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Outline

◦ Review: Density Tree

◦ Community Tree in Networks

◦ Future Work
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Clusters and Density Function: an Illustration
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Clusters and Density Function - 1

◦ The idea of using a density level (threshold) λ leads to clusters
representing high density regions.

◦ Thus, the level λ has an effect on the clustering result.

◦ Varying the level λ may lead to a creation of a new cluster or a
merging of existing clusters.
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Clusters and Density Function: Different Levels
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Clusters and Density Function: Different Levels
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Clusters and Density Function: Different Levels
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Clusters and Density Function - 2

◦ When the level changes, we see the evolution of clusters.

◦ Cluster tree (Stuetzle 2003) is to summarize such an evolution
process by a tree.

◦ When applied to a density function, a cluster tree is also called a
density tree (Klemelä 2004).

7 / 34



Clusters and Density Function - 2

◦ When the level changes, we see the evolution of clusters.

◦ Cluster tree (Stuetzle 2003) is to summarize such an evolution
process by a tree.

◦ When applied to a density function, a cluster tree is also called a
density tree (Klemelä 2004).

7 / 34



Clusters and Density Function - 2

◦ When the level changes, we see the evolution of clusters.

◦ Cluster tree (Stuetzle 2003) is to summarize such an evolution
process by a tree.

◦ When applied to a density function, a cluster tree is also called a
density tree (Klemelä 2004).

7 / 34



Density Tree: an Illustration
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An Example of 2D Density Tree
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Features of Density Trees

◦ Density trees provide topological information about the density
function and they can be transformed into the persistent diagrams
easily.

◦ When using density level sets to define clusters, the density tree
contains the information about the evolution and stability of
clusters.

◦ Moreover, density trees can always be displayed in 2D plane. So
they are good tools for visualizing multivariate functions.
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COMMUNITY TREES



Community Detection in Networks

◦ We consider simple networks – undirected, unweighted graphs.

◦ While there are many methods for analyzing a network, we focus
on one particular method – the clique percolation method (CPM;
Palla et al. 2005, 2007).

◦ CPM is a popular and powerful method in community detection.

◦ CPM uses cliques and their overlapping to define communities.

◦ Communities from CPM can be overlapping – this allows a
broader way to interpret communities.
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A Key Insight

Finding level sets↔ CPM

Density level λ ↔ Clique order k

Clusters↔ Communities

Density/cluster trees↔ Community trees

13 / 34



Cliques and Communities

◦ Cliques: a subgraph such that all vertices are connected.

◦ k-clique: a clique with k vertices.

◦ Given a level k, the CPM finds all k-cliques in the network and
then forms an adjacency matrix A for these cliques.

◦ If the i-th and j-th k-cliques share the same (k − 1) vertices, then
Ai j � 1 and 0 otherwise.

◦ A k-clique community (or k-community for short) is a subgraph
generated by the union of k-cliques in the same connected
component of A.

◦ The number k of a clique community is called the order.
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An Example: 4-communities

What are the 4-communities in the following network?

1
2

3

4

56 7

89
10
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A more Complex Network

Another example of 4-communities (source: wikipedia). 16 / 34



Communities of Different Orders

◦ What happens if we vary the number k?

◦ A k-cliques can be written as the union of k distinct (k − 1)-cliques.
◦ Thus, a k-community will be a subgraph of a (k − 1)-community.

◦ Then for a k-community Ck , there exists a sequence of subgraphs

Ck ⊂ Ck−1 ⊂ · · · ⊂ C1 ,

where Cω is an ω-community.

◦ This property, which we refer to as the nested property, defines a
tree structure of all (clique) communities within a graph.

◦ The resulting tree is called the community tree.
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◦ Thus, a k-community will be a subgraph of a (k − 1)-community.

◦ Then for a k-community Ck , there exists a sequence of subgraphs

Ck ⊂ Ck−1 ⊂ · · · ⊂ C1 ,

where Cω is an ω-community.
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Community Tree: an Example
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A Key Insight (revisited)

Finding level sets↔ CPM

Density level λ ↔ Clique order k

Clusters↔ Communities

Density/cluster trees↔ Community trees
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Community Tree

◦ Each node of the tree represents a clique community.

◦ This tree shows how each community evolves when we vary the
order k.

◦ The merging node represents the order where multiple
communities at a higher order are merged in to the same
community.

◦ In a sense, the community tree can be viewed as a generalization
of the cluster tree to networks.

◦ Moreover, the community tree leads to a persistent diagram.
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Components in a Community Tree

◦ A component in a community tree is a series of nodes starting from a
leave that moves all the way down.

◦ The birth time of a component is the highest order of its nodes.

◦ Two components merge at an order if they share the same node. When
two components merge, the one that has a lower birth time merged into
the other component.

◦ The death time of a component is the highest order that it merge into
another component.
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Persistent Diagram of a Community Tree

◦ Using the birth and death time of components, we obtain the
persistent diagram of a community tree.

◦ Let (b1 , d1), · · · , (bK , dK) be the birth time and death time of
components of a community tree. The persistent diagram is

PD � {(di , bi) : i � 1, · · · , K} ∪ {(d , b) : d � b}.
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Example: Dophin Network

62 Dophins’ social network data with 159 edges.
Dolphin Network
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Example: Zachary Karate Club Network

A social network data about Zachary karate club; 34 vertices and 78
edges.

Zachary Karate Club Network
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Stability of a Community Tree - 1

◦ For a network G0, if we only perturb it a little bit, how will its
community tree change?

◦ Namely, we want to understand the stability of a community tree.

◦ However, quantifying the tree difference is not easy.

◦ Here we measure their difference using the bottleneck distance
between the corresponding persistent diagrams.
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Stability of a Community Tree - 2

◦ Given two persistent diagrams PD1 , PD2, their bottleneck distance
is

d∞(PD1 , PD2) � inf
γ

sup
A∈PD1

‖A − γ(A)‖∞ ,

where the infimum is taking over all bĳective mappings between
PD1 and PD2.

◦ Let PB(T) be the persistent diagram of a community tree T. Then
we define a distance dB for community trees T1 and T2 as

dB(T1 , T2) � d∞(PB(T1), PB(T2)).
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Stability of a Community Tree - 3

◦ Given two networks G1 and G2, let T(G1) and T(G2) be their
corresponding community trees.

◦ It turns out that the difference between their community trees are
bounded by a quantity called the total star number TSN(G1 ,G2):

Theorem (Chen et al. 2017)
Let G1 and G2 be two networks. Then

dB(T(G1), T(G2)) ≤ TSN(G1 ,G2).
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Total Star Number

◦ The total star number

TSN(G1 ,G2) � RSN(G1 ,G2) + RSN(G2 ,G1).
◦ RSN(G1 ,G2) is the removal star number which is defined as

RSN(G1 ,G2) � min{|V0 | : ν(e) ∩ V0 , ∅ ∀e ∈ E(G1)\E(G2)},
where V0 is a collection of vertices and |V0 | is the number of
elements in the set V0 and E(G) is the edge of a network G and
ν(e) is the vertices attached to the edge e.

◦ RSN(G1 ,G2) can be interpreted as the minimal number of vertices
we need to remove so that G1 is a subgraph of G2.

◦ Informally, the total star number can be interpreted as the minimal
number of vertices that the network difference can be attributed to.
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Stability of a Community Tree - 4

Theorem (Chen et al. 2017)

Let G1 and G2 be two networks. Then

dB(T(G1), T(G2)) ≤ TSN(G1 ,G2).

◦ The TSN can be small while many edges are removed.

◦ For instance, if G1 is the same as G2 except removing all edges
connecting to a particular vertex of G1, then TSN(G1 ,G2) � 1.

◦ Computing the total star number does not require building a
community tree.
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Community Tree: an Example
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Computing the Total Star Number

◦ Although the total star number provides a useful bound for
community trees, it cannot be computed easily.

Theorem (Chen et al. 2017)
Computing the total star number is an NP-complete problem.

◦ Note that the proof relies only on one simple observation:
computing the total star number is the same as finding the
minimum vertex cover.
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FUTURE WORK



Future Directions

◦ Practical algorithm for bounding the total star number.

◦ Visualization tool using community trees.

◦ Effects from stochastic updates on community trees.

◦ Connections to overlapping communities.
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Thank You!

More details can be found in Chen et al. (2017):
"A Note on Community Trees in Networks"

(https://arxiv.org/abs/1710.03924)
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