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Clusters and Density Function - 1

o The idea of using a density level (threshold) A leads to clusters
representing high density regions.

o Thus, the level A has an effect on the clustering result.
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Clusters and Density Function - 1

o The idea of using a density level (threshold) A leads to clusters
representing high density regions.

o Thus, the level A has an effect on the clustering result.

o Varying the level A may lead to a creation of a new cluster or a
merging of existing clusters.
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Clusters and Density Function: Different Levels
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Clusters and Density Function: Different Levels
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Clusters and Density Function: Different Levels
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Clusters and Density Function: Different Levels
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Clusters and Density Function: Different Levels
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Clusters and Density Function: Different Levels
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Clusters and Density Function: Different Levels
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Clusters and Density Function: Different Levels

level = 0.1
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Clusters and Density Function: Different Levels
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Clusters and Density Function - 2

o When the level changes, we see the evolution of clusters.

7/ 34



Clusters and Density Function - 2

o When the level changes, we see the evolution of clusters.

o Cluster tree (Stuetzle 2003) is to summarize such an evolution
process by a tree.

7/ 34



Clusters and Density Function - 2

o When the level changes, we see the evolution of clusters.

o Cluster tree (Stuetzle 2003) is to summarize such an evolution
process by a tree.

o When applied to a density function, a cluster tree is also called a
density tree (Klemeld 2004).
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Density Tree: an Illustration
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An Example of 2D Density Tree
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Features of Density Trees

o Density trees provide topological information about the density
function and they can be transformed into the persistent diagrams
easily.
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Features of Density Trees

o Density trees provide topological information about the density
function and they can be transformed into the persistent diagrams
easily.

o When using density level sets to define clusters, the density tree
contains the information about the evolution and stability of
clusters.

o Moreover, density trees can always be displayed in 2D plane. So
they are good tools for visualizing multivariate functions.
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COMMUNITY TREES




Community Detection in Networks

o We consider simple networks — undirected, unweighted graphs.

o While there are many methods for analyzing a network, we focus
on one particular method — the clique percolation method (CPM;
Palla et al. 2005, 2007).
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Community Detection in Networks

o We consider simple networks — undirected, unweighted graphs.

o While there are many methods for analyzing a network, we focus
on one particular method — the clique percolation method (CPM;
Palla et al. 2005, 2007).

o CPM is a popular and powerful method in community detection.
o CPM uses cliques and their overlapping to define communities.

o Communities from CPM can be overlapping — this allows a
broader way to interpret communities.
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A Key Insight

Finding level sets <> CPM
Density level A < Clique order k
Clusters & Communities

Density/cluster trees «<» Community trees
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Cliques and Communities

o Cliques: a subgraph such that all vertices are connected.

o k-clique: a clique with k vertices.
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Cliques and Communities

(¢]

Cliques: a subgraph such that all vertices are connected.
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k-clique: a clique with k vertices.

Given a level k, the CPM finds all k-cliques in the network and
then forms an adjacency matrix A for these cliques.

o

(¢]

If the i-th and j-th k-cliques share the same (k — 1) vertices, then
Ajj =1 and 0 otherwise.
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Cliques and Communities

o Cliques: a subgraph such that all vertices are connected.
o k-clique: a clique with k vertices.

o Given a level k, the CPM finds all k-cliques in the network and
then forms an adjacency matrix A for these cliques.

o If the i-th and j-th k-cliques share the same (k — 1) vertices, then
Ajj =1 and 0 otherwise.

o A k-clique community (or k-community for short) is a subgraph
generated by the union of k-cliques in the same connected
component of A.

o The number k of a clique community is called the order.
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An Example: 4-communities

What are the 4-communities in the following network?
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An Example: 4-communities

What are the 4-communities in the following network?

1st 4-community
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An Example: 4-communities

What are the 4-communities in the following network?

2nd 4-community
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A more Complex Network

Another example of 4-communities (source: wikipedia). 16/ 34



Communities of Different Orders

o What happens if we vary the number k?
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Communities of Different Orders

o What happens if we vary the number k?
o A k-cliques can be written as the union of k distinct (k — 1)-cliques.
o Thus, a k-community will be a subgraph of a (k — 1)-community.

o Then for a k-community 6y, there exists a sequence of subgraphs
G C 61 C -+ C 6y,

where 6, is an w-community.

o This property, which we refer to as the nested property, defines a
tree structure of all (clique) communities within a graph.

o The resulting tree is called the community tree.

17/ 34



Community Tree: an Example

2-community

5-communi 4-communi 3-communi @
ty ty ty 1-community
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A Key Insight (revisited)

Finding level sets <> CPM
Density level A < Clique order k
Clusters & Communities

Density/cluster trees «<» Community trees
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Community Tree

o Each node of the tree represents a clique community.

o This tree shows how each community evolves when we vary the
order k.
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Community Tree

o Each node of the tree represents a clique community.

o This tree shows how each community evolves when we vary the
order k.

o The merging node represents the order where multiple
communities at a higher order are merged in to the same
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Community Tree

o Each node of the tree represents a clique community.

o This tree shows how each community evolves when we vary the
order k.

o The merging node represents the order where multiple
communities at a higher order are merged in to the same
community.

o In a sense, the community tree can be viewed as a generalization
of the cluster tree to networks.

o Moreover, the community tree leads to a persistent diagram.
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Components in a Community Tree
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o A component in a community tree is a series of nodes starting from a
leave that moves all the way down.
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o A component in a community tree is a series of nodes starting from a
leave that moves all the way down.

o The birth time of a component is the highest order of its nodes.

o Two components merge at an order if they share the same node. When
two components merge, the one that has a lower birth time merged into
the other component.
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Components in a Community Tree
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o A component in a community tree is a series of nodes starting from a
leave that moves all the way down.

o The birth time of a component is the highest order of its nodes.

o Two components merge at an order if they share the same node. When
two components merge, the one that has a lower birth time merged into
the other component.

o The death time of a component is the highest order that it merge into

another component. 21/34



Persistent Diagram of a Community Tree

o Using the birth and death time of components, we obtain the
persistent diagram of a community tree.

o Let(by1,d1),---,(bk, dg) be the birth time and death time of
components of a community tree. The persistent diagram is

PD = {(di,b;):i=1,--- ,K}U{(d,b):d=b)}.

Birth Time
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O oWk ot

Death Time
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Example: Dophin Network

62 Dophins’ social network data with 159 edges.
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Example: Zachary Karate Club Network

A social network data about Zachary karate club; 34 vertices and 78

edges.

Zachary Karate Club Network
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Stability of a Community Tree - 1

o For a network Gy, if we only perturb it a little bit, how will its
community tree change?

o Namely, we want to understand the stability of a community tree.
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Stability of a Community Tree - 1

[¢]

For a network Gy, if we only perturb it a little bit, how will its
community tree change?

(¢]

Namely, we want to understand the stability of a community tree.
o However, quantifying the tree difference is not easy:.

o Here we measure their difference using the bottleneck distance
between the corresponding persistent diagrams.
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Stability of a Community Tree - 2

o Given two persistent diagrams PDy, PD,, their bottleneck distance
is

deo(PD1, PD7) = inf sup [|A = y(A)llw,
Y AePDjy

where the infimum is taking over all bijective mappings between
PD1 and PDz.
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Stability of a Community Tree - 2

o Given two persistent diagrams PDy, PD,, their bottleneck distance

1S

deo(PD1, PD7) = inf sup [|A = y(A)llw,
Y AePDjy

where the infimum is taking over all bijective mappings between
PD1 and PDz.

o Let PB(T) be the persistent diagram of a community tree T. Then
we define a distance dp for community trees T and T as

dp(T1, T2) = de(PB(T1), PB(T2)).
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Stability of a Community Tree - 3

o Given two networks G1 and G, let T(G1) and T(G;) be their
corresponding community trees.

o It turns out that the difference between their community trees are
bounded by a quantity called the total star number TSN(G1, G»):

Theorem (Chen et al. 2017)
Let Gy and G, be two networks. Then

dg(T(G1), T(G2)) < TSN(G1, G2).
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Total Star Number

o The total star number
TSN(G1, G2) = RSN(G1, G2) + RSN(G2, G1).
o RSN(G1, Gy) is the removal star number which is defined as
RSN(G1, Gp) = min{|Vy| : v(e) N Vi # 0 Ye € E(G1)\E(G2)},

where V} is a collection of vertices and |V}| is the number of
elements in the set Vj and E(G) is the edge of a network G and
v(e) is the vertices attached to the edge e.
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Total Star Number

o The total star number
TSN(G1, G2) = RSN(G1, G2) + RSN(G2, G1).
o RSN(G1, Gy) is the removal star number which is defined as
RSN(G1, Gp) = min{|Vy| : v(e) N Vi # 0 Ye € E(G1)\E(G2)},

where V} is a collection of vertices and |V}| is the number of
elements in the set Vj and E(G) is the edge of a network G and
v(e) is the vertices attached to the edge e.

o RSN(Gq, G2) can be interpreted as the minimal number of vertices
we need to remove so that Gy is a subgraph of G,.

o Informally, the total star number can be interpreted as the minimal
number of vertices that the network difference can be attributed to.
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Stability of a Community Tree - 4

Theorem (Chen et al. 2017)

Let Gy and G, be two networks. Then

dp(T(G1), T(Gz2)) < TSN(G1, G2).

o The TSN can be small while many edges are removed.
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o For instance, if G; is the same as G, except removing all edges
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Stability of a Community Tree - 4

Theorem (Chen et al. 2017)

Let Gy and G, be two networks. Then

dp(T(G1), T(Gz2)) < TSN(G1, G2).

o The TSN can be small while many edges are removed.

o For instance, if G; is the same as G, except removing all edges
connecting to a particular vertex of Gy, then TSN(Gy, G2) = 1.

o Computing the total star number does not require building a
community tree.
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Community Tree: an Example

Original Network

Community Tree Persistence Diagram
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Computing the Total Star Number

o Although the total star number provides a useful bound for
community trees, it cannot be computed easily.

Theorem (Chen et al. 2017)

Computing the total star number is an NP-complete problem.

o Note that the proof relies only on one simple observation:
computing the total star number is the same as finding the
minimum vertex cover.
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FUTURE WORK



Future Directions

[¢]

Practical algorithm for bounding the total star number.

(¢]

Visualization tool using community trees.

@]

Effects from stochastic updates on community trees.

[¢]

Connections to overlapping communities.
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Thank You!

More details can be found in Chen et al. (2017):
"A Note on Community Trees in Networks"
(https://arxiv.org/abs/1710.03924)
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