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Density Rid

Density ridges are curves characterizing high density regions.
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Application of Ridges: Cosmc

Credit: Millennium Simulation
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The Import

Filaments play key roles in astronomy research.
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The Importance

Filaments play key roles in astronomy research.

o A galaxy's brightness, mass, and size are associated with filaments.

» Chen et al. ‘Detecting Effects of Filaments on Galaxy Properties in Sloan Digital Sky Survey IlI' (2015)
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The Importance

Filaments play key roles in astronomy research.
o A galaxy's brightness, mass, and size are associated with filaments.
o A galaxy's alignment is associated with filaments.

\

> Chen et al. ‘Investigating Galaxy-Filament Alignment in Hydrodynamic Simulations using Density Ridges' (Mon. Not.
Roy. Astro. Soc. 2015)
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The Importance of Filam

Filaments play key roles in astronomy research.
o A galaxy's brightness, mass, and size are associated with filaments.
o A galaxy's alignment is associated with filaments.
o Filaments can be used to test cosmological models.

cold dark matter warm dark matter

WDM 0.5 kev
ACDM y

Credit: Kavli Institute for Cosmology, Cambridge
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Density Rid

A statistical model for filaments is the density ridges.
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Example: Ridges in Mountains_

imageryiDate 005 @ 2005

Credit: Google
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Ridges in Smooth Fu
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Ridges: Local Modes i

o A generalized local mode in a
specific ‘subspace’.
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o A generalized local mode in a
specific ‘subspace’.
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Formal Defi

o p(x): the density function.
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Formal Defi

o p(x): the density function.
o (Aj(x), vj(x)): jth eigenvalue/vector of H(x) = VVp(x).
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o (Aj(x), vj(x)): jth eigenvalue/vector of H(x) = VVp(x).

o V(x)=[wa(x), -+, vg(x)]: matrix of 2nd to last eigenvectors.
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Formal Definit

o p(x): the density function.

o (Aj(x), vj(x)): jth eigenvalue/vector of H(x) = VVp(x).

o V(x)=[wa(x), -+, vg(x)]: matrix of 2nd to last eigenvectors.
o V(x)V(x)T: a projection.

o Ridges:

R = Ridge(p) = {x : V(x)V(x)TVp(x) = 0, \2(x) < 0},
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Formal Definiti

o p(x): the density function.
o (Aj(x), vj(x)): jth eigenvalue/vector of H(x) = VVp(x).

o V(x)=[wa(x), -+, vg(x)]: matrix of 2nd to last eigenvectors.
o V(x)V(x)T: a projection.
o Ridges:

R = Ridge(p) = {x : V(x)V(x)"Vp(x) = 0, \2(x) < 0},

o Local modes:

Mode(p) = {x : Vp(x) =0, A\1(x) < 0}.
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m

We use the plug-in estimate:

R, = Ridge(pn),

where By = -5 327y K (35%) s the KDE.
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m

We use the plug-in estimate:

R, = Ridge(pn),

where By = -5 327y K (35%) s the KDE.

o In general, finding ridges from a given function is hard.
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Estimator and

We use the plug-in estimate:

R, = Ridge(pn),

where By = -5 327y K (35%) s the KDE.

o In general, finding ridges from a given function is hard.

o The Subspace Constraint Mean Shift (SCMS; Ozertem2011)
algorithm allows us to find R, ridges of the KDE.
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SCMS: Ridge

12 / 24
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SCMS: Ridge
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SCMS: Ridge
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SCMS: Ridge
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Example for Esti
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3D Example for

Blue curves: density ridges.
Red points: density local modes.
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Statistical In

Having estimators is not enough for statistical inference.
We need confidence sets for density ridges.
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Statistical Infi

Having estimators is not enough for statistical inference.

We need confidence sets for density ridges.
Namely, we want to find a set C;_, , from the data such that

P(RC Cl—a,n) >1—a.
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Statistical Infer

Having estimators is not enough for statistical inference.
We need confidence sets for density ridges.
Namely, we want to find a set C;_, , from the data such that

P(RC Cl_a,,,) >1—a.

In what follows, we ignore the bias for estimating R and focus only on the
stochastic variation of R,.

15 / 24
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Useful Metric:

We introduce a useful metric—the Hausdorff distance for sets:

Haus(A, B) = max{sup d(x, B), sup d(x, A)}
XEA

where d(x, A) = inf,ca [|x — y|| is the projection distance.
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Useful Metric:

We introduce a useful metric—the Hausdorff distance for sets:

Haus(A, B) = max{sup d(x, B), sup d(x, A)}
XEA

where d(x, A) = infyca||x — y|| is the projection distance.

o Haus is an £, metric for sets.
o Consistency: Haus(ﬁ,,, R) = op(1).
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The @ O

We define A r = {x: d(x,A) < r}.

Yen-Chi Chen (CMU-Stats) Density Ridges December 13, 2015 17 / 24



The @ Op

We define A r = {x: d(x,A) < r}.

— Gl

Then we have the following inclusion property:

AC B @ Haus(A, B), B C A& Haus(A,B).
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Hausdorff Dis

We can use Hausdorff distance and @ operation to construct confidence
sets. R

Let F, be the CDF for Haus(R,, R) and t;_o = F,}(1 — ) be the 1 — «
quantile.
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Hausdorff Dist

We can use Hausdorff distance and @ operation to construct confidence
sets. R

Let F, be the CDF for Haus(R,, R) and t;_o = F,}(1 — ) be the 1 — «
quantile.

o It can be shown that
P(Rcﬁﬁﬁqﬂ)21—w
— This follows from the property

A C B@®Haus(A,B), B C A® Haus(A,B).
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Hausdorff Dista

We can use Hausdorff distance and @ operation to construct confidence
sets. R

Let F, be the CDF for Haus(R,, R) and t;_o = F,}(1 — ) be the 1 — «
quantile.

o It can be shown that
P(RCR@ta)>1-a.
— This follows from the property
A C B@&Haus(A,B), B C A& Haus(A,B).

o We need to find the distribution F,.
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Key observation:
Vnhd+2Haus(R,, R) ~ V'nhd+2 sup d(x, Ry)
xER
~ sup {Empirical process on R}

~ sup {Gaussian process on R}.
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Asymptotic Theory

Key observation:

Vnhd+2Haus(R,, R) ~ Vnh#+2 sup d(x; Ry)

xER
~ sup {Empirical process on R}

~ sup {Gaussian process on R}.

Theorem

Under regularity conditions and ,:—775% — 0, there exists a tight Gaussian

process B defined on a certain function space F such that

sup
t

P (v nhd+2Haus(I$,,, R) < t) —P(sup|IB3(f)| < t)|
feF

_o <(|g)/)
nhd+2
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The Bootst

o Good news: we have the asymptotic behavior.
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o Good news: we have the asymptotic behavior.

o Bad news: the asymptotic behavior is complicated.
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o Good news: we have the asymptotic behavior.
o Bad news: the asymptotic behavior is complicated.
~— A solution: the bootstrap.
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o Bootstrap sampIE = bootstrap ridges ﬁ,’;‘ R
o Compute Haus(Rj, R,) to get a CDF estimator F,.
o Choose t;_,, be the 1 — quantile for F,.
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The Bootstrap

o Bootstrap sample = bootstrap ridges 13,",‘.
o Compute Haus(R, R,) to get a CDF estimator F,.
o Choose ti_, be the 1 — a quantile for F,.

It can be shown that

% nhd+2Haus(§;, ﬁ,,) ~ sup {Gaussian process on I/?\,,}

~ sup {Gaussian process on R}

~ Vnh9t2Haus(R,, R).

Yen-Chi Chen (CMU-Stats) Density Ridges December 13, 2015 21 /24



The Bootstrap Consist

o Bootstrap sample :A> bootstrap ridges I$*
o Compute Haus(R;, Ra) to get a CDF estimator Fo.
o Choose t;_,, be the 1 — « quantile for F

It can be shown that

Vnhd+2Haus(R?, I/?\,,) ~ sup {Gaussian process on R,}

~ sup {Gaussian process on R}

~ Vnh9t2Haus(R,, R).

Iog n

Under regularity conditions and — 0,

~ log” n 1/8
P(RCR,®%a) :1—a+o((nhd+2) )
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Example for Confidenc
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Concluding Remarks

Density ridges are very cool objects
because

Q they have cosmological
applications,
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Concluding R

Density ridges are very cool objects
because

Q they have cosmological
applications,

Q they are well-defined objects,

O there is a fast algorithm to
compute them,
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Concluding Rem

Density ridges are very cool objects
because

Q they have cosmological
applications,

Q they are well-defined objects,
O there is a fast algorithm to
compute them,

© their statistical properties are
well-studied.
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Thank you!

More details can be found in: http://www.stat.cmu.edu/~yenchic/
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Regularity Co

(K1) The kernel function K is BC* and integrable.

(K2) K satisfies the VC-type class condition.

(P1) The density p is in BC*.

(P2) The eigengap A1(x) — A2(x) > Bo > 0 for points around ridges.
(P3) The orientation of each ridge point is close to the gradient.
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Regularity Condi

(K1) The kernel K is in BC* and ||K||%, 4 < oc.
(K2) Let

/C,:{yv—>K(°‘) (%) :XGRd,|04|:r}7

where K(@) is the a-th derivative and let K} = Ui:o Kr. We assume
that K} is a VC-type class. i.e. there exists constants A, v and a
constant envelope bg such that

Slép N(ICZ,E2(Q),bo€) < (é>v, (1)

€

where N(T,drt,€) is the e-covering number for an semi-metric set T
with metric dr and £2(Q) is the L, norm with respect to the
probability measure Q.
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Regularity Con

(P1) The density p is in BC*.
(P2) There exists constants (g, 31, 32,00 > 0 such that

A2(x)
A1(x) ﬁ (2)

||g(X)”|m|a_X|P(a)( x)| < Bo(Br ﬁz)

< -
>

for all x € R dy.
(P3) F_or ea?ch x € R, |e(>_<)T g(x)]? > % where e(x) is the
direction of R at point x € R.
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Smoothed De

In particular, we focus on making inference for the smoothed version of
the density, denoted as py:

pr(x) = P& Kn() =E(Fnlx)), Ka(x) = 7K ().

where ® denotes the convolution.

o We define Ry, = Ridge(pp).
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Smoothed Dens

In particular, we focus on making inference for the smoothed version of
the density, denoted as py:

pulx) = P Kn(x) =E(Br(x)), Knlx) = 15K (%)),

where ® denotes the convolution.

o We define Ry, = Ridge(p).

o The advantages for focusing on Rp:
Always well-defined.
Topologically similar.
Asymptotically the same.

Fast rate of convergence.
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Smoothed Densi

In particular, we focus on making inference for the smoothed version of
the density, denoted as py:

pulx) = P Kn(x) =E(Br(x)), Knlx) = 15K (%)),

where ® denotes the convolution.

o We define Ry, = Ridge(p).

o The advantages for focusing on Rp:
Always well-defined.

o Topologically similar.

o Asymptotically the same.

o Fast rate of convergence.

o One can always slightly undersmooth so that inference for Ry, is
asymptotically valid for R.
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Bandwidth Selection for Density
Ridges
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Effect of S
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Risk for Rid

Let R and ﬁ,, be the density ridges and their estimators.
Let

Ug ~ Unif (R), Ug ~ Unif (ﬁ,,) .
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Risk for Ridge

Let R and ﬁ,, be the density ridges and their estimators.
Let

Ug ~ Unif (R), Ug ~ Unif (ﬁ,,) .
Define R

W, = d(Ug, Rs), W, =d(Uz,R)

be the projected distance of Ug onto I/?\n and Uﬁn onto R.
We define L, risk as

Risky , = %E( W2 + W2).
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Risk for Ridges

Let R and ﬁ,, be the density ridges and their estimators.
Let

Ug ~ Unif (R), Ug ~ Unif (ﬁ,,) .
Define R

W, = d(Ug, Rs), W, =d(Uz,R)

be the projected distance of Ug onto I/?\n and Uﬁn onto R.
We define L, risk as

Risky , = %E( W2 + W2).

o This is a generalized mean integrated square errors.

o Similarly, one can define Risky , using Ly loss.
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We can use bootstrap or data splitting to estimate the risk Risko .
Let R be the bootstrap version of R,. Let

Wy =d(Ug .R:), Wy =d(Ug..Ry)

L
Rn

Define 1
Risky,, = EE(W,fz + WX, -, Xn).
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Estimating Risks

We can use bootstrap or data splitting to estimate the risk Risko .
Let R} be the bootstrap version of R,. Let

Wy =d(Ug .R:), Wy =d(Ug..Ry)

* 9 n
R;

Define 1
Riska, , = EE(W,Tz + WXy, -, X,).

Under regularity conditions,

@‘2,n E)l, IS?-5\k1,n f)
Rlskz,n Rlsklyn
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Bandwidth
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Application

e Risk
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lllustration for Asymptotic Theory
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Asymptotic T

Ry,

Ry
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Asymptotic Th

Ry,

Ry
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Q@ Thus, the projection distance = a
stochastic process.
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Q@ Thus, the projection distance = a
stochastic process.

@ This stochastic process ~
empirical process.
R,
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Asymptotic T

Q@ Thus, the projection distance = a
stochastic process.

@ This stochastic process ~
empirical process. D
R,

Q Haus(ﬁn, Dy) =

sup{projection distance} ~ N /\/\ /
sup{Empirical process}. A\ R A4
h
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