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Geometric and Topological Data Analysis: Big Picture

The data can be viewed as
Xl/“' rXi’l Np/

p is a probability density function.

Scientists are interested in geometric
or topological features of p.

Level Sets + qual Modes + Ridges
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The Classical Approach

o In all the above examples, how we estimate the
geometric/topological structures is based on plug-in estimates
from the kernel density estimator (KDE).
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The Classical Approach

o In all the above examples, how we estimate the
geometric/topological structures is based on plug-in estimates
from the kernel density estimator (KDE).

o Namely, we estimate the probability density function first and
then convert it into an estimator of the corresponding structure.

o But this idea may fail.
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Failure of KDE in Analyzing Data
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Failure of KDE in Analyzing Data

Density Ranking
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Failure of KDE in Analyzing Data

Density Ranking + GIS data
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Density Ranking: Introduction

o The KDE cannot detect intricate structures inside the GPS data.

o But the density ranking works!
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Density Ranking: Introduction

The KDE cannot detect intricate structures inside the GPS data.

(o]

[¢]

But the density ranking works!

(¢]

This comes from the fact that the underlying probability density
function (PDF) does not exist!

(o]

Namely, our probability distribution function is a singular
measure.
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Definition of Density Ranking - 1

o Given random variables X1, --- , X,, € R?, the KDE is

—~ 1 - )(i—-x
0= o K (5).

where K(-) is called the kernel function such as a Gaussian and
h > 0 is called the smoothing bandwidth that controls the amount
of smoothing.

o The KDE smoothes out the observations into small bumps and
sum over all of them to obtain a PDF.
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Definition of Density Ranking - 2

Densit
1.0y
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Definition of Density Ranking - 3

o The density ranking is a transformed quantity from the KDE.

o Instead of using the density value, we focus on the ranking of it.
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Definition of Density Ranking - 3

The density ranking is a transformed quantity from the KDE.

o

@]

Instead of using the density value, we focus on the ranking of it.

(¢]

The formal definition of density ranking is

n

30 == 3 1) 2 FX)

i=1
= ratio of observations” density below the density of point x.

@]

Namely, a(x) = 0.3 implies that the (estimated) density of point x
is above the (estimated) density of 30% of all observations.
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Property of Density Ranking

o For an observation Xpay with @(Xmax) = 1, then it means
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Property of Density Ranking

o For an observation Xpay with @(Xmax) = 1, then it means
P(Xmax) = max {p(X1), -+, p(Xn)}.

o Similarly, for an observation Xmin with @(Xmin) =0,
P(Ximin) = min {p(X1), -+, p(Xu)} -

o If an observation X satisfies a(X;) = 0.25, this means that the
ranking of density at X; is the 25%.

o Moreover, for any pairs of points x1, x2,

ﬁ(xl) > ff(xz) — &(xl) > Zf()Q)
p(x1) < plx2) = a(xq) < alx2)

p(x1) = plx2) = a(xy) = a(xz)
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Density Ranking as an Estimator

o Density ranking a(x) can be viewed as an estimator to a function
of the underlying population distribution.

o When the distribution function has a PDF, the population version
of density ranking is defined as follows.
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Density Ranking as an Estimator

o Density ranking a(x) can be viewed as an estimator to a function
of the underlying population distribution.

o When the distribution function has a PDF, the population version
of density ranking is defined as follows.

o Assume Xj,--- , X}, is a random sample from an unknown
distribution function P with a PDF p.

o Then the population version of a(x) is

a(x) = P(p(x) 2 p(X1)).

o Under regularity conditions,

f |a@(x) — a()F dP(x) 50, sup|a(x) - a(x)| - 0.
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Density Ranking in Singular Measure

o Why density ranking works in GPS data but KDE fails is probably
due to the fact that density ranking is a consistent estimator even
when the density does not exist!
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Density Ranking in Singular Measure

o Why density ranking works in GPS data but KDE fails is probably
due to the fact that density ranking is a consistent estimator even
when the density does not exist!

o To generalize population density ranking to a singular measure,
we introduce the concept of geometric density.

o Let C; be the volume of a d dimensional ball and
B(x,r)={y:llx -yl <r}.
o For any integer s, we define

_ i P(B(x, 1))
%S(x)_ll—rf% Csrs

o For a point x, we then define

7(x) =max{s < d : Hs(x) < oo}, p(x)=Hrx)(x).
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Geometric Density: Example - 1

o Assume the distribution function P is a mixture of a 2D uniform
distribution within [~1, 1]?, a 1D uniform distribution over the
ring {(x, y) : x> + y?> = 0.5?}, and a point mass at (0.5, 0), then the

support can be partitioned as follows:

-
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Geometric Density: Example - 2

-

O
o Red region: 7(x)=1.
o Blue region: 7(x) =0.

12 /28



Geometric Density and Ranking

o The function 7(x) measures the dimension of P at point x.

o We can then use 7 and p to compare any pairs of points and
construct a ranking.
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Geometric Density and Ranking

o The function 7(x) measures the dimension of P at point x.

o We can then use 7 and p to compare any pairs of points and
construct a ranking.

o For two points x1, x2, we define an ordering such that x1 >, x7 if

T(x1) < T(x2), or 1(x1)=1(x2), p(x1)> p(x2).

o Namely, we first compare the dimension of the two points, the
lower dimensional structure wins. If they are on regions of the
same dimension, we then compare the density of that dimension.
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Constructing Density Ranking using Geometric Density

o Using the ordering > ,, we then define the population density
ranking as
cx(x) = P(x Z”c,p Xl)
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Constructing Density Ranking using Geometric Density

o Using the ordering > ,, we then define the population density

ranking as
cx(x) = P(x Z”c,p Xl)

o When the PDF exists, the ordering > , equals to >4, so
a(x) = P(x zq4,, X1) = P(p(x) 2 p(X1)),

which recovers our original definition.
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Convergence under Singular Measure

o When P is a singular distribution and satisfies certain regularity
conditions,

f |a(x) - a(x)f dP(x) > 0

but no guarantee for the convergence of sup, |5Z(x) - a(x)l.
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Convergence under Singular Measure

o When P is a singular distribution and satisfies certain regularity
conditions,

f |a(x) - a(x)f dP(x) > 0

but no guarantee for the convergence of sup, |5Z(x) - a(x)l.

o Example of non-convergence of supreme norm: points very close
to a lower dimensional structure will not converge.
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Density Ranking and Cluster Tree - 1

o Cluster tree is a technique to summarize a function using a tree.
o When the PDF exists, the cluster tree of a PDF and the cluster tree
of the corresponding density ranking has the same tree topology.

Y

o The idea of building a cluster tree of a function f relies on

matching the connecting components of level sets {x : f(x) > A}
when we vary the level A.
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Density Ranking and Cluster Tree - 2

o Using the level sets of a(x) or a(x), we can define the cluster tree
of the density ranking and the population density ranking.

o When the distribution function is singular and satisfies certain
regularity conditions, the cluster tree of a(x) converges to the
cluster tree of a(x).
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Density Ranking and Cluster Tree: Example

Here the population distribution function is a mixture of a 1D
standard normal distribution and a point mass at 2. We consider three
sample sizes: n =5 X 10%,5 x 10°,5 x 107.

N = 5000 ; Bandwidth = 0.21 - N = 5e+05 ; Bandwidth = 0.08 N = 5e+07 ; Bandwidth = 0.03
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Application of Density Ranking: GPS dataset - 1

Individual: 1 YT AT ] S -~ Individual: 3 i e Individual: 4
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Application of Density Ranking: GPS dataset - 2
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Summarizing Multiple Density Ranking: Level Plots

o In the above example, we have multiple GPS datasets that lead to
multiple density ranking.

o To compare these density rankings, a simple approach is to
overlap level plots.
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Summarizing Multiple Density Ranking: Level Plots

o In the above example, we have multiple GPS datasets that lead to
multiple density ranking.

o To compare these density rankings, a simple approach is to
overlap level plots.

o For a density ranking a, let
A}z{x:[f(x)Zl—y}

be the (upper) level set.

o We can compare the density ranking of each individual by
overlapping their level sets at each level.
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Level Plots: Example

y=0.1
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Level Plots: Example
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Summary Curves of Density Ranking

o The level plot allows us to compare GPS datasets from different
individuals.
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Summary Curves of Density Ranking

o The level plot allows us to compare GPS datasets from different
individuals.
o However, it has two drawbacks:

o When we have more individuals, this approach might not work (too
many contours).

o We often need to choose a level y to show the plot but which level
to be chosen is unclear.
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Summary Curves of Density Ranking

o The level plot allows us to compare GPS datasets from different
individuals.
o However, it has two drawbacks:
o When we have more individuals, this approach might not work (too
many contours).
o We often need to choose a level y to show the plot but which level
to be chosen is unclear.
o Here we introduce a few curves to summarize geometric and
topological features of density ranking.
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Mass-Volume Curve

o Recall that A\)/ ={x:a(x) > 1 -y} is the level set of density
ranking.
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Mass-Volume Curve
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o The mass-volume curve is a curve of
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Mass-Volume Curve

Recall that A\)/ ={x:a(x) > 1 -y} is the level set of density
ranking.

(¢]

The mass-volume curve is a curve of

@]

(7, Vol(A,)) : y € [0,1].

Namely, we are plotting the size of set A} at various level.

@]

o

In practice, we often plot y versus log Vol(@), .
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Mass-Volume Curve: Example

Mass—-Volume Curve
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Betti Number Curve

o The Betti number curve is a curve quantifying topological features
of the density ranking.

o It counts the number of connected components of gy at various
level y.
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Betti Number Curve

o The Betti number curve is a curve quantifying topological features
of the density ranking.

o It counts the number of connected components of gy at various
level y.

o Formally, the Betti number curve is
(y, Bettio(g),)) :y e0,1],
where for a set A
Bettip(A) = number of connected components inside A.

o Note that the number of connected component is called the oth
order Betti number (oth order topological structure); one can
generalize this idea to higher order topological structures.
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Betti Number Curve: Example

Betti Number Curve
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Density Ranking: Open Questions

o Convergence of density ranking level sets.

o Convergence of summary curves under singular/non-singular
measure.

(¢]

Other summary curves.

o Convergence of higher order topological structures.

[¢]

Connection to stratified space.
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