COMMUNITY TREES IN NETWORKS

Yen-Chi Chen

Department of Statistics University of Washington

Collaborators

Ruqian Chen UW Math

Wei Guo UW ISE

Ashis Banerjee UW ISE&ME

Outline

- Review: Density Tree
- Community Tree in Networks
- Future Work

DENSITY TREE

- The idea of using a density level (threshold) λ leads to clusters representing high density regions.
- Thus, the level λ has an effect on the clustering result.

- The idea of using a density level (threshold) λ leads to clusters representing high density regions.
- Thus, the level λ has an effect on the clustering result.
- Varying the level λ may lead to a creation of a new cluster or a merging of existing clusters.

• When the level changes, we see the *evolution* of clusters.

- When the level changes, we see the *evolution* of clusters.
- Cluster tree (Stuetzle 2003) is to summarize such an evolution process by a tree.

- When the level changes, we see the *evolution* of clusters.
- Cluster tree (Stuetzle 2003) is to summarize such an evolution process by a tree.
- When applied to a density function, a cluster tree is also called a density tree (Klemelä 2004).

An Example of 2D Density Tree

Features of Density Trees

 Density trees provide topological information about the density function and they can be transformed into the persistent diagrams easily.

Features of Density Trees

- Density trees provide topological information about the density function and they can be transformed into the persistent diagrams easily.
- When using density level sets to define clusters, the density tree contains the information about the evolution and stability of clusters.

Features of Density Trees

- Density trees provide topological information about the density function and they can be transformed into the persistent diagrams easily.
- When using density level sets to define clusters, the density tree contains the information about the evolution and stability of clusters.
- Moreover, density trees can always be displayed in 2D plane. So they are good tools for visualizing multivariate functions.

COMMUNITY TREES

- We consider simple networks undirected, unweighted graphs.
- While there are many methods for analyzing a network, we focus on one particular method the clique percolation method (CPM; Palla et al. 2005, 2007).

- We consider simple networks undirected, unweighted graphs.
- While there are many methods for analyzing a network, we focus on one particular method – the clique percolation method (CPM; Palla et al. 2005, 2007).
- CPM is a popular and powerful method in community detection.

- We consider simple networks undirected, unweighted graphs.
- While there are many methods for analyzing a network, we focus on one particular method – the clique percolation method (CPM; Palla et al. 2005, 2007).
- CPM is a popular and powerful method in community detection.
- CPM uses cliques and their overlapping to define communities.

- We consider simple networks undirected, unweighted graphs.
- While there are many methods for analyzing a network, we focus on one particular method – the clique percolation method (CPM; Palla et al. 2005, 2007).
- CPM is a popular and powerful method in community detection.
- CPM uses cliques and their overlapping to define communities.
- Communities from CPM can be overlapping this allows a broader way to interpret communities.

A Key Insight

Finding level sets \leftrightarrow CPM

Density level $\lambda \leftrightarrow$ Clique order kClusters \leftrightarrow Communities

Density/cluster trees \leftrightarrow Community trees

- Cliques: a subgraph such that all vertices are connected.
- *k*-clique: a clique with *k* vertices.

- Cliques: a subgraph such that all vertices are connected.
- \circ *k*-clique: a clique with *k* vertices.
- Given a level *k*, the CPM finds all *k*-cliques in the network and then forms an adjacency matrix *A* for these cliques.
- If the *i*-th and *j*-th *k*-cliques share the same (k-1) vertices, then $A_{ij} = 1$ and 0 otherwise.

- Cliques: a subgraph such that all vertices are connected.
- *k*-clique: a clique with *k* vertices.
- Given a level *k*, the CPM finds all *k*-cliques in the network and then forms an adjacency matrix *A* for these cliques.
- If the *i*-th and *j*-th *k*-cliques share the same (k-1) vertices, then $A_{ij} = 1$ and 0 otherwise.
- A *k*-clique community (or *k*-community for short) is a subgraph generated by the union of *k*-cliques in the same connected component of *A*.

- Cliques: a subgraph such that all vertices are connected.
- *k*-clique: a clique with *k* vertices.
- Given a level *k*, the CPM finds all *k*-cliques in the network and then forms an adjacency matrix *A* for these cliques.
- If the *i*-th and *j*-th *k*-cliques share the same (k-1) vertices, then $A_{ij} = 1$ and 0 otherwise.
- A *k*-clique community (or *k*-community for short) is a subgraph generated by the union of *k*-cliques in the same connected component of *A*.
- \circ The number k of a clique community is called the order.

A more Complex Network

Another example of 4-communities (source: wikipedia).

• What happens if we vary the number *k*?

- What happens if we vary the number *k*?
- A k-cliques can be written as the union of k distinct (k-1)-cliques.
- Thus, a k-community will be a subgraph of a (k-1)-community.

- What happens if we vary the number *k*?
- A k-cliques can be written as the union of k distinct (k-1)-cliques.
- Thus, a k-community will be a subgraph of a (k-1)-community.
- Then for a k-community \mathcal{C}_k , there exists a sequence of subgraphs

$$\mathscr{C}_k \subset \mathscr{C}_{k-1} \subset \cdots \subset \mathscr{C}_1$$
,

where \mathscr{C}_{ω} is an ω -community.

- What happens if we vary the number *k*?
- A k-cliques can be written as the union of k distinct (k-1)-cliques.
- Thus, a k-community will be a subgraph of a (k-1)-community.
- Then for a k-community \mathcal{C}_k , there exists a sequence of subgraphs

$$\mathscr{C}_k \subset \mathscr{C}_{k-1} \subset \cdots \subset \mathscr{C}_1$$
,

where \mathscr{C}_{ω} is an ω -community.

• This property, which we refer to as the nested property, defines a tree structure of all (clique) communities within a graph.

- What happens if we vary the number *k*?
- A k-cliques can be written as the union of k distinct (k-1)-cliques.
- Thus, a k-community will be a subgraph of a (k-1)-community.
- Then for a k-community \mathcal{C}_k , there exists a sequence of subgraphs

$$\mathscr{C}_k \subset \mathscr{C}_{k-1} \subset \cdots \subset \mathscr{C}_1$$
,

where \mathscr{C}_{ω} is an ω -community.

- This property, which we refer to as the nested property, defines a tree structure of all (clique) communities within a graph.
- The resulting tree is called the **community tree**.

Community Tree: an Example

A Key Insight (revisited)

Finding level sets \leftrightarrow CPM

Density level $\lambda \leftrightarrow$ Clique order kClusters \leftrightarrow Communities

Density/cluster trees \leftrightarrow Community trees

Community Tree

- Each node of the tree represents a clique community.
- This tree shows how each community evolves when we vary the order *k*.

Community Tree

- Each node of the tree represents a clique community.
- This tree shows how each community evolves when we vary the order *k*.
- The merging node represents the order where multiple communities at a higher order are merged in to the same community.
- In a sense, the community tree can be viewed as a generalization of the cluster tree to networks.

Community Tree

- Each node of the tree represents a clique community.
- This tree shows how each community evolves when we vary the order *k*.
- The merging node represents the order where multiple communities at a higher order are merged in to the same community.
- In a sense, the community tree can be viewed as a generalization of the cluster tree to networks.
- Moreover, the community tree leads to a persistent diagram.

Components in a Community Tree

• A component in a community tree is a series of nodes starting from a leave that moves all the way down.

Components in a Community Tree

- A component in a community tree is a series of nodes starting from a leave that moves all the way down.
- The birth time of a component is the highest order of its nodes.

Components in a Community Tree

- A component in a community tree is a series of nodes starting from a leave that moves all the way down.
- The birth time of a component is the highest order of its nodes.
- Two components merge at an order if they share the same node. When two components merge, the one that has a lower birth time merged into the other component.

Components in a Community Tree

- A component in a community tree is a series of nodes starting from a leave that moves all the way down.
- The birth time of a component is the highest order of its nodes.
- Two components merge at an order if they share the same node. When two components merge, the one that has a lower birth time merged into the other component.
- The death time of a component is the highest order that it merge into another component.

Persistent Diagram of a Community Tree

- Using the birth and death time of components, we obtain the persistent diagram of a community tree.
- Let $(b_1, d_1), \dots, (b_K, d_K)$ be the birth time and death time of components of a community tree. The persistent diagram is

$$PD = \{(d_i, b_i) : i = 1, \dots, K\} \cup \{(d, b) : d = b\}.$$

Example: Dophin Network

62 Dophins' social network data with 159 edges.

Example: Zachary Karate Club Network

A social network data about Zachary karate club; 34 vertices and 78 edges.

- For a network G_0 , if we only perturb it a little bit, how will its community tree change?
- Namely, we want to understand the stability of a community tree.

- For a network G_0 , if we only perturb it a little bit, how will its community tree change?
- Namely, we want to understand the stability of a community tree.
- However, quantifying the tree difference is not easy.

- For a network G_0 , if we only perturb it a little bit, how will its community tree change?
- Namely, we want to understand the stability of a community tree.
- However, quantifying the tree difference is not easy.
- Here we measure their difference using the bottleneck distance between the corresponding persistent diagrams.

 Given two persistent diagrams PD₁, PD₂, their bottleneck distance is

$$d_{\infty}(\mathsf{PD}_1,\mathsf{PD}_2) = \inf_{\gamma} \sup_{A \in \mathsf{PD}_1} \|A - \gamma(A)\|_{\infty},$$

where the infimum is taking over all bijective mappings between PD_1 and PD_2 .

 Given two persistent diagrams PD₁, PD₂, their bottleneck distance is

$$d_{\infty}(\mathsf{PD}_1, \mathsf{PD}_2) = \inf_{\gamma} \sup_{A \in \mathsf{PD}_1} \|A - \gamma(A)\|_{\infty},$$

where the infimum is taking over all bijective mappings between PD_1 and PD_2 .

• Let PB(T) be the persistent diagram of a community tree T. Then we define a distance d_B for community trees T_1 and T_2 as

$$d_B(T_1, T_2) = d_{\infty}(\mathsf{PB}(T_1), \mathsf{PB}(T_2)).$$

- Given two networks G_1 and G_2 , let $T(G_1)$ and $T(G_2)$ be their corresponding community trees.
- It turns out that the difference between their community trees are bounded by a quantity called the total star number $TSN(G_1, G_2)$:

Theorem (Chen et al. 2017)

Let G_1 and G_2 be two networks. Then

$$d_B(T(G_1), T(G_2)) \leq TSN(G_1, G_2).$$

Total Star Number

The total star number

$$TSN(G_1, G_2) = RSN(G_1, G_2) + RSN(G_2, G_1).$$

• $RSN(G_1, G_2)$ is the removal star number which is defined as

$$\mathsf{RSN}(G_1,G_2) = \min\{|V_0| : \nu(e) \cap V_0 \neq \emptyset \ \forall e \in E(G_1) \setminus E(G_2)\},\$$

where V_0 is a collection of vertices and $|V_0|$ is the number of elements in the set V_0 and E(G) is the edge of a network G and v(e) is the vertices attached to the edge e.

Total Star Number

The total star number

$$TSN(G_1, G_2) = RSN(G_1, G_2) + RSN(G_2, G_1).$$

• $RSN(G_1, G_2)$ is the removal star number which is defined as

$$\mathsf{RSN}(G_1,G_2) = \min\{|V_0| : \nu(e) \cap V_0 \neq \emptyset \ \forall e \in E(G_1) \backslash E(G_2)\},\$$

where V_0 is a collection of vertices and $|V_0|$ is the number of elements in the set V_0 and E(G) is the edge of a network G and v(e) is the vertices attached to the edge e.

• $RSN(G_1, G_2)$ can be interpreted as the minimal number of vertices we need to remove so that G_1 is a subgraph of G_2 .

Total Star Number

The total star number

$$TSN(G_1, G_2) = RSN(G_1, G_2) + RSN(G_2, G_1).$$

• $RSN(G_1, G_2)$ is the removal star number which is defined as

$$\mathsf{RSN}(G_1, G_2) = \min\{|V_0| : \nu(e) \cap V_0 \neq \emptyset \ \forall e \in E(G_1) \setminus E(G_2)\},\$$

where V_0 is a collection of vertices and $|V_0|$ is the number of elements in the set V_0 and E(G) is the edge of a network G and v(e) is the vertices attached to the edge e.

- $RSN(G_1, G_2)$ can be interpreted as the minimal number of vertices we need to remove so that G_1 is a subgraph of G_2 .
- Informally, the total star number can be interpreted as the minimal number of vertices that the network difference can be attributed to.

Theorem (Chen et al. 2017)

Let G_1 and G_2 be two networks. Then

$$d_B(T(G_1), T(G_2)) \leq \mathsf{TSN}(G_1, G_2).$$

• The TSN can be small while many edges are removed.

Theorem (Chen et al. 2017)

Let G_1 and G_2 be two networks. Then

$$d_B(T(G_1), T(G_2)) \leq \mathsf{TSN}(G_1, G_2).$$

- The TSN can be small while many edges are removed.
- For instance, if G_1 is the same as G_2 except removing all edges connecting to a particular vertex of G_1 , then $\mathsf{TSN}(G_1, G_2) = 1$.

Theorem (Chen et al. 2017)

Let G_1 and G_2 be two networks. Then

$$d_B(T(G_1), T(G_2)) \leq \mathsf{TSN}(G_1, G_2).$$

- The TSN can be small while many edges are removed.
- For instance, if G_1 is the same as G_2 except removing all edges connecting to a particular vertex of G_1 , then $TSN(G_1, G_2) = 1$.
- Computing the total star number *does not* require building a community tree.

Community Tree: an Example

Computing the Total Star Number

 Although the total star number provides a useful bound for community trees, it cannot be computed easily.

Theorem (Chen et al. 2017)

Computing the total star number is an NP-complete problem.

 Note that the proof relies only on one simple observation: computing the total star number is the same as finding the minimum vertex cover.

FUTURE WORK

Future Directions

- Practical algorithm for bounding the total star number.
- Visualization tool using community trees.
- Effects from stochastic updates on community trees.
- Connections to overlapping communities.

Thank You!

More details can be found in Chen et al. (2017):

"A Note on Community Trees in Networks"

(https://arxiv.org/abs/1710.03924)

References

- 1. Chen, Ruqian, et al. "A Note on Community Trees in Networks." arXiv preprint arXiv:1710.03924 (2017).
- Stuetzle, Werner. "Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample." Journal of classification 20, no. 1 (2003): 025-047.
- Klemelä, Jussi. "Visualization of multivariate density estimates with level set trees." Journal of Computational and Graphical Statistics 13, no. 3 (2004): 599-620.
- Palla, Gergely, Albert-László Barabási, and Tamás Vicsek. "Quantifying social group evolution." Nature 446.7136 (2007): 664-667.
- 5. Palla, Gergely, et al. "Uncovering the overlapping community structure of complex networks in nature and society."

Nature 435.7043 (2005): 814-818.