Nonparametric Inference via Bootstrapping the Debiased Estimator

Yen-Chi Chen

Department of Statistics, University of Washington

ICSA-Canada Chapter Symposium 2017

Problem Setup

- Let X_1, \dots, X_n be an IID random sample from an unknown distribution function with a density function p.
- For simplicity, we assume p is supported on $[0,1]^d$.
- Goal: given a level α , we want to find $L_{\alpha}(x)$, $U_{\alpha}(x)$ using the random sample such that

$$P\left(L_{\alpha}(x) \leq p(x) \leq U_{\alpha}(x) \ \forall x \in [0,1]^d\right) \geq 1 - \alpha + o(1).$$

• Namely, $[L_{\alpha}(x), U_{\alpha}(x)]$ forms an asymptotic simultaneous confidence band of p(x).

Simple Approach: using the KDE

- A classical approach is to construct $L_{\alpha}(x)$, $U_{\alpha}(x)$ using the kernel density estimator (KDE).
- Let

$$\widehat{p}_h(x) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{X_i - x}{h}\right)$$

be the KDE where h > 0 is the smoothing bandwidth and K(x) is a smooth function such as a Gaussian.

• We pick t_{α} such that

$$L_{\alpha}(x) = \widehat{p}_h(x) - t_{\alpha}, \quad U_{\alpha}(x) = \widehat{p}_h(x) + t_{\alpha}.$$

As long as we choose t_{α} wisely, the resulting confidence band is asymptotically valid.

Simple Approach: the L_{∞} Error

- How do we choose t_{α} to obtain a valid confidence band?
- A simple idea: inverting the L_{∞} error.

Simple Approach: the L_{∞} Error

- How do we choose t_{α} to obtain a valid confidence band?
- A simple idea: inverting the L_{∞} error.
- Let $F_n(t)$ be the CDF of $\|\widehat{p}_h p\|_{\infty} = \sup_x |\widehat{p}_h(x) p(x)|$.
- Then the value $t_{\alpha}^* = F_n^{-1}(1-\alpha)$ has a nice property:

$$P(\|\widehat{p}_h - p\|_{\infty} \le t_{\alpha}^*) = 1 - \alpha.$$

Simple Approach: the L_{∞} Error

- How do we choose t_{α} to obtain a valid confidence band?
- A simple idea: inverting the L_{∞} error.
- Let $F_n(t)$ be the CDF of $\|\widehat{p}_h p\|_{\infty} = \sup_x |\widehat{p}_h(x) p(x)|$.
- Then the value $t_{\alpha}^* = F_n^{-1}(1-\alpha)$ has a nice property:

$$P(\|\widehat{p}_h - p\|_{\infty} \le t_{\alpha}^*) = 1 - \alpha.$$

This implies

$$P(|\widehat{p}_h(x) - p(x)| \le t_\alpha^* \ \forall x \in [0,1]^d) = 1 - \alpha.$$

Thus,

$$L_{\alpha}^*(x) = \widehat{p}_h(x) - t_{\alpha}^*, \quad U_{\alpha}^*(x) = \widehat{p}_h(x) + t_{\alpha}^*$$

leads to a simultaneous confidence band.

- The previous method is great it works even in a finite sample case.
- However, it has a critical problem: we do not know the distribution $F_n!$ So we cannot compute the quantile.

- The previous method is great it works even in a finite sample case.
- However, it has a critical problem: we do not know the distribution $F_n!$ So we cannot compute the quantile.
- A simple solution: using the bootstrap (we will use the empirical bootstrap).

- Let X_1^*, \dots, X_n^* be a bootstrap sample.
- We first compute the bootstrap KDE:

$$\widehat{p}_h^*(x) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{X_i^* - x}{h}\right).$$

- Then we compute the bootstrap L_{∞} error $W = \|\widehat{p}_h^* \widehat{p}_h\|_{\infty}$.
- After repeating the bootstrap procedure B times, we obtain realizations

$$W_1, \cdots, W_B$$
.

Compute the empirical CDF

$$\widehat{F}_n(t) = \frac{1}{B} \sum_{\ell=1}^B I(W_\ell \leq t).$$

• Finally, we use $\hat{t}_{\alpha}^* = \hat{F}_n^{-1}(1-\alpha)$ and construct the confidence band as

$$\widehat{L}_{\alpha}^{*}(x) = \widehat{\rho}_{h}(x) - \widehat{t}_{\alpha}^{*}, \quad \widehat{U}_{\alpha}^{*}(x) = \widehat{\rho}_{h}(x) + \widehat{t}_{\alpha}^{*}.$$

• Does the bootstrap approach work?

- Does the bootstrap approach work?
- It depends.
- The bootstrap works if

$$\|\widehat{p}_h^* - \widehat{p}_h\|_{\infty} \approx \|\widehat{p}_h - p\|_{\infty}$$

in the sense that

$$\sup_{t} |P(\|\widehat{p}_h^* - \widehat{p}_h\|_{\infty} < t) - P(\|\widehat{p}_h - p\|_{\infty} < t)| = o(1).$$

- Does the bootstrap approach work?
- It depends.
- The bootstrap works if

$$\|\widehat{p}_h^* - \widehat{p}_h\|_{\infty} \approx \|\widehat{p}_h - p\|_{\infty}$$

in the sense that

$$\sup_{t} |P(\|\widehat{p}_h^* - \widehat{p}_h\|_{\infty} < t) - P(\|\widehat{p}_h - p\|_{\infty} < t)| = o(1).$$

• However, the above bound holds if we *undersmooth* the data (Neumann and Polzehl 1998, Chernozhukov et al. 2014). Namely, we choose the smoothing bandwidth $h = o(n^{-\frac{1}{4+d}})$.

• Why do we need to undersmooth the data?

- Why do we need to undersmooth the data?
- The L_{∞} error has a bias-variance tradeoff:

$$\|\widehat{p}_h - p\|_{\infty} = \underbrace{O(h^2)}_{\text{Bias}} + \underbrace{O_P\left(\sqrt{\frac{\log n}{nh^d}}\right)}_{\text{stochastic error}}.$$

- Why do we need to undersmooth the data?
- The L_{∞} error has a bias-variance tradeoff:

$$\|\widehat{p}_h - p\|_{\infty} = \underbrace{O(h^2)}_{\text{Bias}} + \underbrace{O_P\left(\sqrt{\frac{\log n}{nh^d}}\right)}_{\text{stochastic error}}.$$

• The bootstrap L_{∞} error is capable of capturing the errors in the stochastic part. However, it does not capture the bias.

- Why do we need to undersmooth the data?
- The L_{∞} error has a bias-variance tradeoff:

$$\|\widehat{p}_h - p\|_{\infty} = \underbrace{O(h^2)}_{\text{Bias}} + \underbrace{O_P\left(\sqrt{\frac{\log n}{nh^d}}\right)}_{\text{stochastic error}}.$$

- The bootstrap L_{∞} error is capable of capturing the errors in the stochastic part. However, it does not capture the bias.
- Undersmooth guarantees that the bias is of a smaller order so we can ignore it.

Problem of Undersmoothing

$$\|\widehat{p}_h - p\|_{\infty} = \underbrace{O(h^2)}_{\text{Bias}} + \underbrace{O_P\left(\sqrt{\frac{\log n}{nh^d}}\right)}_{\text{stochastic error}}.$$

- Undermoothing has a problem: we do not have the optimal convergence rate.
- The optimal rate occurs when we balance the bias and stochastic error: $h = h_{\text{opt}} \approx n^{-\frac{1}{d+4}}$ (ignoring the log n factor).

Problem of Undersmoothing

$$\|\widehat{p}_h - p\|_{\infty} = \underbrace{O(h^2)}_{\text{Bias}} + \underbrace{O_P\left(\sqrt{\frac{\log n}{nh^d}}\right)}_{\text{stochastic error}}.$$

- Undermoothing has a problem: we do not have the optimal convergence rate.
- The optimal rate occurs when we balance the bias and stochastic error: $h = h_{\text{opt}} \approx n^{-\frac{1}{d+4}}$ (ignoring the log n factor).
- A remedy to this problem: choose *h* optimally but **correct** the bias (debiased method).

• The idea of the debiased method is based on the fact that a leading term of $O(h^2)$ is

$$\frac{h^2}{2}C_K\cdot\nabla^2 p(x),$$

where C_K is a known constant depending on the kernel function and ∇^2 is the Laplacian operator.

• The idea of the debiased method is based on the fact that a leading term of $O(h^2)$ is

$$\frac{h^2}{2}C_K\cdot\nabla^2p(x),$$

where C_K is a known constant depending on the kernel function and ∇^2 is the Laplacian operator.

- We can estimate $\nabla^2 p$ via applying the Laplacian operator to a KDE \widehat{p}_h .
- However, such an estimator is inconsistent when we choose $h_{\rm opt} \asymp n^{-\frac{1}{d+4}}$ because

$$abla^2 \widehat{p}_h(x) -
abla^2 p(x) = O(h^2) + O_P\left(\sqrt{\frac{1}{nh^{d+4}}}\right).$$

• The idea of the debiased method is based on the fact that a leading term of $O(h^2)$ is

$$\frac{h^2}{2}C_K\cdot\nabla^2p(x),$$

where C_K is a known constant depending on the kernel function and ∇^2 is the Laplacian operator.

- We can estimate $\nabla^2 p$ via applying the Laplacian operator to a KDE \widehat{p}_h .
- However, such an estimator is inconsistent when we choose $h_{\rm opt} \asymp n^{-\frac{1}{d+4}}$ because

$$abla^2 \widehat{p}_h(x) -
abla^2 p(x) = O(h^2) + O_P\left(\sqrt{\frac{1}{nh^{d+4}}}\right).$$

• The choice $h = h_{\text{opt}} \times n^{-\frac{1}{d+4}}$ implies

$$\nabla^2 \widehat{p}_h(x) - \nabla^2 p(x) = o(1) + O_P(1).$$

 To handle this situation, people suggested using two KDE's, one for estimating the density and the other for estimating the bias.

¹This idea has been used in Calonico et al. (2015) for a pointwise confidence interval.

- To handle this situation, people suggested using two KDE's, one for estimating the density and the other for estimating the bias.
- However, actually we ONLY need one KDE.

¹This idea has been used in Calonico et al. (2015) for a pointwise confidence interval.

- To handle this situation, people suggested using two KDE's, one for estimating the density and the other for estimating the bias.
- However, actually we ONLY need one KDE.
- We propose using the same KDE $\widehat{p}_h(x)$ to 'debias' the estimator¹.

¹This idea has been used in Calonico et al. (2015) for a pointwise confidence interval.

- To handle this situation, people suggested using two KDE's, one for estimating the density and the other for estimating the bias.
- However, actually we ONLY need one KDE.
- We propose using the same KDE $\widehat{p}_h(x)$ to 'debias' the estimator¹.
- Namely, we propose to use

$$\widetilde{p}_h(x) = \widehat{p}_h(x) - \frac{h^2}{2} C_K \cdot \nabla^2 \widehat{p}_h(x)$$

with
$$h = h_{\text{opt}} \asymp n^{-\frac{1}{d+4}}$$
.

• The estimator $\widetilde{p}_h(x)$ is called the debiased estimator.

¹This idea has been used in Calonico et al. (2015) for a pointwise confidence interval

The Debiased Method + Bootstrap

 To construct a confidence band, we use the bootstrap again but this time we compute the bootstrap debiased estimator

$$\widehat{p}_h^*(x) = \widehat{p}_h^*(x) - \frac{h^2}{2} C_K \cdot \nabla^2 \widehat{p}_h^*(x)$$

and evaluate $\|\widetilde{p}_h^* - \widetilde{p}_h\|_{\infty}$.

- After repeating the bootstrap procedure many times, we compute the EDF \widetilde{F}_n of the realizations of $\|\widetilde{p}_h^* \widetilde{p}_h\|_{\infty}$ and obtain the quantile $\widetilde{t}_{\alpha}^* = \widetilde{F}_n^{-1}(1-\alpha)$.
- The confidence band is

$$\widetilde{L}_{\alpha}(x) = \widetilde{p}_h(x) - \widetilde{t}_{\alpha}^*, \quad \widetilde{U}_{\alpha}(x) = \widetilde{p}_h(x) + \widetilde{t}_{\alpha}^*.$$

Theory of the Debiased Method

Theorem (Chen 2017)

Assume p belongs to β -Hölder class with $\beta>2$ and the kernel function satisfies smoothness conditions. When $h\asymp n^{-\frac{1}{d+4}}$,

$$P\left(\widetilde{L}_{\alpha}(x) \leq p(x) \leq \widetilde{U}_{\alpha}(x) \ \forall x \in [0,1]^d\right) = 1 - \alpha + o(1).$$

Namely, the debiased estimator leads to an asymptotic simultaneous confidence band under the choice $h \approx n^{-\frac{1}{d+4}}$.

• Why the debiased method work? Didn't we have an inconsistent bias estimator?

- Why the debiased method work? Didn't we have an inconsistent bias estimator?
- We indeed do not have a consistent bias estimator but this is fine!

- Why the debiased method work? Didn't we have an inconsistent bias estimator?
- We indeed do not have a consistent bias estimator but this is fine!
- Recall that when $h
 subseteq n^{-\frac{1}{d+4}}$,

$$abla^2 \widehat{p}_h(x) -
abla^2 p(x) = \underbrace{o(1)}_{\text{bias}} + \underbrace{O_P(1)}_{\text{stochastic variation}}$$

- Why the debiased method work? Didn't we have an inconsistent bias estimator?
- We indeed do not have a consistent bias estimator but this is fine!
- Recall that when $h
 subseteq n^{-\frac{1}{d+4}}$,

$$abla^2 \widehat{p}_h(x) -
abla^2 p(x) = \underbrace{o(1)}_{\text{bias}} + \underbrace{O_P(1)}_{\text{stochastic variation}}$$

Thus, our debiased estimator has three errors:

$$\widetilde{p}_h(x) - p(x) = \widehat{p}_h(x) - \frac{h^2}{2} C_K \nabla \widehat{p}_h(x) - p(x)$$

$$= \underbrace{\frac{h^2}{2} C_K \nabla^2 p(x) + o(h^2)}_{\text{bias}} + O_P \left(\sqrt{\frac{1}{nh^d}} \right) - \frac{h^2}{2} C_K \nabla^2 \widehat{p}_h(x)$$

• The above equation equals $(h \approx n^{-\frac{1}{d+4}})$

$$\begin{split} \widetilde{p}_{h}(x) - p(x) &= \underbrace{\frac{h^{2}}{2} C_{K} \nabla p(x) + o(h^{2})}_{\text{bias}} + O_{P} \left(\sqrt{\frac{1}{nh^{d}}} \right) - \frac{h^{2}}{2} C_{K} \nabla \widehat{p}_{h}(x) \\ &= o(h^{2}) + O_{P} \left(\sqrt{\frac{1}{nh^{d}}} \right) + \frac{h^{2}}{2} C_{K} \underbrace{\left(\nabla^{2} p(x) - \nabla^{2} \widehat{p}_{h}(x) \right)}_{=o(1) + O_{P}(1)} \\ &= o(h^{2}) + O_{P} \left(\sqrt{\frac{1}{nh^{d}}} \right) + o(h^{2}) + O_{P}(h^{2}) \\ &= o(h^{2}) + O_{P} \left(\sqrt{\frac{1}{nh^{d}}} \right) + O_{P}(h^{2}). \end{split}$$

- Both the orange and purple terms are stochastic variation.
- Orange: from estimating the density.
- Purple: from estimating the bias.

• When $h \approx n^{-\frac{1}{d+4}}$, the error rate

$$\widetilde{p}_h(x) - p(x) = o(h^2) + O_P\left(\sqrt{\frac{1}{nh^d}}\right) + O_P(h^2)$$
$$= O_P(n^{-\frac{2}{d+4}})$$

is dominated by the stochastic variation.

 As a result, the bootstrap can capture the errors, leading to an asymptotic valid confidence band.

Actually, after closely inspecting the debiased estimator, you can find that

$$\begin{split} \widetilde{p}_h(x) &= \widehat{p}_h(x) - \frac{h^2}{2} C_K \cdot \nabla^2 \widehat{p}_h(x) \\ &= \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{X_i - x}{h}\right) - \frac{h^2}{2} C_K \cdot \frac{1}{nh^d} \sum_{i=1}^n \nabla^2 K\left(\frac{X_i - x}{h}\right) \\ &= \frac{1}{nh^d} \sum_{i=1}^n M\left(\frac{X_i - x}{h}\right), \end{split}$$

where

$$M(x) = K(x) - \frac{C_K}{2} \cdot \nabla^2 K(x).$$

 Namely, the debiased estimator is a KDE with kernel function M(x)!

The kernel function

$$M(x) = K(x) - \frac{C_K}{2} \cdot \nabla^2 K(x)$$

is actually a higher order kernel.

The kernel function

$$M(x) = K(x) - \frac{C_K}{2} \cdot \nabla^2 K(x)$$

is actually a higher order kernel.

• You can show that if the kernel function K(x) is a γ -th order kernel function, then the corresponding M(x) will be a $(\gamma + 2)$ -th order kernel (Calonico et al. 2015, Scott 2015).

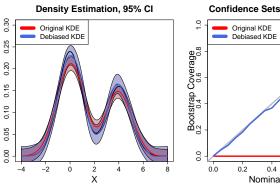
The kernel function

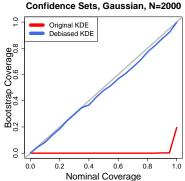
$$M(x) = K(x) - \frac{C_K}{2} \cdot \nabla^2 K(x)$$

is actually a higher order kernel.

- You can show that if the kernel function K(x) is a γ -th order kernel function, then the corresponding M(x) will be a $(\gamma + 2)$ -th order kernel (Calonico et al. 2015, Scott 2015).
- Because the debiased estimator $\widetilde{p}_h(x)$ uses a higher order kernel, the bias is moved to the next order, leaving the stochastic variation dominating the error.

Simulation





Conclusion

- We illustrate a bootstrap approach to construct a simultaneous confidence band via a debiased KDE.
- This approach allows us to choose the smoothing bandwidth optimally and still leads to an asymptotic confidence band.
- A similar idea can also be applied to regression problem and local polynomial estimator.
- More details can be found in
 - Chen, Yen-Chi. "Nonparametric Inference via Bootstrapping the Debiased Estimator." arXiv preprint arXiv:1702.07027 (2017).

Thank you!

References

- Y.-C. Chen. Nonparametric Inference via Bootstrapping the Debiased Estimator. arXiv preprint arXiv:1702.07027. 2017.
- 2 Y.-C. Chen. A Tutorial on Kernel Density Estimation and Recent Advances. arXiv preprint arXiv:1704.03924. 2017.
- S. Calonico, M. D. Cattaneo, and M. H. Farrell. On the effect of bias estimation on coverage accuracy in nonparametric inference. arXiv preprint arXiv:1508.02973, 2015.
- V. Chernozhukov, D. Chetverikov, and K. Kato. Anti-concentration and honest, adaptive confidence bands. The Annals of Statistics, 42(5):1787–1818, 2014.
- M. H. Neumann and J. Polzehl. Simultaneous bootstrap confidence bands in nonparametric regression. Journal of Nonparametric Statistics, 9(4):307-333, 1998.
- D. W. Scott. Multivariate density estimation: theory, practice, and visualization. John Wiley & Sons, 2015.