ANALYZING GPS DATA USING DENSITY RANKING

Yen-Chi Chen

Department of Statistics
University of Washington

o Joint work with Adrian Dobra and Zhihang Dong

A Motivating Example: GPS data

- GPS technology provides a new way of collecting mobility patterns of humans and animals.
- GPS data is very rich, but also very complex.
- Here we will focus on a simple case, assuming that we only have access to the longitude and latitude information.

Real Person Datasets

- This data is about 10 real person's GPS records from Chen and Dobra (2017).
- All these participants share the same work place.
- The ages of the study participants were between 34 and 48 years.
- Each person has around 3,500 to 8,500 GPS records during the 6 months study period.

GPS Data: Real People

African Animal Datasets

- This data is from the Movebank Data Repository¹ and was analyzed in Abrahms et al. (2017).
- Here we compare 4 different types of animals: elephants, jackals, vultures, and zebras.
- In this data, we have 8 elephants, 15 jackals, 10 vultures, and 9 zebras.
- Each animal has a set of GPS records with record size ranging from 1,000 to 10,000.

https://www.datarepository.movebank.org/

GPS Data: African Animals (Movebank Data Repository)

GPS Data: African Animals (Movebank Data Repository)

GPS Data: African Animals (Movebank Data Repository)

Kernel Density Estimator

- Kernel Density Estimator (KDE) is one of the most popular method for density estimator.
- When we are given a set of point cloud, it is a natural way to use KDE or other density estimate to analyze the data.
- However, this idea may fail for GPS data.

Density Ranking: Introduction

• The KDE cannot detect intricate structures inside the GPS data.

Density Ranking: Introduction

- The KDE cannot detect intricate structures inside the GPS data.
- This is because the underlying PDF does not exist!
- Namely, our probability distribution function is singular.

Density Ranking: Introduction

- The KDE cannot detect intricate structures inside the GPS data.
- This is because the underlying PDF does not exist!
- Namely, our probability distribution function is singular.
- However, density ranking still works!

Definition of Density Ranking

- The density ranking (Chen 2018; Chen and Dobra 2017) is a transformed quantity/function from the KDE.
- Instead of using the density value, we focus on the ranking of it.

Definition of Density Ranking

- The density ranking (Chen 2018; Chen and Dobra 2017) is a transformed quantity/function from the KDE.
- o Instead of using the density value, we focus on the ranking of it.
- The density ranking at point *x* is

$$\widehat{\alpha}(x) = \frac{1}{n} \sum_{i=1}^{n} I(\widehat{p}(x) \ge \widehat{p}(X_i))$$

= ratio of observations' density below the density of point x,

where \widehat{p} is the KDE.

Definition of Density Ranking

- The density ranking (Chen 2018; Chen and Dobra 2017) is a transformed quantity/function from the KDE.
- o Instead of using the density value, we focus on the ranking of it.
- The density ranking at point *x* is

$$\widehat{\alpha}(x) = \frac{1}{n} \sum_{i=1}^{n} I\left(\widehat{p}(x) \ge \widehat{p}(X_i)\right)$$

= ratio of observations' density below the density of point x,

where \widehat{p} is the KDE.

• Namely, $\widehat{\alpha}(x) = 0.3$ implies that the (estimated) density of point x is above the (estimated) density of 30% of all observations.

• For an observation X_{max} with $\widehat{\alpha}(X_{\text{max}}) = 1$, then it means

$$\widehat{p}(X_{\max}) = \max \{\widehat{p}(X_1), \cdots, \widehat{p}(X_n)\}.$$

• For an observation X_{max} with $\widehat{\alpha}(X_{\text{max}}) = 1$, then it means

$$\widehat{p}(X_{\max}) = \max \{\widehat{p}(X_1), \cdots, \widehat{p}(X_n)\}.$$

• Similarly, for an observation X_{\min} with $\widehat{\alpha}(X_{\min}) = \frac{1}{n}$,

$$\widehat{p}(X_{\min}) = \min \{\widehat{p}(X_1), \cdots, \widehat{p}(X_n)\}.$$

• For an observation X_{max} with $\widehat{\alpha}(X_{\text{max}}) = 1$, then it means

$$\widehat{p}(X_{\max}) = \max \{\widehat{p}(X_1), \cdots, \widehat{p}(X_n)\}.$$

• Similarly, for an observation X_{\min} with $\widehat{\alpha}(X_{\min}) = \frac{1}{n}$,

$$\widehat{p}(X_{\min}) = \min \{\widehat{p}(X_1), \cdots, \widehat{p}(X_n)\}.$$

• If an observation X_{ℓ} satisfies $\widehat{\alpha}(X_{\ell}) = 0.25$, this means that the ranking of density at X_{ℓ} is higher than 25% of the observations.

• For an observation X_{max} with $\widehat{\alpha}(X_{\text{max}}) = 1$, then it means

$$\widehat{p}(X_{\max}) = \max \{\widehat{p}(X_1), \cdots, \widehat{p}(X_n)\}.$$

• Similarly, for an observation X_{\min} with $\widehat{\alpha}(X_{\min}) = \frac{1}{n}$,

$$\widehat{p}(X_{\min}) = \min \{\widehat{p}(X_1), \cdots, \widehat{p}(X_n)\}.$$

- If an observation X_{ℓ} satisfies $\widehat{\alpha}(X_{\ell}) = 0.25$, this means that the ranking of density at X_{ℓ} is higher than 25% of the observations.
- Moreover, for any pairs of data points X_i , X_j ,

$$\widehat{p}(X_i) > \widehat{p}(X_j) \iff \widehat{\alpha}(X_i) > \widehat{\alpha}(X_j)$$

$$\widehat{p}(X_i) < \widehat{p}(X_j) \iff \widehat{\alpha}(X_i) < \widehat{\alpha}(X_j)$$

$$\widehat{p}(X_i) = \widehat{p}(X_j) \iff \widehat{\alpha}(X_i) = \widehat{\alpha}(X_j)$$

Density Ranking as an Estimator

• Density ranking $\widehat{\alpha}(x)$ can be viewed as an estimator to certain characteristics of the underlying population distribution.

Density Ranking as an Estimator

- Density ranking $\widehat{\alpha}(x)$ can be viewed as an estimator to certain characteristics of the underlying population distribution.
- When the distribution function has a PDF, the population version of density ranking is defined as:

$$\alpha(x) = P(p(x) \ge p(X_1)).$$

Density Ranking as an Estimator

- Density ranking $\widehat{\alpha}(x)$ can be viewed as an estimator to certain characteristics of the underlying population distribution.
- When the distribution function has a PDF, the population version of density ranking is defined as:

$$\alpha(x) = P(p(x) \ge p(X_1)).$$

But GPS data may not have a well-defined PDF.

A statistical model for GPS dataset -1

• Ignoring time label, the GPS records can be viewed as

$$X_1, \cdots, X_n \sim P_{\mathsf{GPS}},$$

where P_{GPS} is a probability distribution.

A statistical model for GPS dataset -1

• Ignoring time label, the GPS records can be viewed as

$$X_1, \cdots, X_n \sim P_{\mathsf{GPS}},$$

where P_{GPS} is a probability distribution.

 \circ Because of the natural of GPS records, we can decompose P_{GPS} as

$$P_{\mathsf{GPS}}(x) = \pi_0 P_0(x) + \pi_1 P_1(x) + \pi_2 P_2(x),$$

where $P_0(x)$ is a distribution of point mass, and $P_1(x)$ is a distribution of a 1D density function, and $P_2(x)$ is a distribution of a 2D density function, and $\pi_0 + \pi_1 + \pi_2 = 1$ with $\pi_j \ge 0$ are proportions.

A statistical model for GPS dataset - 2

$$P_{\text{GPS}}(x) = \pi_0 P_0(x) + \pi_1 P_1(x) + \pi_2 P_2(x).$$

- $P_0(x)$: a distribution that puts probability on the anchor/key locations.
- $P_1(x)$: a distribution describing the path/road that the individual regularly takes.
- $P_2(x)$: a distribution describing the activity on an open space.

A simulated GPS data

$$\pi_0 = 0.6$$
, $\pi_1 = 0.3$, $\pi_2 = 0.1$.
 $P_0(x) = 0.5\delta_{0,0}(x) + 0.3\delta_{0,2}(x) + 0.2\delta_{2,0}(x)$.
 $P_1(x) \sim 0.5$ (Home-Office) + 0.3(Home-Gym) + 0.2(Office-Gym).

A simulated GPS data

$$\pi_0 = 0.6$$
, $\pi_1 = 0.3$, $\pi_2 = 0.1$.
 $P_0(x) = 0.5\delta_{0,0}(x) + 0.3\delta_{0,2}(x) + 0.2\delta_{2,0}(x)$.
 $P_1(x) \sim 0.5$ (Home-Office) + 0.3(Home-Gym) + 0.2(Office-Gym).

 Density ranking is still a consistent estimator even when the density does not exist!

- Density ranking is still a consistent estimator even when the density does not exist!
- To generalize population density ranking to a singular measure, we introduce the concept of the *Hausdorff (geometric) density*.

- Density ranking is still a consistent estimator *even when the density does not exist!*
- To generalize population density ranking to a singular measure, we introduce the concept of the *Hausdorff (geometric) density*.
- Let C_d be the volume of a d dimensional unit ball and $B(x,r) = \{y : ||x-y|| \le r\}.$

- Density ranking is still a consistent estimator *even* when the density does not exist!
- To generalize population density ranking to a singular measure, we introduce the concept of the *Hausdorff (geometric) density*.
- Let C_d be the volume of a d dimensional unit ball and $B(x,r) = \{y : ||x-y|| \le r\}.$
- \circ For any integer s, we define

$$\mathcal{H}_s(x) = \lim_{r \to 0} \frac{P(B(x, r))}{C_s r^s}.$$

$$\mathcal{H}_s(x) = \lim_{r \to 0} \frac{P(B(x, r))}{C_s r^s}.$$

• $\mathcal{H}_s(x)$ occurs in three regimes: $0, \infty$, or a number between $(0, \infty)$.

Density Ranking in Singular Measures - 2

$$\mathcal{H}_s(x) = \lim_{r \to 0} \frac{P(B(x, r))}{C_s r^s}.$$

- ∘ $\mathcal{H}_s(x)$ occurs in three regimes: 0, ∞, or a number between $(0, \infty)$.
- Example of 0: s = 1 on a place with 2D density (s < the structural dimension).
- Example of ∞ : s = 1 on a point mass (s > the structural dimension).

Density Ranking in Singular Measures - 2

$$\mathcal{H}_s(x) = \lim_{r \to 0} \frac{P(B(x, r))}{C_s r^s}.$$

- ∘ $\mathcal{H}_s(x)$ occurs in three regimes: 0, ∞, or a number between $(0, \infty)$.
- Example of 0: s = 1 on a place with 2D density (s < the structural dimension).
- Example of ∞ : s = 1 on a point mass (s > the structural dimension).
- \circ For a point x, we then define

$$\tau(x) = \max\{s \le d : \mathcal{H}_s(x) < \infty\}, \quad \rho(x) = \mathcal{H}_{\tau(x)}(x).$$

Hausdorff Density: Example - 1

• Assume the distribution function P is a mixture of a 2D uniform distribution within $[-1,1]^2$, a 1D uniform distribution over the ring $\{(x,y): x^2 + y^2 = 0.5^2\}$, and a point mass at (0.5,0), then the support can be partitioned as follows:

Geometric Hausdorff: Example - 2

- Orange region: $\tau(x) = 2 \Leftrightarrow \text{contribution of } P_2(x)$.
- Red region: $\tau(x) = 1 \Leftrightarrow \text{contribution of } P_1(x)$.
- ∘ Blue region: $\tau(x) = 0 \Leftrightarrow \text{contribution of } P_0(x)$.

• The function $\tau(x)$ measures the dimension of P at point x.

- The function $\tau(x)$ measures the dimension of P at point x.
- The function $\rho(x)$ describes the density of that corresponding dimension.

- The function $\tau(x)$ measures the dimension of P at point x.
- The function $\rho(x)$ describes the density of that corresponding dimension.
- We can use τ and ρ to compare any pairs of points and construct a ranking.

- The function $\tau(x)$ measures the dimension of P at point x.
- The function $\rho(x)$ describes the density of that corresponding dimension.
- $\circ~$ We can use τ and ρ to compare any pairs of points and construct a ranking.
- For two points x_1, x_2 , we define an ordering such that $x_1 \succ_{\tau, \rho} x_2$ if

$$\tau(x_1) < \tau(x_2),$$
 or $\tau(x_1) = \tau(x_2),$ $\rho(x_1) > \rho(x_2).$

- The function $\tau(x)$ measures the dimension of P at point x.
- The function $\rho(x)$ describes the density of that corresponding dimension.
- \circ We can use τ and ρ to compare any pairs of points and construct a ranking.
- For two points x_1, x_2 , we define an ordering such that $x_1 \succ_{\tau, \rho} x_2$ if

$$\tau(x_1) < \tau(x_2),$$
 or $\tau(x_1) = \tau(x_2),$ $\rho(x_1) > \rho(x_2).$

 Namely, we first compare the dimension of the two points, the lower dimensional structure wins. If they are on regions of the same dimension, we then compare the density of that dimension.

Constructing Density Ranking using Hausdorff Density

• Using the ordering $\succ_{\tau,\rho}$, we then define the population density ranking as

$$\alpha(x) = P(x \succeq_{\tau, \rho} X_1)$$

Constructing Density Ranking using Hausdorff Density

• Using the ordering $\succ_{\tau,\rho}$, we then define the population density ranking as

$$\alpha(x) = P(x \succeq_{\tau,\rho} X_1)$$

• When the PDF exists, the ordering $\succ_{\tau,\rho}$ equals to $\succ_{d,p}$ so

$$\alpha(x) = P(x \geq_{d,p} X_1) = P(p(x) \geq p(X_1)),$$

which recovers the definition in the simple case.

- In singular measure, there is a new type of critical points. We call them the *dimensional critical points*.
- These critical points contribute to the change of topology of level sets as the usual critical points but they cannot be defined by setting gradient to be 0.

- The box in the following figure is a dimensional critical point.
- Note: this is a mixture of 2D distribution and a 1D distribution on the black line (maximum value occurs at the cross).

- The box in the following figure is a dimensional critical point.
- Note: this is a mixture of 2D distribution and a 1D distribution on the black line (maximum value occurs at the cross).

- The box in the following figure is a dimensional critical point.
- Note: this is a mixture of 2D distribution and a 1D distribution on the black line (maximum value occurs at the cross).

- The box in the following figure is a dimensional critical point.
- Note: this is a mixture of 2D distribution and a 1D distribution on the black line (maximum value occurs at the cross).

• When *P* is a singular distribution and satisfies certain regularity conditions,

$$\int \left|\widehat{\alpha}(x) - \alpha(x)\right|^2 dP(x) = O(h) + O_P\left(\sqrt{\frac{1}{nh^d}}\right)$$

When P is a singular distribution and satisfies certain regularity conditions,

$$\int \left|\widehat{\alpha}(x) - \alpha(x)\right|^2 dP(x) = O(h) + O_P\left(\sqrt{\frac{1}{nh^d}}\right)$$

• Intuition of convergence: as $h \to 0$, the KDE

$$\widehat{p}(x) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{X_i - x}{h}\right)$$

diverges when x is in a lower dimensional structure ($\tau(x) < d$).

• The bias of order O(h) is due to the smoothing from a nearby lower dimensional structure.

• When *P* is a singular distribution and satisfies certain regularity conditions,

$$\int \left|\widehat{\alpha}(x) - \alpha(x)\right|^2 dP(x) = O(h) + O_P\left(\sqrt{\frac{1}{nh^d}}\right)$$

• Intuition of convergence: as $h \to 0$, the KDE

$$\widehat{p}(x) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{X_i - x}{h}\right)$$

diverges when x is in a lower dimensional structure ($\tau(x) < d$).

- The bias of order O(h) is due to the smoothing from a nearby lower dimensional structure.
- However, the speed of diverging depends on $\tau(x)$. The smaller $\tau(x)$, the faster (actually the diverging rate is $O(h^{\tau(x)-d})$).

• When *P* is a singular distribution and satisfies certain regularity conditions,

$$\int \left|\widehat{\alpha}(x) - \alpha(x)\right|^2 dP(x) = O(h) + O_P\left(\sqrt{\frac{1}{nh^d}}\right)$$

• Intuition of convergence: as $h \to 0$, the KDE

$$\widehat{p}(x) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{X_i - x}{h}\right)$$

diverges when x is in a lower dimensional structure ($\tau(x) < d$).

- The bias of order O(h) is due to the smoothing from a nearby lower dimensional structure.
- However, the speed of diverging depends on $\tau(x)$. The smaller $\tau(x)$, the faster (actually the diverging rate is $O(h^{\tau(x)-d})$).
- So eventually, we can separate different dimensional structures.

• Although we have $L_2(P)$ convergence (also we have L_2 and pointwise convergence), we do not have a uniform convergence.

- Although we have $L_2(P)$ convergence (also we have L_2 and pointwise convergence), we do not have a uniform convergence.
- Example of non-convergence of supreme norm: consider a sequence of points on a higher dimensional space but moving toward a lower dimensional structure within distance $\frac{h}{2}$.

- Although we have $L_2(P)$ convergence (also we have L_2 and pointwise convergence), we do not have a uniform convergence.
- Example of non-convergence of supreme norm: consider a sequence of points on a higher dimensional space but moving toward a lower dimensional structure within distance $\frac{h}{2}$.
- Interestingly, we can still prove that some topological features (local modes, level sets, cluster trees, persistent diagrams) are converging.

Convergence under GPS model

$$P_{\mathsf{GPS}}(x) = \pi_0 P_0(x) + \pi_1 P_1(x) + \pi_2 P_2(x).$$

Anchor locations: $\mathcal{A} = \text{supp}(P_0)$.

Roads: $\Re = \text{supp}(P_1)$.

• Let $\widehat{A}_{\gamma} = \{\widehat{\alpha} \ge 1 - \gamma\}$ be the upper level set.

Convergence under GPS model

$$P_{\mathsf{GPS}}(x) = \pi_0 P_0(x) + \pi_1 P_1(x) + \pi_2 P_2(x).$$

Anchor locations: $\mathcal{A} = \text{supp}(P_0)$.

Roads: $\Re = \text{supp}(P_1)$.

- Let $\widehat{A}_{\gamma} = \{\widehat{\alpha} \ge 1 \gamma\}$ be the upper level set.
- Under suitable assumptions,

$$P_{\mathsf{GPS}}\left(\widehat{A}_{\pi_0} \triangle \mathcal{A}\right) \stackrel{P}{\to} 0,$$

where \triangle is the set difference.

Convergence under GPS model

$$P_{\mathsf{GPS}}(x) = \pi_0 P_0(x) + \pi_1 P_1(x) + \pi_2 P_2(x).$$

Anchor locations: $\mathcal{A} = \text{supp}(P_0)$.

Roads: $\Re = \text{supp}(P_1)$.

- Let $\widehat{A}_{\gamma} = {\widehat{\alpha} \ge 1 \gamma}$ be the upper level set.
- Under suitable assumptions,

$$P_{\mathsf{GPS}}\left(\widehat{A}_{\pi_0} \triangle \mathcal{A}\right) \stackrel{P}{\to} 0,$$

where \triangle is the set difference.

Under suitable assumptions,

$$P_{\mathsf{GPS}}\left(\widehat{A}_{\pi_0+\pi_1}\Delta(\mathcal{A}\cup\mathcal{R})\right)\stackrel{P}{\to}0,$$

Convergence: simulated data - 1

$$P_{\mathsf{GPS}}\left(\widehat{A}_{\pi_0} \triangle \mathcal{A}\right) \overset{P}{\longrightarrow} 0.$$

Convergence: simulated data - 2

$$P_{\mathsf{GPS}}\left(\widehat{A}_{\pi_0+\pi_1}\Delta(\mathcal{A}\cup\mathcal{R})\right)\overset{p}{\to}0.$$

Application of Density Ranking: GPS dataset - 1

Application of Density Ranking: GPS dataset - 2

Summarizing Multiple Density Ranking

- In the above example, we have multiple GPS datasets and each of them yields one density ranking.
- Thus, we have multiple density rankings.

Summarizing Multiple Density Ranking

- In the above example, we have multiple GPS datasets and each of them yields one density ranking.
- Thus, we have multiple density rankings.
- To compare these density rankings, a simple approach is to overlap the level sets (clusters).
- Recall that

$$\widehat{A}_{\gamma} = \{x : \widehat{\alpha}(x) \ge 1 - \gamma\}$$

is the (upper) level set.

Summarizing Multiple Density Ranking

- In the above example, we have multiple GPS datasets and each of them yields one density ranking.
- Thus, we have multiple density rankings.
- To compare these density rankings, a simple approach is to overlap the level sets (clusters).
- Recall that

$$\widehat{A}_{\gamma} = \{x : \widehat{\alpha}(x) \ge 1 - \gamma\}$$

is the (upper) level set.

 We compare the density ranking of each individual by overlapping their level sets/clusters at different levels.

Clusters of GPS Point Clouds

Clusters of GPS Point Clouds

Clusters of GPS Point Clouds

Summary Curves of Density Ranking

• The level plot allows us to compare GPS datasets from different individuals.

Summary Curves of Density Ranking

- The level plot allows us to compare GPS datasets from different individuals.
- However, it has two drawbacks:
 - When we have many individuals, this approach might not work (too many contours).
 - We often need to choose a level γ to show the plot but which level to be chosen is unclear.

Summary Curves of Density Ranking

- The level plot allows us to compare GPS datasets from different individuals.
- However, it has two drawbacks:
 - When we have many individuals, this approach might not work (too many contours).
 - We often need to choose a level γ to show the plot but which level to be chosen is unclear.
- Here we introduce a few curves to summarize geometric and topological features of density ranking.

Mass-Volume Curve

• Recall that $\widehat{A}_{\gamma} = \{x : \widehat{\alpha}(x) \ge 1 - \gamma\}$ is the level set of density ranking.

Mass-Volume Curve

- Recall that $\widehat{A}_{\gamma} = \{x : \widehat{\alpha}(x) \ge 1 \gamma\}$ is the level set of density ranking.
- The mass-volume curve is a curve of

$$(\gamma, \operatorname{Vol}(\widehat{A}_{\gamma})): \gamma \in [0, 1].$$

• Namely, we are plotting the size of set \widehat{A}_{γ} at various level.

Mass-Volume Curve

- Recall that $\widehat{A}_{\gamma} = \{x : \widehat{\alpha}(x) \ge 1 \gamma\}$ is the level set of density ranking.
- The mass-volume curve is a curve of

$$(\gamma, \operatorname{Vol}(\widehat{A}_{\gamma})) : \gamma \in [0, 1].$$

- Namely, we are plotting the size of set \widehat{A}_{γ} at various level.
- In practice, we often plot γ versus $\log Vol(\widehat{A}_{\gamma})$.

Mass-Volume Curve: Example

Betti Number Curve

- The Betti number curve is a curve quantifying topological features of the density ranking.
- It counts the number of connected components of \widehat{A}_{γ} at various level γ .

Betti Number Curve

- The Betti number curve is a curve quantifying topological features of the density ranking.
- It counts the number of connected components of \widehat{A}_{γ} at various level γ .
- Formally, the Betti number curve is

$$\left(\gamma, \mathsf{Betti}_0(\widehat{A}_\gamma)\right): \gamma \in [0,1],$$

where for a set A

 $Betti_0(A) = number of connected components inside A.$

Betti Number Curve

- The Betti number curve is a curve quantifying topological features of the density ranking.
- It counts the number of connected components of \widehat{A}_{γ} at various level γ .
- Formally, the Betti number curve is

$$(\gamma, \mathsf{Betti}_0(\widehat{A}_\gamma)) : \gamma \in [0, 1],$$

where for a set A

 $Betti_0(A) = number of connected components inside A.$

 Note that the number of connected component is called the oth order Betti number (oth order topological structure); one can generalize this idea to higher order topological structures.

Betti Number Curve: Example

Other Summary Approaches: Mass-Volume Curve

Other Summary Approaches: Betti Number Curve

Conclusion

- When a point cloud is from a singular measure, the traditional density estimator will fail.
- However, the density ranking may still be a well-defined quantity and we can estimate it consistently.
- Using the idea of density ranking, we can analyze complex datasets such as the GPS data.
- Many open questions: generalizing to point processes, modeling the temporal trends, assessing the uncertainty.

Thank You!

An R script for density ranking: https://github.com/yenchic/density_ranking

More details can be found in http://faculty.washington.edu/yenchic/

References

- Chen, Yen-Chi, Christopher R. Genovese, and Larry Wasserman. "Density level sets: Asymptotics, inference, and visualization." Journal of the American Statistical Association (2017): 1-13.
- Jisu, K. I. M., Yen-Chi Chen, Sivaraman Balakrishnan, Alessandro Rinaldo, and Larry Wasserman. "Statistical inference for cluster trees." In Advances In Neural Information Processing Systems, pp. 1839-1847. 2016.
- Chen, Yen-Chi. "Generalized Cluster Trees and Singular Measures." To appear in the Annals of Statistics. arXiv preprint arXiv:1611.02762 (2016).
- Chen, Yen-Chi, and Adrian Dobra. "Measuring Human Activity Spaces With Density Ranking Based on GPS Data." arXiv preprint arXiv:1708.05017 (2017).
- Stuetzle, Werner. "Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample." Journal of classification 20, no. 1 (2003): 025-047.
- Klemelä, Jussi. "Visualization of multivariate density estimates with level set trees." Journal of Computational and Graphical Statistics 13, no. 3 (2004): 599-620.
- Chaudhuri, Kamalika, and Sanjoy Dasgupta. "Rates of convergence for the cluster tree." In Advances in Neural Information Processing Systems, pp. 343-351. 2010.
- Chaudhuri, Kamalika, Sanjoy Dasgupta, Samory Kpotufe, and Ulrike von Luxburg. "Consistent procedures for cluster tree estimation and pruning." IEEE Transactions on Information Theory 60, no. 12 (2014): 7900-7912.
- Eldridge, Justin, Mikhail Belkin, and Yusu Wang. "Beyond hartigan consistency: Merge distortion metric for hierarchical clustering." In Conference on Learning Theory, pp. 588-606. 2015.
- Balakrishnan, Sivaraman, Srivatsan Narayanan, Alessandro Rinaldo, Aarti Singh, and Larry Wasserman. "Cluster trees on manifolds." In Advances in Neural Information Processing Systems, pp. 2679-2687. 2013.
- 11. Abrahms B, Seidel DP, Dougherty E, Hazen EL, Bograd SJ, Wilson AM, McNutt JW, Costa DP, Blake S, Brashares JS, Getz
 - $WM \ (\textbf{2017}) \ \text{``Suite of simple metrics reveals common movement syndromes across vertebrate taxa.''} \ Movement \ Ecology$
 - 5:12. doi:10.1186/s40462-017-0104-2

Real Person Datasets

- This data is about 10 real person's GPS records from Chen and Dobra (2017).
- All these participants share the same work place.
- The ages of the study participants were between 34 and 48 years.
- Each person has around 3,500 to 8,500 GPS records.

Real Persons Datasets: Raw Data

African Animal Datasets

- This data is from the Movebank Data Repository² and was analyzed in Abrahms et al. (2017).
- Here we compare 4 different types of animals: elephants, jackals, vultures, and zebras.
- In this data, we have 8 elephants, 15 jackals, 10 vultures, and 9 zebras.
- Each animal has a set of GPS records with record size ranging from 1,000 to 10,000.

²https://www.datarepository.movebank.org/

African Animal Datasets: Raw Data

African Animal Datasets: Raw Data

African Animal Datasets: Raw Data

Assumptions for Regular Distributions

- **(R1)** The density function p has a compact support \mathbb{K} .
- (R2) The density function is a Morse function and is in BC^3 .
- **(K1)** The kernel function K is in \mathbf{BC}^2 and integrable.
- **(K2)** *K* satisfies the VC-type class condition.

Kernel Conditions

(K₂) Let

$$\mathcal{K}_r = \left\{ y \mapsto K^{(\alpha)} \left(\frac{x - y}{h} \right) : x \in \mathbb{R}^d, |\alpha| = r \right\},\,$$

where $K^{(\alpha)}$ is the α -th derivative and let $\mathcal{K}_l^* = \bigcup_{r=0}^l \mathcal{K}_r$. We assume that \mathcal{K}_2^* is a VC-type class. i.e. there exists constants A, v and a constant envelope b_0 such that

$$\sup_{Q} N(\mathcal{K}_{2}^{*}, \mathcal{L}^{2}(Q), b_{0}\epsilon) \leq \left(\frac{A}{\epsilon}\right)^{v}, \tag{1}$$

where $N(T, d_T, \epsilon)$ is the ϵ -covering number for an semi-metric set T with metric d_T and $\mathcal{L}^2(Q)$ is the L_2 norm with respect to the probability measure Q.

Assumptions for Singular Distributions

(S1) The support can be partitioned into

$$K=K_0\bigcup K_1\bigcup\cdots\bigcup K_d,$$

where $K_{\ell} = \{x \in \mathbb{K} : \tau(x) = \ell\}.$

- **(S2)** There exist ρ_{\min} , ρ_{\max} such that $0 < \rho_{\min} \le \rho(x) \le \rho_{\max} < \infty$ for every $x \in \mathbb{K}$.
- **(S₃)** Restricted to each \mathbb{K}_{ℓ} where $\ell > 0$, $\rho(x)$ is a Morse function.
- **(K1')** The kernel function K is in \mathbf{BC}^2 , integrable, and supported in [-1,1].
- (K_2) K satisfies the VC-type class condition.

• To measure the estimation error, a simple metric is

$$d_{\infty}(\widehat{T_p}, T_p) = \sup_{x} \|\widehat{p}_n(x) - p(x)\|,$$

which is the L_{∞} metric of the corresponding density estimation.

To measure the estimation error, a simple metric is

$$d_{\infty}(\widehat{T_p}, T_p) = \sup_{x} \|\widehat{p}_n(x) - p(x)\|,$$

which is the L_{∞} metric of the corresponding density estimation.

• Under suitable conditions, the convergence rate is

$$d_{\infty}(\widehat{T_p}, T_p) = O(h^2) + O_P\left(\sqrt{\frac{\log n}{nh^d}}\right).$$

• To measure the estimation error, a simple metric is

$$d_{\infty}(\widehat{T_p}, T_p) = \sup_{x} \|\widehat{p}_n(x) - p(x)\|,$$

which is the L_{∞} metric of the corresponding density estimation.

• Under suitable conditions, the convergence rate is

$$d_{\infty}(\widehat{T_p}, T_p) = O(h^2) + O_P\left(\sqrt{\frac{\log n}{nh^d}}\right).$$

 Another way of defining statistical convergence is based on the probability

$$P_n = P\left(\widehat{T_p} \text{ and } T_p \text{ are topological equivalent}\right).$$

To measure the estimation error, a simple metric is

$$d_{\infty}(\widehat{T_p}, T_p) = \sup_{x} \|\widehat{p}_n(x) - p(x)\|,$$

which is the L_{∞} metric of the corresponding density estimation.

• Under suitable conditions, the convergence rate is

$$d_{\infty}(\widehat{T_p}, T_p) = O(h^2) + O_P\left(\sqrt{\frac{\log n}{nh^d}}\right).$$

 Another way of defining statistical convergence is based on the probability

$$P_n = P\left(\widehat{T_p} \text{ and } T_p \text{ are topological equivalent}\right)$$
.

• Under smoothness conditions and $n \to \infty$, $h \to 0$,

$$P_n \ge 1 - e^{-nh^{d+4} \cdot C_p}$$

50 / 41

for some constant C_p depending on the density function p.

• There are other notions of convergence/consistency of a tree estimator.

- There are other notions of convergence/consistency of a tree estimator.
- Convergence in the merge distortion metric (Eldridge et al. 2015) is one example.

- There are other notions of convergence/consistency of a tree estimator.
- Convergence in the merge distortion metric (Eldridge et al. 2015) is one example.
- However, it was shown in Kim et al. (2016) that this metric is equivalent to the L_{∞} metric.

- There are other notions of convergence/consistency of a tree estimator.
- Convergence in the merge distortion metric (Eldridge et al. 2015) is one example.
- However, it was shown in Kim et al. (2016) that this metric is equivalent to the L_{∞} metric.
- Hartigan consistency (Chaudhuri and Dasgupta 2010;
 Balakrishnan et al. 2013) is another way to measure the consistency of a tree estimator.

- There are other notions of convergence/consistency of a tree estimator.
- Convergence in the merge distortion metric (Eldridge et al. 2015) is one example.
- However, it was shown in Kim et al. (2016) that this metric is equivalent to the L_{∞} metric.
- Hartigan consistency (Chaudhuri and Dasgupta 2010;
 Balakrishnan et al. 2013) is another way to measure the consistency of a tree estimator.
- Note: density tree can also be recovered by a kNN approach; see Chaudhuri and Dasgupta (2010) and Chaudhuri et al. (2014) for more details.

Convergence under Singular Measure: Density Ranking

• Despite the pointwise convergence and convergence in $L_2(P)$, there no guarantee for the uniform convergence $\sup_x |\widehat{\alpha}(x) - \alpha(x)|$.

Convergence under Singular Measure: Density Ranking

- Despite the pointwise convergence and convergence in $L_2(P)$, there no guarantee for the uniform convergence $\sup_x |\widehat{\alpha}(x) \alpha(x)|$.
- Example of non-convergence of supreme norm: consider a sequence of points on a higher dimensional space but moving toward a lower dimensional space within distance $\frac{h}{2}$.

• Because $\widehat{\alpha}$ does not converge to α uniformly, the tree does not converge in the metric d_{∞} .

- Because $\widehat{\alpha}$ does not converge to α uniformly, the tree does not converge in the metric d_{∞} .
- However, when $n \to \infty$, $h \to 0$,

$$P\left(\widehat{T_{\alpha}} \text{ and } T_{\alpha} \text{ are topological equivalent}\right) \ge 1 - e^{-nh^{d+4} \cdot C_P}$$

for some constant C_P that depends on the underlying probability distribution P.

- Because $\widehat{\alpha}$ does not converge to α uniformly, the tree does not converge in the metric d_{∞} .
- However, when $n \to \infty$, $h \to 0$,

$$P\left(\widehat{T_{\alpha}} \text{ and } T_{\alpha} \text{ are topological equivalent}\right) \ge 1 - e^{-nh^{d+4} \cdot C_P}$$

for some constant C_P that depends on the underlying probability distribution P.

 Although we do not have uniform convergence, we can still recover the topology of the tree.

- Because $\widehat{\alpha}$ does not converge to α uniformly, the tree does not converge in the metric d_{∞} .
- However, when $n \to \infty$, $h \to 0$,

$$P\left(\widehat{T_{\alpha}} \text{ and } T_{\alpha} \text{ are topological equivalent}\right) \ge 1 - e^{-nh^{d+4} \cdot C_P}$$

for some constant C_P that depends on the underlying probability distribution P.

- Although we do not have uniform convergence, we can still recover the topology of the tree.
- In addition, the height of each branch of the tree will also converge.

Application of Density Ranking: GPS dataset - 1

Joint work with Adrian Dobra and Zhihang Dong.

Application of Density Ranking: GPS dataset - 2

Joint work with Adrian Dobra and Zhihang Dong

- In the above example, we have multiple GPS datasets and each of them yields one density ranking.
- Thus, we have multiple density rankings.

- In the above example, we have multiple GPS datasets and each of them yields one density ranking.
- Thus, we have multiple density rankings.
- To compare these density rankings, a simple approach is to overlap level plots.
- For a density ranking $\widehat{\alpha}$, let

$$\widehat{A}_{\gamma} = \{x : \widehat{\alpha}(x) \ge 1 - \gamma\}$$

be the (upper) level set.

- In the above example, we have multiple GPS datasets and each of them yields one density ranking.
- Thus, we have multiple density rankings.
- To compare these density rankings, a simple approach is to overlap level plots.
- For a density ranking $\widehat{\alpha}$, let

$$\widehat{A}_{\gamma} = \{x : \widehat{\alpha}(x) \ge 1 - \gamma\}$$

be the (upper) level set.

 We can compare the density ranking of each individual by overlapping their level sets at different levels.

- Note that we use 1γ as the level in the set \widehat{A}_{γ} .
- This is because such a set has a natural interpretation in activity space.
- Activity space: the spatial regions where an individual undertakes his/her daily life.

- Note that we use 1γ as the level in the set \widehat{A}_{γ} .
- This is because such a set has a natural interpretation in activity space.
- Activity space: the spatial regions where an individual undertakes his/her daily life.
- We can interpret \widehat{A}_{γ} as the (top) $\gamma \cdot 100\%$ activity space because they are regions containing at least $\gamma \cdot 100\%$ GPS records.

- Note that we use 1γ as the level in the set \widehat{A}_{γ} .
- This is because such a set has a natural interpretation in activity space.
- Activity space: the spatial regions where an individual undertakes his/her daily life.
- We can interpret \widehat{A}_{γ} as the (top) $\gamma \cdot 100\%$ activity space because they are regions containing at least $\gamma \cdot 100\%$ GPS records.
- Namely, $\widehat{A}_{\gamma=0.3}$ is the (top) 30% activity space.

