Asymptotic Theory for Density Ridges

Yen-Chi Chen

Christopher R. Genovese Larry Wasserman

Department of Statistics Carnegie Mellon University

December 13, 2015

Density Ridges: High Density Curves

Density ridges are curves characterizing high density regions.

Density Ridges: High Density Curves

Density ridges are curves characterizing high density regions.

Density Ridges: High Density Curves

Density ridges are curves characterizing high density regions.

Application of Ridges: Cosmology

Application of Ridges: Cosmology

Filaments play key roles in astronomy research.

Filaments play key roles in astronomy research.

• A galaxy's brightness, mass, and size are associated with filaments.

→ Chen et al. 'Detecting Effects of Filaments on Galaxy Properties in Sloan Digital Sky Survey III' (2015)

Filaments play key roles in astronomy research.

- A galaxy's brightness, mass, and size are associated with filaments.
- A galaxy's alignment is associated with filaments.

 Chen et al. 'Investigating Galaxy-Filament Alignment in Hydrodynamic Simulations using Density Ridges' (Mon. Not. Roy. Astro. Soc. 2015)

Filaments play key roles in astronomy research.

- A galaxy's brightness, mass, and size are associated with filaments.
- A galaxy's alignment is associated with filaments.
- Filaments can be used to test cosmological models.

Density Ridges

A statistical model for filaments is the *density ridges*.

Example: Ridges in Mountains

Credit: Google

Example: Ridges in Smooth Functions

Example: Ridges in Smooth Functions

Ridges: Local Modes in Subspace

 A generalized local mode in a specific 'subspace'.

Ridges: Local Modes in Subspace

 A generalized local mode in a specific 'subspace'.

Ridges: Local Modes in Subspace

 A generalized local mode in a specific 'subspace'.

• p(x): the density function.

- p(x): the density function.
- $(\lambda_j(x), v_j(x))$: jth eigenvalue/vector of $H(x) = \nabla \nabla p(x)$.

- p(x): the density function.
- $(\lambda_j(x), v_j(x))$: jth eigenvalue/vector of $H(x) = \nabla \nabla p(x)$.
- $V(x) = [v_2(x), \dots, v_d(x)]$: matrix of 2nd to last eigenvectors.

- p(x): the density function.
- $(\lambda_j(x), v_j(x))$: jth eigenvalue/vector of $H(x) = \nabla \nabla p(x)$.
- $V(x) = [v_2(x), \dots, v_d(x)]$: matrix of 2nd to last eigenvectors.
- $V(x)V(x)^T$: a projection.

- p(x): the density function.
- $(\lambda_j(x), v_j(x))$: jth eigenvalue/vector of $H(x) = \nabla \nabla p(x)$.
- $V(x) = [v_2(x), \dots, v_d(x)]$: matrix of 2nd to last eigenvectors.
- $V(x)V(x)^T$: a projection.
- Ridges:

$$R = \text{Ridge}(p) = \{x : V(x)V(x)^T \nabla p(x) = 0, \lambda_2(x) < 0\},\$$

- p(x): the density function.
- $(\lambda_j(x), v_j(x))$: jth eigenvalue/vector of $H(x) = \nabla \nabla p(x)$.
- $V(x) = [v_2(x), \dots, v_d(x)]$: matrix of 2nd to last eigenvectors.
- $V(x)V(x)^T$: a projection.
- Ridges:

$$R = \text{Ridge}(p) = \{x : V(x)V(x)^T \nabla p(x) = 0, \lambda_2(x) < 0\},\$$

Local modes:

Mode(
$$p$$
) = { $x : \nabla p(x) = 0, \lambda_1(x) < 0$ }.

Estimator and Algorithm

We use the plug-in estimate:

$$\widehat{R}_n = \mathsf{Ridge}(\widehat{p}_n),$$

where $\widehat{p}_n = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{x-X_i}{h}\right)$ is the KDE.

Estimator and Algorithm

We use the plug-in estimate:

$$\widehat{R}_n = \mathsf{Ridge}(\widehat{p}_n),$$

where $\widehat{p}_n = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{x-X_i}{h}\right)$ is the KDE.

• In general, finding ridges from a given function is hard.

Estimator and Algorithm

We use the plug-in estimate:

$$\widehat{R}_n = \mathsf{Ridge}(\widehat{p}_n),$$

where $\widehat{p}_n = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{x-X_i}{h}\right)$ is the KDE.

- In general, finding ridges from a given function is hard.
- The Subspace Constraint Mean Shift (SCMS; Ozertem2011) algorithm allows us to find \widehat{R}_n , ridges of the KDE.

3D Example for Estimated Ridges

Blue curves: density ridges.
Red points: density local modes.

Statistical Inference: Confidence Sets

Having estimators is not enough for statistical inference. We need confidence sets for density ridges.

Statistical Inference: Confidence Sets

Having estimators is not enough for statistical inference.

We need confidence sets for density ridges.

Namely, we want to find a set $C_{1-\alpha,n}$ from the data such that

$$\mathbb{P}(R \subset C_{1-\alpha,n}) \geq 1-\alpha.$$

Statistical Inference: Confidence Sets

Having estimators is not enough for statistical inference.

We need confidence sets for density ridges.

Namely, we want to find a set $C_{1-\alpha,n}$ from the data such that

$$\mathbb{P}\left(R\subset C_{1-\alpha,n}\right)\geq 1-\alpha.$$

In what follows, we ignore the bias for estimating R and focus only on the stochastic variation of \widehat{R}_n .

Useful Metric: Hausdorff Distance

We introduce a useful metric-the Hausdorff distance for sets:

$$\mathsf{Haus}(A,B) = \max \left\{ \sup_{x \in A} d(x,B), \sup_{x \in B} d(x,A) \right\},\$$

where $d(x, A) = \inf_{y \in A} ||x - y||$ is the projection distance.

Useful Metric: Hausdorff Distance

We introduce a useful metric—the Hausdorff distance for sets:

$$\mathsf{Haus}(A,B) = \max \left\{ \sup_{x \in A} d(x,B), \sup_{x \in B} d(x,A) \right\},\$$

where $d(x, A) = \inf_{y \in A} ||x - y||$ is the projection distance.

- ullet Haus is an \mathcal{L}_{∞} metric for sets.
- Consistency: Haus $(\widehat{R}_n, R) = o_{\mathbb{P}}(1)$.

The ⊕ Operation

We define $A \oplus r = \{x : d(x, A) \le r\}$.

A

The ⊕ Operation

We define $A \oplus r = \{x : d(x, A) \le r\}$.

Then we have the following inclusion property:

$$A \subset B \oplus \mathsf{Haus}(A, B), \quad B \subset A \oplus \mathsf{Haus}(A, B).$$

Hausdorff Distance and Confidence Sets

We can use Hausdorff distance and \oplus operation to construct confidence sets.

Let F_n be the CDF for $\operatorname{Haus}(\widehat{R}_n,R)$ and $t_{1-\alpha}=F_n^{-1}(1-\alpha)$ be the $1-\alpha$ quantile.

Hausdorff Distance and Confidence Sets

We can use Hausdorff distance and \oplus operation to construct confidence sets.

Let F_n be the CDF for $\operatorname{Haus}(\widehat{R}_n,R)$ and $t_{1-\alpha}=F_n^{-1}(1-\alpha)$ be the $1-\alpha$ quantile.

It can be shown that

$$\mathbb{P}\left(R\subset\widehat{R}_n\oplus t_{1-\alpha}\right)\geq 1-\alpha.$$

 \rightarrow This follows from the property

$$A \subset B \oplus \mathsf{Haus}(A, B), \quad B \subset A \oplus \mathsf{Haus}(A, B).$$

Hausdorff Distance and Confidence Sets

We can use Hausdorff distance and \oplus operation to construct confidence sets.

Let F_n be the CDF for Haus (\widehat{R}_n, R) and $t_{1-\alpha} = F_n^{-1}(1-\alpha)$ be the $1-\alpha$ quantile.

It can be shown that

$$\mathbb{P}\left(R\subset\widehat{R}_n\oplus t_{1-\alpha}\right)\geq 1-\alpha.$$

→ This follows from the property

$$A \subset B \oplus \mathsf{Haus}(A, B), \quad B \subset A \oplus \mathsf{Haus}(A, B).$$

• We need to find the distribution F_n .

Asymptotic Theory

Key observation:

$$\sqrt{nh^{d+2}} \operatorname{Haus}(\widehat{R}_n, R) \approx \sqrt{nh^{d+2}} \sup_{x \in R} d(x, \widehat{R}_n)$$

 $\approx \sup \{\operatorname{Empirical process on } R\}$
 $\approx \sup \{\operatorname{Gaussian process on } R\}.$

Asymptotic Theory

Key observation:

$$\begin{split} \sqrt{nh^{d+2}} \mathsf{Haus}(\widehat{R}_n, R) &\approx \sqrt{nh^{d+2}} \sup_{x \in R} d(x, \widehat{R}_n) \\ &\approx \sup \big\{ \mathsf{Empirical \ process \ on \ } R \big\} \\ &\approx \sup \big\{ \mathsf{Gaussian \ process \ on \ } R \big\}. \end{split}$$

Theorem

Under regularity conditions and $\frac{\log n}{nh^{d+6}} \to 0$, there exists a tight Gaussian process $\mathbb B$ defined on a certain function space $\mathcal F$ such that

$$\begin{split} \sup_t \left| \mathbb{P}\left(\sqrt{nh^{d+2}} \mathsf{Haus}(\widehat{R}_n, R) < t \right) - \mathbb{P}\left(\sup_{f \in \mathcal{F}} |\mathbb{B}(f)| < t \right) \right| \\ &= O\left(\left(\frac{\log^7 n}{nh^{d+2}} \right)^{1/8} \right). \end{split}$$

The Bootstrap

• Good news: we have the asymptotic behavior.

The Bootstrap

- Good news: we have the asymptotic behavior.
- Bad news: the asymptotic behavior is complicated.

The Bootstrap

- Good news: we have the asymptotic behavior.
- Bad news: the asymptotic behavior is complicated.
- A solution: the bootstrap.

The Bootstrap Consistency

- Bootstrap sample \Longrightarrow bootstrap ridges \widehat{R}_n^* .
- Compute Haus($(\widehat{R}_n^*, \widehat{R}_n)$) to get a CDF estimator (\widehat{F}_n) .
- Choose $\hat{t}_{1-\alpha}$ be the $1-\alpha$ quantile for \hat{F}_n .

The Bootstrap Consistency

- Bootstrap sample \Longrightarrow bootstrap ridges \widehat{R}_n^* .
- Compute Haus($(\widehat{R}_n^*, \widehat{R}_n)$) to get a CDF estimator \widehat{F}_n .
- Choose $\hat{t}_{1-\alpha}$ be the $1-\alpha$ quantile for \hat{F}_n .

It can be shown that

$$\sqrt{nh^{d+2}}$$
 Haus $(\widehat{R}_n^*, \widehat{R}_n) \approx \sup \{ \text{Gaussian process on } \widehat{R}_n \}$
 $\approx \sup \{ \text{Gaussian process on } R \}$
 $\approx \sqrt{nh^{d+2}}$ Haus (\widehat{R}_n, R) .

The Bootstrap Consistency

- Bootstrap sample \Longrightarrow bootstrap ridges \widehat{R}_n^* .
- Compute Haus(\widehat{R}_n^* , \widehat{R}_n) to get a CDF estimator \widehat{F}_n .
- Choose $\hat{t}_{1-\alpha}$ be the $1-\alpha$ quantile for \hat{F}_n .

It can be shown that

$$\sqrt{nh^{d+2}}$$
 Haus $(\widehat{R}_n^*, \widehat{R}_n) \approx \sup \{ \text{Gaussian process on } \widehat{R}_n \}$
 $\approx \sup \{ \text{Gaussian process on } R \}$
 $\approx \sqrt{nh^{d+2}}$ Haus (\widehat{R}_n, R) .

Theorem

Under regularity conditions and $\frac{\log n}{nh^{d+6}} \rightarrow 0$,

$$\mathbb{P}\left(R \subset \widehat{R}_n \oplus \widehat{t}_{1-\alpha}\right) = 1 - \alpha + O\left(\left(\frac{\log^7 n}{nh^{d+2}}\right)^{1/8}\right).$$

Example for Confidence Sets

Example for Confidence Sets

Density ridges are very cool objects because

they have cosmological applications,

Density ridges are very cool objects because

- they have cosmological applications,
- they are well-defined objects,

Density ridges are very cool objects because

- they have cosmological applications,
- they are well-defined objects,
- there is a fast algorithm to compute them,

Density ridges are very cool objects because

- they have cosmological applications,
- they are well-defined objects,
- there is a fast algorithm to compute them,
- their statistical properties are well-studied.

Thank you!

More details can be found in: http://www.stat.cmu.edu/~yenchic/

References

- Chen, Yen-Chi, Christopher R. Genovese, and Larry Wasserman. "Density Level Sets: Asymptotics, Inference, and Visualization." Under review of the Journal of American Statistical Association. arXiv preprint arXiv:1504.05438 (2015).
- Chen, Yen-Chi, Christopher R. Genovese, and Larry Wasserman. "Asymptotic theory for density ridges." The Annals of Statistics 43, no. 5 (2015): 18961928.
- Chen, Yen-Chi, Christopher R. Genovese, Ryan J. Tibshirani, and Larry Wasserman. "Nonparametric Modal Regression." To appear in the Annals of Statistics. arXiv preprint arXiv:1412.1716 (2014).
- Chernozhukov, Victor, Denis Chetverikov, and Kengo Kato. "Gaussian approximation of suprema of empirical processes." The Annals of Statistics 42, no. 4 (2014): 1564-1597.
- Chernozhukov, Victor, Denis Chetverikov, and Kengo Kato. "Anti-concentration and honest, adaptive confidence bands." The Annals of Statistics 42, no. 5 (2014): 1787-1818.
- Einbeck, Jochen, and Gerhard Tutz. "Modelling beyond regression functions: an application of multimodal regression to speedflow data." Journal of the Royal Statistical Society: Series C (Applied Statistics) 55, no. 4 (2006): 461-475.
- 7. Genovese, Christopher R., et al. "Nonparametric ridge estimation." The Annals of Statistics 42.4 (2014): 1511-1545.
- Ozertem, Umut, and Deniz Erdogmus. "Locally defined principal curves and surfaces." The Journal of Machine Learning Research 12 (2011): 1249-1286.

Regularity Conditions

- (K1) The kernel function K is BC^4 and integrable.
- (K2) K satisfies the VC-type class condition.
- (P1) The density p is in BC^4 .
- (P2) The eigengap $\lambda_1(x) \lambda_2(x) \ge \beta_0 > 0$ for points around ridges.
- (P3) The orientation of each ridge point is close to the gradient.

Regularity Conditions on Kernel Functions

- (K1) The kernel K is in BC^4 and $||K||_{\infty,4}^* < \infty$.
- (K2) Let

$$\mathcal{K}_r = \left\{ y \mapsto \mathcal{K}^{(\alpha)}\left(\frac{x-y}{h}\right) : x \in \mathbb{R}^d, |\alpha| = r \right\},$$

where $K^{(\alpha)}$ is the α -th derivative and let $\mathcal{K}_{l}^{*} = \bigcup_{r=0}^{l} \mathcal{K}_{r}$. We assume that \mathcal{K}_{4}^{*} is a VC-type class. i.e. there exists constants A, v and a constant envelope b_{0} such that

$$\sup_{Q} N(\mathcal{K}_{4}^{*}, \mathcal{L}^{2}(Q), b_{0}\epsilon) \leq \left(\frac{A}{\epsilon}\right)^{\nu}, \tag{1}$$

where $N(T, d_T, \epsilon)$ is the ϵ -covering number for an semi-metric set T with metric d_T and $\mathcal{L}^2(Q)$ is the L_2 norm with respect to the probability measure Q.

Regularity Conditions on Distributions

- (P1) The density p is in BC^4 .
- (P2) There exists constants $\beta_0, \beta_1, \beta_2, \delta_0 > 0$ such that

$$\lambda_{2}(x) \leq -\beta_{1}$$

$$\lambda_{1}(x) \geq \beta_{0} - \beta_{1}$$

$$\|g(x)\| \max_{|\alpha|=3} |p^{(\alpha)}(x)| \leq \beta_{0}(\beta_{1} - \beta_{2})$$
(2)

for all $x \in R \oplus \delta_0$.

(P3) For each $x \in R$, $|e(x)^T g(x)|^2 \ge \frac{\lambda_1(x)}{\lambda_1(x) - \lambda_2(x)}$ where e(x) is the direction of R at point $x \in R$.

Smoothed Density Ridges

In particular, we focus on making inference for the smoothed version of the density, denoted as p_h :

$$p_h(x) = p \otimes K_h(x) = \mathbb{E}\left(\widehat{p}_n(x)\right), \quad K_h(x) = \frac{1}{h^d}K\left(\frac{x}{h}\right),$$

where \otimes denotes the convolution.

• We define $R_h = \text{Ridge}(p_h)$.

Smoothed Density Ridges

In particular, we focus on making inference for the smoothed version of the density, denoted as p_h :

$$p_h(x) = p \otimes K_h(x) = \mathbb{E}\left(\widehat{p}_n(x)\right), \quad K_h(x) = \frac{1}{h^d}K\left(\frac{x}{h}\right),$$

where \otimes denotes the convolution.

- We define $R_h = \text{Ridge}(p_h)$.
- The advantages for focusing on R_h :
 - Always well-defined.
 - Topologically similar.
 - Asymptotically the same.
 - Fast rate of convergence.

Smoothed Density Ridges

In particular, we focus on making inference for the smoothed version of the density, denoted as p_h :

$$p_h(x) = p \otimes K_h(x) = \mathbb{E}\left(\widehat{p}_n(x)\right), \quad K_h(x) = \frac{1}{h^d}K\left(\frac{x}{h}\right),$$

where \otimes denotes the convolution.

- We define $R_h = \text{Ridge}(p_h)$.
- The advantages for focusing on R_h :
 - Always well-defined.
 - Topologically similar.
 - Asymptotically the same.
 - Fast rate of convergence.
- One can always slightly undersmooth so that inference for R_h is asymptotically valid for R.

Bandwidth Selection for Density Ridges

Effect of Smoothing Bandwidth

Risk for Ridges

Let R and \widehat{R}_n be the density ridges and their estimators. Let

$$U_R \sim Unif(R), \quad U_{\widehat{R}_n} \sim Unif(\widehat{R}_n).$$

Risk for Ridges

Let R and \widehat{R}_n be the density ridges and their estimators. Let

$$U_R \sim \textit{Unif}\left(R\right), \quad U_{\widehat{R}_n} \sim \textit{Unif}\left(\widehat{R}_n\right).$$

Define

$$W_n = d(U_R, \widehat{R}_n), \quad \widetilde{W}_n = d(U_{\widehat{R}_n}, R)$$

be the projected distance of U_R onto \widehat{R}_n and $U_{\widehat{R}_n}$ onto R. We define L_2 risk as

$$\mathsf{Risk}_{2,n} = rac{1}{2}\mathbb{E}(W_n^2 + \widetilde{W}_n^2).$$

Risk for Ridges

Let R and \widehat{R}_n be the density ridges and their estimators. Let

$$U_R \sim \textit{Unif}(R), \quad U_{\widehat{R}_n} \sim \textit{Unif}(\widehat{R}_n).$$

Define

$$W_n = d(U_R, \widehat{R}_n), \quad \widetilde{W}_n = d(U_{\widehat{R}_n}, R)$$

be the projected distance of U_R onto \widehat{R}_n and $U_{\widehat{R}_n}$ onto R. We define L_2 risk as

$$\mathsf{Risk}_{2,n} = \frac{1}{2}\mathbb{E}(W_n^2 + \widetilde{W}_n^2).$$

- This is a generalized mean integrated square errors.
- Similarly, one can define $Risk_{1,n}$ using L_1 loss.

Estimating Risks

We can use bootstrap or data splitting to estimate the risk Risk_{2,n}. Let \widehat{R}_n^* be the bootstrap version of \widehat{R}_n . Let

$$W_n^* = d(U_{\widehat{R}_n}, \widehat{R}_n^*), \quad \widetilde{W}_n^* = d(U_{\widehat{R}_n^*}, \widehat{R}_n)$$

Define

$$\widehat{\mathsf{Risk}}_{2,n} = \frac{1}{2} \mathbb{E}(W_n^{*2} + \widetilde{W}_n^{*2} | X_1, \cdots, X_n).$$

Estimating Risks

We can use bootstrap or data splitting to estimate the risk Risk_{2,n}. Let \widehat{R}_n^* be the bootstrap version of \widehat{R}_n . Let

$$W_n^* = d(U_{\widehat{R}_n}, \widehat{R}_n^*), \quad \widetilde{W}_n^* = d(U_{\widehat{R}_n^*}, \widehat{R}_n)$$

Define

$$\widehat{\mathsf{Risk}}_{2,n} = \frac{1}{2} \mathbb{E}(W_n^{*2} + \widetilde{W}_n^{*2} | X_1, \cdots, X_n).$$

Theorem

Under regularity conditions,

$$\frac{\widehat{\mathsf{Risk}}_{2,n}}{\mathsf{Risk}_{2,n}} \overset{P}{\to} 1, \quad \frac{\widehat{\mathsf{Risk}}_{1,n}}{\mathsf{Risk}_{1,n}} \overset{P}{\to} 1.$$

Bandwidth Selection via Risk Minimization

Application to Cosmology Dataset

Illustration for Asymptotic Theory

• Thus, the projection distance ≈ a stochastic process.

- Thus, the projection distance ≈ a stochastic process.
- This stochastic process ≈ empirical process.

- Thus, the projection distance ≈ a stochastic process.
- ② This stochastic process ≈ empirical process.
- Haus $(\widehat{D}_n, D_h) =$ sup{projection distance} \approx sup{Empirical process}.

