · · · ,Xn ,obs

where the original random variable can be decomposed as
Xi � (Xi ,obs ,Xi ,miss) and Xi ,miss is the unobserved part.

◦ In this case, we cannot construct the EDF.

◦ Ignoring observations with missing entries (the complete-case
analysis) is a bad idea because the missingness may be dependent
with the study variable X.
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Monotone missing data

◦ To simplify the problem, we assume that the missingness is
monotone.

◦ This occurs in many medical research when participants dropout
from the study.

◦ Let Ti denotes the last observed variable of the i-th individual.
Then

Xi ,obs � Xi ,≤Ti � (Xi j : j ≤ Ti).
◦ Thus, the observed data can be represented as

(X1,≤T1 , T1), · · · , (Xn ,≤Tn , Tn).
◦ In contrast, we define the full data–the hypothetical dataset

without missingness:

(X1 , T1), · · · , (Xn , Tn).
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Population models

◦ The population CDF of the study variable F(x) (also called the
full-data distribution1) can be written as

F(x) �
∑

t

F(x |T � t)P(T � t)

and its PDF can be written as

p(x) �
∑

t

p(x |T � t)P(T � t)

�

∑
t

p(x>t |x≤t , T � t)p(x≤t |T � t)P(T � t).

◦ Extrapolation density: p(x>t |x≤t , T � t)
◦ Observed density: p(x≤t |T � t)P(T � t)

1Sometime the full-data distribution refers to F(x , t) � F(x |t)P(T � t).
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A toy example

Observed density generates what we observed. Extrapolation density
describes the density of the unobserved cells.

ID

1 15 20 NA NA

2 12 NA NA NA

3 17 43 35 42

4 11 25 NA NA

5 16 37 32 51

6 15 23 32 NA

7 21 27 35 NA

X2 X3 X4X1
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Pattern mixture models

◦ The factorization:

p(x) �
∑

t

p(x |T � t)P(T � t)

�

∑
t

p(x>t |x≤t , T � t)p(x≤t |T � t)P(T � t).

is called the pattern mixture models (PMM) factorization (Little
(1993).

◦ Extrapolation density p(x>t |x≤t , T � t): cannot be estimated using
the observed data; it has to be identified by assumptions.

◦ Observed density p(x≤t |T � t)P(T � t): can be estimated using the
observed data.

◦ Key of the modeling strategy: try to identify the extrapolation
density.
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Selection models

◦ The pattern mixture model is a common approach to handling
missing not at random data.

◦ Another common approach is the selection models, which uses the
following factorization:

p(x , T � t) � P(T � t |x)p(x).

◦ The quantity P(T � t |x) is called the selection probability or
missing mechanism (Little and Robin 2002).

◦ Missing completely at random (MCAR): P(T � t |x) � P(T � t).
◦ Missing at random (MAR): P(T � t |x) � P(T � t |x≤t).
◦ Missing not at random (MNAR): other cases.

◦ We focus on pattern mixture models in this talk.

8 / 33



Selection models

◦ The pattern mixture model is a common approach to handling
missing not at random data.

◦ Another common approach is the selection models, which uses the
following factorization:

p(x , T � t) � P(T � t |x)p(x).
◦ The quantity P(T � t |x) is called the selection probability or

missing mechanism (Little and Robin 2002).

◦ Missing completely at random (MCAR): P(T � t |x) � P(T � t).
◦ Missing at random (MAR): P(T � t |x) � P(T � t |x≤t).
◦ Missing not at random (MNAR): other cases.

◦ We focus on pattern mixture models in this talk.

8 / 33



Selection models

◦ The pattern mixture model is a common approach to handling
missing not at random data.

◦ Another common approach is the selection models, which uses the
following factorization:

p(x , T � t) � P(T � t |x)p(x).
◦ The quantity P(T � t |x) is called the selection probability or

missing mechanism (Little and Robin 2002).

◦ Missing completely at random (MCAR): P(T � t |x) � P(T � t).
◦ Missing at random (MAR): P(T � t |x) � P(T � t |x≤t).
◦ Missing not at random (MNAR): other cases.

◦ We focus on pattern mixture models in this talk.

8 / 33



Identifying the extrapolation density

◦ In PMM, we only need to identify the extrapolation density
p(x>t |x≤t , T � t).

◦ A common strategy is to equate this density to something that is
identifiable/estimatible.

◦ Note that we can factorize it as

p(x>t |x≤t , T � t) �
d∏

s�t+1
p(xs |x<s , T � t)

so it suffices to identify each p(xs |x<s , T � t) for s > t.
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Common restrictions

◦ Here are some common assumptions/restrictions people made.

◦ Complete-case missing value (CCMV; Little 1993):

p(xs |x<s , T � t) � p(xs |x<s , T � d).

◦ Nearsest-case missing value (NCMV; Thĳs et al. 2002):

p(xs |x<s , T � t) � p(xs |x<s , T � s).
◦ Available-case missing value (ACMV; Molenberghs et al. 1998):

p(xs |x<s , T � t) � p(xs |x<s , T ≥ s).
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Common restrictions: a toy example

T=1 Obs. Missing Missing Missing

T=2 Obs. Obs. Missing Missing

T=3 Obs. Obs. Obs. Missing

T=4 Obs. Obs. Obs. Obs.

X2 X3 X4X1
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Donor-based restrictions

◦ We can generalize these restrictions to a more general ‘donor’ set
by restricting to

p(xs |x<s , T � t) � p(xs |x<s , T ∈ Ats),
where Ats ⊂ {s , s + 1, · · · d} is called the donor set of pattern t and
variable s.

◦ If the set {Ats : t � 1, · · · , d − 1; s � t + 1, · · · } is given, then we can
identify the extrapolation density.

◦ CCMV is the case Ats � {d}.
◦ NCMV is the case Ats � {s}.
◦ ACMV is the case Ats � {s , s + 1, · · · , d}.
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Estimator under donor-based restrictions

◦ With a donor-based identifying restriction, we can easily estimate
the extrapolation density.

◦ We can assume a parametric model or use a nonparametric
estimator.

◦ We propose to use the conditional kernel density estimator
(CKDE), which can be expressed as

p̂A,h(xs |x<s , T � t) �
1
h
∑n

i�1 K
( Xi ,s−xs

h

)
K

( Xi ,<s−x<s
h

)
I(Ti ∈ Ats)∑n

j�1 K
(

X j,<s−x<s

h

)
I(T j ∈ Ats)

�
1
h

n∑
i�1

K
(

Xi ,s − xs

h

)
Wi(x<s),

where

Wi(x<s) �
K

( Xi ,<s−x<s
h

)
I(Ti ∈ Ats)∑n

j�1 K
(

X j,<s−x<s

h

)
I(T j ∈ Ats)

.

14 / 33



Estimator under donor-based restrictions

◦ With a donor-based identifying restriction, we can easily estimate
the extrapolation density.

◦ We can assume a parametric model or use a nonparametric
estimator.

◦ We propose to use the conditional kernel density estimator
(CKDE), which can be expressed as

p̂A,h(xs |x<s , T � t) �
1
h
∑n

i�1 K
( Xi ,s−xs

h

)
K

( Xi ,<s−x<s
h

)
I(Ti ∈ Ats)∑n

j�1 K
(

X j,<s−x<s

h

)
I(T j ∈ Ats)

�
1
h

n∑
i�1

K
(

Xi ,s − xs

h

)
Wi(x<s),

where

Wi(x<s) �
K

( Xi ,<s−x<s
h

)
I(Ti ∈ Ats)∑n

j�1 K
(

X j,<s−x<s

h

)
I(T j ∈ Ats)

.

14 / 33



Estimator of the full-data distribution

◦ With an estimator p̂A,h(xs |x<s , T � t), we obtain an estimator of the
extrapolation density

p̂A,h(x>t |x≤t , T � t) �
d∏

s�t+1
p̂A,h(xs |x<s , T � t)

which defines a CDF estimator F̂A,h(x>t |x≤t , T � t).

◦ Note that the CDF of the observed density p(x≤t |T � t)P(T � t)
can be estimated by

F̂(x≤t |T � t)P̂(T � t) � 1
n

n∑
i�1

I(Xi ,≤t ≤ x≤t , Ti � t).
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Estimator of the full-data distribution

◦ Putting it altogether, the estimate of F(x) is
F̂A,h(x) �

∑
t

F̂A,h(x>t x≤t |T � t)P̂(T � t)

�

∑
t

∫ x≤t

−∞

F̂A,h(x>t |x′≤t , T � t)F̂(dx′
≤t |T � t)P̂(T � t)

�
1
n

n∑
i�1

F̂A,h(x>Ti |Xi ,≤Ti , T � Ti)I(Xi ,≤Ti ≤ x≤Ti ).

◦ It can be interpreted as a combination of:
◦ unobserved variables: kernel CDF estimator.
◦ observed variables: EDF.

◦ The parameter of interest can be estimated via θ̂A,h � θ(F̂A,h).
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Estimator of the full-data distribution

◦ Although we have a good estimator, computing an estimate of the
parameter of interest could be challenging.

◦ A major problem comes from the fact that the estimated
distribution of the unobserved entries F̂A,h(x>Ti |Xi ,≤Ti , T � Ti)
does not have a simple form.

◦ Our solution: instead of analytically computing it, we use a Monte
Carlo approximation.
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Monte Carlo approximation

Here is a brief description of the Monte Carlo procedure.

◦ For each i, we generate X∗i ,>Ti
from F̂A,h(x>Ti |Xi ,≤Ti , T � Ti) to

replace the missing entries. This is identical to the imputation
procedure.

◦ After imputing every missing entry, we construct a fully observed
(imputed) dataset. Denote the data as

Xn � {(X∗i ,>Ti
,Xi ,≤Ti ) : i � 1, · · · , n}.

◦ To reduce the Monte Carlo errors, we repeat the above imputation
procedure V times, leading to X

(1)
n , · · · ,X(V)

n imputed datasets.
◦ Combine all datasets to form X

[V]
n � (X(1)

n , · · · ,X(V)
n ) and compute

the estimator F̂[V]
A,h(x) using the EDF of X[V]

n .
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Monte Carlo approximation: a toy example - 1

ID

1 15 20 NA NA

2 12 NA NA NA

3 17 43 35 42

4 11 25 NA NA

5 16 37 32 51

6 15 23 32 NA

7 21 27 35 NA

X2 X3 X4X1
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Monte Carlo approximation: a toy example - 1
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Monte Carlo approximation: a toy example - 2

ID

1 15 20 30* 43*
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3 17 43 35 42

4 11 25 34* 41*

5 16 37 32 51

6 15 23 32 49*

7 21 27 35 45*

X2 X3 X4X1 ID

1 15 20 32* 41*

2 12 30* 29* 45*

3 17 43 35 42

4 11 25 34* 46*

5 16 37 32 51

6 15 23 32 42*

7 21 27 35 43*

X2 X3 X4X1

...
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1 15 20 33* 43*

2 12 25* 36* 42*

3 17 43 35 42

4 11 25 33* 41*

5 16 37 32 51

6 15 23 32 49*

7 21 27 35 52*

X2 X3 X4X1

We then combine these datasets to form a combine data and compute
its EDF F̂[V]

A,h(x) and the corresponding estimator θ̂[V]
A,h � θ(F̂[V]

A,h).
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Multiple imputation as Monte Carlo approximation

◦ This procedure is essentially a multiple imputation procedure
(Rubin 1987).

◦ We can view our estimator as an estimator based on multiple
imputation and the imputation distribution is based on the
estimated extrapolation density.

◦ In fact, you can alway interpret the multiple imputation as a
Monte Carlo approximation to the EDF formed by imposing an
imputation distribution over the unobserved variables.

◦ The imputation distribution is the extrapolation distribution in
PMM.
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Nonparametric Saturation

◦ In the missing data literature, an estimator of the full-data distribution
F(x , t) satisfies nonparametric saturation (NPS Robins, 1997)2 if the implied
observed data distribution agrees with the EDF of the observed data.

◦ Namely, an estimator F̂0(x , t) has NPS if

F̂0(x≤t , t) �
∫

F̂0(x , t)µ(dx>t) � F̂(x≤t , t).

◦ The NPS can be viewed as a self-consistent property–the estimated
full-data distribution agrees with the distribution of the observed data.

Theorem (Chen and Sadinle (2019))

The proposed estimator F̂A,h(x , t) satisfies the NPS.

2Also known as nonparametric identification, just identification.
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Convergence rates

◦ Recall that θ � θ(F) is the true parameter of interest and we use
the estimator θ̂A,h � θ(F̂A,h).

◦ Their difference can be decomposed into three components:

θ̂A,h − θ � θ̂A,h − θ̄A,h + θ̄A,h − θA + θA − θ

and under good conditions (including log n
nhd → 0), we have the

following results.

◦ θ̂A,h − θ̄A,h � OP

(√
1
n

)
: the stochastic variation.

◦ θ̄A,h − θA � O(h2): the bias of the smoothing.

◦ θA − θ : the bias of identifying restriction. It will be 0 if our
identifying restriction leads to the correct extrapolation density.
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Asymptotic normality

Theorem (Chen and Sadinle (2019))

Under regularity conditions, when log n
nhd → 0 and h → 0,

√
n(F̂A,h(x) − F̄A,h(x))

converges to a Gaussian process where

F̄A,h(x) �
∑

t

∫ x′
≤t�x≤t

x′
≤t�−∞

F̄A,h(x>t |x′≤t , T � t)F(dx′
≤t |T � t)P(T � t),

F̄A,h(x>t |x≤t , T � t) ≈ E(F̂A,h(x>t |x≤t , T � t)).

◦ F̄A,h(x) behaves like the expected quantity of the estimator F̂A,h(x).
◦ θ̄A,h � θ(F̄A,h).
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Bootstrap method

◦ Sampling with replacement from the original data (including
missing entries) to obtain a bootstrap sample.

◦ Use the bootstrap sample to estimate the conditional density.

◦ Perform the Monte Carlo procedure (multiple imputation) for V
times. Compute the estimator θ̂[V]∗

A,h .
◦ Repeat the above procedure B times, leading to B bootstrap

estimates
θ̂[V]∗(1)

A,h , · · · , θ̂[V]∗(B)
A,h .

◦ Compute the upper and the lower limits (`1−α , u1−α) of the
confidence interval using the quantiles. Namely, `B,1−α � Ĝ−1(α/2)
and uB,1−α � Ĝ−1(1 − α/2) where

Ĝ(s) � 1
B

B∑
b�1

I(θ̂[V]∗(b)
A,h ).
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Confidence interval

Let u1−α and `1−α be the upper and lower bound from the bootstrap
approach when the number of bootstrap replicates B →∞ and V →∞.

Theorem (Chen and Sadinle (2019))

Under regularity conditions, when log n
nhd → 0 and h → 0,

P(`1−α ≤ θ̄A,h ≤ u1−α)→ 1 − α.

◦ Namely, the bootstrap confidence interval is valid for
θ̄A,h � θ(FA,h).

◦ Note that
θ̄A,h − θ � θ̄A,h − θA + θA − θ

consists of the bias from smoothing and the bias from identifying
restriction.
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Bootstrap Diagram (Efron 1994)

Fobs

Fobs,h

F̄A,h(· | ·)

S
cFobs

cFobs,h

S⇤ cF ⇤
obs

cF ⇤
obs,h

z }| { z }| {
Actual Bootstrap

F̄A,h

cFA,h(· | ·) cF ⇤
A,h(· | ·)

cFA,h
cF ⇤
A,h

✓̄A,h
b✓A,h

b✓⇤A,h
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A structural sensitivity analysis

◦ Since the bias θA − θ is hard to know in practice, the sensitivity
analysis is a common procedure to evaluate the stability of an
estimator.

◦ In the class of donor-based identifying restrictions, we may
perform the sensitivity analysis by perturbing a given restriction
within the class.

◦ For instance, the NCMV requires Ats � {s}. We may consider
perturbing it via considering the ‘k-NCMV’ restrictions

Ak−NC
ts � {τ : τ ≥ s , |τ − s | ≤ k − 1} � {s , s + 1, · · · , s + k − 1}.

◦ When k � 1 this reduces to NCMV and when k � d, this becomes
ACMV.
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Decoupling modeling procedure and identifying restriction

◦ Our method is not limited to a nonparametric estimator; one can
use a parametric density estimator as well.

◦ All we need is an estimator of the conditional density, which can
be done parametrically or nonparametrically.

◦ In our framework, the modeling strategy on the distribution and
the identifying restrictions are decoupled–one can choose any
distribution estimator and any donor-based identifying restriction.

◦ The Monte Carlo approximation (multiple imputation) and the
bootstrap can be done in a similar manner3.

3When using a parametric model, the sequential imputation reduces to the
parametric sequential imputation described in p.60 of Liu (2008).
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The flexibility and transparency of modeling

◦ When handling missing data, there are three modeling
components:
◦ Assumptions on missingness.
◦ Models on distributions.
◦ Formulation of the parameter of interest.

◦ Many classical methods would require all three components to be
dependent.

◦ Our methods allow them to all be independent.

◦ Also, our method leads to the model congenial property (Meng
1994)4 as long as we are using a nonparametric estimator on the
distribution.

4In short, this means the model on missing data and the model used for
formulating parameter of interest are consistent.
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Conclusion

◦ We introduce a class called the donor-based identifying
restrictions for handling missing data.

◦ We proposed a nonparametric estimator of the full-data
distribution but a similar idea can be applied to a parametric
model. This estimator is nonparamteric saturated and model
congenial.

◦ Even if we cannot directly compute the estimator, we may use a
Monte Carlo approximation in the form of multiple imputation to
approximate it.

◦ In a sense, our work provides an alternative view of multiple
imputation–it can be viewed as a Monte Carlo approximation to a
PMM estimator.

◦ Our estimator has nice asymptotic property but there is an
identifying restriction bias we have to be cautious.
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Future work

◦ Generalization to nonmonotone case (work in progress with
Mauricio).

◦ How to interpret the donor-based identifying restriction?

◦ How to do data analysis with multiple identifying restrictions?

◦ Missing covariates in regression/causal inference problem.

◦ Will the bootstrap always include the imputation uncertainty?

◦ Equivalent selection models and semi-parametric inference.
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Thank You!

More details can be found in https://arxiv.org/abs/1904.11085.
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The sequential imputation

◦ Generating X∗i ,>Ti
from F̂A,h(x>Ti |Xi ,≤Ti , T � Ti) can be done via a

sequential sampling from the conditional KDE.

◦ Note that sampling from F̂A,h(x>Ti |Xi ,≤Ti , T � Ti) is the same as
sampling from its PDF

p̂A,h(x>Ti |Xi ,≤Ti , T � Ti) �
d∏

s�Ti+1
p̂A,h(xs |x<s , T � Ti).

◦ We can sample XTi+1 and then sample XTi+2 conditioned on the
previously sampled XT1+1.

◦ Because

p̂A,h(xs |x<s , T � Ti) � 1
h

n∑
j�1

K
(

X j,s − xs

h

)
W j(x<s),

sampling from can be done from a weighted smoothed bootstrap
procedure.
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Richness of donor-based identifications

One may be wondering how large the donor-based identification class.
The following theorem shows that this class contains many, many
distinct elements.

Theorem (Chen and Sadinle (2019+); in progress)

Suppose that there are d variables that are subject to monotone missingness.
Then there are

Ld �

d−1∏
t�0

(2d−t
− 1)

numbers of distinct donor-based identifying restrictions.

◦ Here are some numbers of Ld :

L1 � 1, L2 � 3, L3 � 21, L4 � 315, L5 � 9765, L6 � 615195, L7 > 7×107.
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PANSS Datasets - 1
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◦ The purpose of the trial was to evaluate the effectiveness of four
different doses of a new treatment (N) compared with placebo (P)
and with a standard of care (S) in patients with chronic
schizophrenia.

◦ The Positive and Negative Syndrome Scale for Schizophrenia
(PANSS) score Xt was measured on patients one week before, the
day of, and on weeks t � 1, 2, 4, 6, and 8 after randomization.

◦ We are interested in estimating average treatment effects (ATEs)
over time µG1

t − µ
G2
t � E(Xt |G1) − E(Xt |G2), where

G1 ,G2 ∈ {P, S,N}.
◦ Sample size n � 257; nP � 87, nS � 85, nN � 85.
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PANSS Datasets - 2
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◦ We use Gaussian kernels in conditional KDE with Silverman’s rule
(Silverman 1986) for the bandwidth.

◦ We consider the AC, 3NC and NC identifying restrictions.

◦ 95% Confidence intervals are constructed using the bootstrap.
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Assumptions

(A1) The true full-data distribution function F(x , t) has a density function f0(x , t) satisfying
1. infx∈X f0(x , t) > 0 for each t � 1, · · · , d.
2. f0(x , t) ∈ UBC2 for each t � 1, · · · , d.

(A2) The statistical functional θ is Hadamard differentiable.

(K1) K(z) has at least second-order bounded derivative and∫
z2K(z)µ(dz) < ∞,

∫
K2(z)µ(dz) < ∞.

(K2) Let K�
�
z 7→ K

� z−w
h

�
: w ∈ R, h̄ > h > 0

	
, for some fixed constant h̄.We assume that K is

a VC-type class. Namely, there exists constants A, v and a constant envelope b0 such that

sup
Q

N(K,L2(Q), b0ε) ≤
( A
ε

)v
,

where N(T, dT , ε) is the ε-covering number for a semi-metric set T with metric dT , and
L2(Q) is the L2 norm with respect to the probability measure Q.
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