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Density Ridges: High Density Curves

Density ridges are curves characterizing high density regions.
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Application of Ridges: Cosmology
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The Importance of Filaments

Cosmic filaments play key roles in astronomy research.
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The Importance of Filaments

Cosmic filaments play key roles in astronomy research.

@ A galaxy's color, mass, and size are associated with filaments.

— Chen et al. ‘Detecting Effects of Filaments on Galaxy Properties in Sloan Digital Sky Survey III' (2015)
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The Importance of Filaments

Cosmic filaments play key roles in astronomy research.
@ A galaxy's color, mass, and size are associated with filaments.

@ A galaxy's shape is associated with filaments.

— Chen et al. ‘Investigating Galaxy-Filament Alignment in Hydrodynamic Simulations using Density Ridges' (Mon. Not.
Roy. Astro. Soc. 2015)
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The Importance of Filaments

Cosmic filaments play key roles in astronomy research.
@ A galaxy's color, mass, and size are associated with filaments.
@ A galaxy's shape is associated with filaments.

@ Filaments can be used to constrain the cosmological models.

e Credit: Millennium Simulation and ESO/M. Kornmesser.
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Density Ridges

A statistical model for filaments is the density ridges.

Yen-Chi Chen (CMU-Stats) Density Ridges November 14, 2015 5/23



Example: Ridges in Mountains

Image @ 2011\Dig
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Imagery|Date-12/31/2005 @\ 2005

Credit: Google
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Example: Ridges in Smooth Functions
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Ridges: Local Modes in Subspace

@ A generalized local mode in a
specific ‘subspace’.
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Formal Definition of Density Ridges

@ p(x): a density function.
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@ (Aj(x), vj(x)): jth eigenvalue/vector of H(x) = VVp(x).
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Formal Definition of Density Ridges

@ p(x): a density function.
@ (Aj(x), vj(x)): jth eigenvalue/vector of H(x) = VVp(x).
o V(x) = [wva(x),- -, vg(x)]: matrix of 2nd to last eigenvectors.
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Formal Definition of Density Ridges

@ p(x): a density function.
@ (Aj(x), vj(x)): jth eigenvalue/vector of H(x) = VVp(x).
o V(x) = [wva(x),- -, vg(x)]: matrix of 2nd to last eigenvectors.

e V(x)V(x)T: a projection.
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Formal Definition of Density Ridges

@ p(x): a density function.

@ (Aj(x), vj(x)): jth eigenvalue/vector of H(x) = VVp(x).

o V(x) = [wva(x),- -, vg(x)]: matrix of 2nd to last eigenvectors.
e V(x)V(x)T: a projection.

o Ridges:

R = Ridge(p) = {x : V(x)V(x)"Vp(x) = 0, A2(x) < 0},
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Formal Definition of Density Ridges

@ p(x): a density function.

@ (Aj(x), vj(x)): jth eigenvalue/vector of H(x) = VVp(x).

o V(x) = [wva(x),- -, vg(x)]: matrix of 2nd to last eigenvectors.
e V(x)V(x)T: a projection.

o Ridges:

R = Ridge(p) = {x : V(x)V(x)"Vp(x) = 0, X2(x) < 0},
@ Local modes:

Mode(p) = {x : Vp(x) =0, A\1(x) < 0}.
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Estimator and Algorithm

We use the plug-in estimate:
R, = Ridge(pn).

where p, is the KDE.
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Estimator and Algorithm

We use the plug-in estimate:
R, = Ridge(pn).

where p, is the KDE.

@ In general, finding ridges from a given function is hard.

Yen-Chi Chen (CMU-Stats) Density Ridges November 14, 2015



Estimator and Algorithm

We use the plug-in estimate:
R, = Ridge(pn).

where p, is the KDE.

@ In general, finding ridges from a given function is hard.

® The Subspace Constraint Mean Shift (SCMS; Ozertem2011)
algorithm allows us to find R,, ridges of the KDE.
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SCMS: Ridge Recovery Algorithm
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SCMS: Ridge Recovery Algorithm
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SCMS: Ridge Recovery Algorithm

Yen-Chi Chen (CMU-Stats) Density Ridges November 14, 2015 12 /23



Example for Estimated Density Ridges
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Example for Estimated Density Ridges
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Statistical Inference: Confidence Sets

Having estimators is not enough for statistical inference.
We need confidence sets for density ridges.
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Statistical Inference: Confidence Sets

Having estimators is not enough for statistical inference.

We need confidence sets for density ridges.
Namely, we want to find a set C;_, , from the data such that

P(RC Cian)>1—a.
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Statistical Inference: Confidence Sets

Having estimators is not enough for statistical inference.
We need confidence sets for density ridges.
Namely, we want to find a set C;_, , from the data such that

P(RC Cian)>1—a.

In what follows, we ignore the bias for estimating R and focus only on the
stochastic variation of R,.
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Useful Metric: Hausdorff Distance

We introduce a useful metric—the Hausdorff distance for sets:

Haus(A, B) = max {sup d(x, B), sup d(x,A)} ,
x€A xeB

where d(x, A) = inf,ca||x — y|| is the projection distance.
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Useful Metric: Hausdorff Distance

We introduce a useful metric—the Hausdorff distance for sets:

Haus(A, B) = max {sup d(x, B), sup d(x,A)} ,
x€A xeB

where d(x, A) = inf,ca||x — y|| is the projection distance.

@ Haus is an L., metric for sets.
o Consistency: Haus(ﬁ,,, R) = op(1).
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The ¢ Operation

We define A r = {x: d(x,A) < r}.

A Adr
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The ¢ Operation

We define A r = {x: d(x,A) < r}.

A Adr

Then we have the following inclusion property:

A C B@&Haus(A,B), B C A& Haus(A, B).
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Hausdorff Distance and Confidence Sets

We can use Hausdorff distance and @ operation to construct confidence
sets. R

Let F, be the CDF for Haus(R,, R) and t;_o = F,}(1 — ) be the 1 — «
quantile.
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Hausdorff Distance and Confidence Sets

We can use Hausdorff distance and @ operation to construct confidence
sets.

Let F, be the CDF for Haus(ﬁ,,, R)and t; o = F;1(1 —a)bethel —a
quantile.

@ It can be shown that
]P’(RC I?,,@tlfa) >1—a.
— This follows from the property

AC B@®Haus(A, B), B C A Haus(A,B).
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Hausdorff Distance and Confidence Sets

We can use Hausdorff distance and @ operation to construct confidence
sets.

Let F, be the CDF for Haus(ﬁ,,, R)and t; o = F;1(1 —a)bethel —a
quantile.

@ It can be shown that
P(RCR&ta)21-a
— This follows from the property
A C B®Haus(A,B), B C A® Haus(A,B).

@ We need to find the distribution F,.
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Asymptotic Theory

Key observation:
Vnhd+2Haus(R,, R) ~ vV'nhd+2 sup d(x, R,)
XER
~ sup {Empirical process on R}

~ sup {Gaussian process on R}.
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Asymptotic Theory

Key observation:

Vnh#*2Haus(R,, R) ~ Vnh?+2 sup d(x, Ry)

xER
~ sup {Empirical process on R}

~ sup {Gaussian process on R}.

Theorem

Under regularity conditions, there exists a tight Gaussian process B defined
on a certain function space F such that

P (v nhd+2Haus(R,, R) < t) —IP’(sup|IB3(f)| < t>|

feF
0 <<M)” 8) |
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The Bootstrap

Good news: we have the asymptotic behavior.
Bad news: the asymptotic behavior is complicated.
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The Bootstrap

Good news: we have the asymptotic behavior.
Bad news: the asymptotic behavior is complicated.

— A solution: the bootstrap.
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The Bootstrap Consistency

@ Bootstrap sample = bootstrap ridges I/?\,f
e Compute Haus(R}, R,) to get a CDF estimator F),.
@ Choose t;_,, be the 1 — quantile for F,.
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The Bootstrap Consistency

@ Bootstrap sample = bootstrap ridges I/?\,f
e Compute Haus(R}, R,) to get a CDF estimator F),.
@ Choose t;_,, be the 1 — quantile for F,.

It can be shown that
Vnhd+2Haus(R*, R,)) ~ sup {Gaussian process on R,}
~ sup {Gaussian process on R}

~ v'nhd+2Haus(R,, R).
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The Bootstrap Consistency

@ Bootstrap sample = bootstrap ridges I/?\,f
e Compute Haus(R}, R,) to get a CDF estimator F),.
@ Choose t;_,, be the 1 — quantile for F,.

It can be shown that
Vnhd+2Haus(R*, R,)) ~ sup {Gaussian process on R,}
~ sup {Gaussian process on R}

~ v'nhd+2Haus(R,, R).

Under regularity conditions,

~ log” n 1/8
P(RcR,,eatl_a):l—aJrO((W) >

Yen-Chi Chen (CMU-Stats) Density Ridges November 14, 2015




Confidence Sets
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Example for Confidence Sets
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Concluding Remarks

Density ridges are very cool objects
because

@ they have cosmological
applications,
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Density ridges are very cool objects
because

@ they have cosmological
applications,

@ they are well-defined objects,

© there is a fast algorithm to
compute them,
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Concluding Remarks

Density ridges are very cool objects
because

@ they have cosmological
applications,

@ they are well-defined objects,
© there is a fast algorithm to
compute them,

© their statistical properties are
well-studied.

Yen-Chi Chen (CMU-Stats) Density Ridges

November 14, 2015

22 /23



Thank you!
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Smoothed Density Ridges

In particular, we focus on making inference for the smoothed version of
the density, denoted as py:

Pr(x) = P& Kn() = E(B(x),  Kn() = 15K (%),

where ® denotes the convolution.

o We define R, = Ridge(pp).
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In particular, we focus on making inference for the smoothed version of
the density, denoted as py:

Pr(x) = P& Kn() = E(B(x),  Kn() = 15K (%),

where ® denotes the convolution.

o We define R, = Ridge(pp).

@ The advantages for focusing on Rp:
Always well-defined.

e Topologically similar.

o Asymptotically the same.

o Fast rate of convergence.
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Smoothed Density Ridges

In particular, we focus on making inference for the smoothed version of
the density, denoted as py:

Pr(x) = P& Kn() = E(B(x),  Kn() = 15K (%),

where ® denotes the convolution.

o We define R, = Ridge(pp).

@ The advantages for focusing on Rp:
Always well-defined.

e Topologically similar.

o Asymptotically the same.

o Fast rate of convergence.

@ One can always slightly undersmooth so that inference for Ry, is
asymptotically valid for R.
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Bandwidth Selection for Density
Ridges
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Effect of Smoothing Bandwidth
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Risk for Ridges

Let R and I?,, be the density ridges and their estimators.
Let R
Ug ~ Unif (R), Ug ~ Unif (Rn> .
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Risk for Ridges

Let R and I?,, be the density ridges and their estimators.
Let R
Ug ~ Unif (R), Ug ~ Unif (Rn> .

Define R -
W, = d(Ug,R,), W,= d(Uﬁn’ R)

be the projected distance of Ug onto ﬁn and Uﬁn onto R.
We define L, risk as

1 —
Riska,, = 5IE(W,,2 + W2).
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Risk for Ridges

Let R and I?,, be the density ridges and their estimators.
Let R
Ug ~ Unif (R), Ug ~ Unif (Rn> .

Define R -
W, = d(Ug,R,), W,= d(Uﬁn’ R)

be the projected distance of Ug onto ﬁn and Uﬁn onto R.
We define L, risk as

1 .
Riska,, = 5IE(W,,2 + W2).

@ This is a generalized mean integrated square errors.
@ Similarly, one can define Risk; , using Ly loss.
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Estimating Risks

We can use bootstrap or data splitting to estimate the risk Risko ,.
Let R} be the bootstrap version of R,. Let

Wy =d(Ug ,R}), W, =d(Uz.,Rn)

* 9 n
Rn

Define 1
Riska, , = 51{»«:(W;;2 + WX, -, Xa).
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Estimating Risks

We can use bootstrap or data splitting to estimate the risk Risko ,.
Let R} be the bootstrap version of R,. Let

Wy =d(Ug ,R}), W, =d(Uz.,Rn)

* 9 n
R;

Define 1
Riska, , = 51{»«:(W;;2 + WX, -, Xa).

Under regularity conditions,

@(2 n P @(1 n P
) 1 )
Riske, ' Riskin
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Bandwidth Selection via Risk Minimization

12
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0.4 0.6 0.8
| L L ;

02

0‘0 0‘.5 1.‘0 1‘5 2‘.0
Smoothing Parameter

Yen-Chi Chen (CMU-Stats) Density Ridges November 14, 2015 30 /23



Application to Cosmology Dataset
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e Risk
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lllustration for Asymptotic Theory
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Asymptotic Theory

Ry,

Ry
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Asymptotic Theory
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Asymptotic Theory

© Thus, the projection distance ~ a
stochastic process.
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Asymptotic Theory

© Thus, the projection distance ~ a
stochastic process.

@ This stochastic process ~
empirical process.
R,
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Asymptotic Theory

© Thus, the projection distance ~ a
stochastic process.
@ This stochastic process ~
empirical process. /R
o n
© Haus(D,, Dy) =

sup{projection distance} ~ RN /'\/\ /
sup{Empirical process}. \wg R \/
h
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