
STAT 535: Statistical Machine Learning Autumn 2024

Lecture 9: Clustering
Instructor: Yen-Chi Chen

Useful reference:

• Wasserman, L. (2018). Topological data analysis. Annual Review of Statistics and Its Application, 5,
501-532.

• Chapter 14.3 of Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning.
New York: Springer series in statistics.

9.1 Introduction

Clustering is one of the most important tasks in data analysis. The objective of clustering is to separate
data into groups such that observations within the same groups are similar.

Because there is no formal definition of a cluster, there are several different clustering approaches that
attempts to define similarity using different notions.

We will start with density-based clustering method that defines clusters through a density function. In this
case, a density estimator leads to a clustering method. Then we discuss clustering method that directly
applies to the observations without using a density estimator although many of them implicitly use the
notion of density.

9.2 Mode clustering

The mode clustering forms clusters by using the gradient flow of a PDF. Consider a PDF p(x) that is smooth.
Starting at point x, we define a gradient ascent flow πx : R 7→ Rd such that

πx(0) = x, π′x(t) = ∇p(πx(t)).

You can easily verify that the flow πx is the density gradient ascent flow starting at point x.

When p(x) is a Morse function (all critical points are non-degenerated, i.e., Hessian matrix at each critical
points has non-zero eigenvalues), the destination

πx(∞) = lim
t→∞

πx(t)

belongs to one of the local modes of p(x) except for a set of Lebesgue measure 0. We then use the destination
of the gradient flow πx(∞) to cluster the entire sample space. Namely, points whose gradient flow converges
to the same destination belong to the same cluster. Let M be the collection of all local modes of p and for
any point m ∈M , we define

D(m) = {x : πx(∞) = m}
be the basin of attraction of m. The collection D(m) : m ∈M can be viewed as a population cluster of
the entire sample space. When a set of observations X1, · · · , Xn are given, we can use the basin that each
observation falls in to cluster observations.
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Figure 9.1: An example of mode clustering.

In practice, we do not know the population PDF. Instead, we have a random sample X1, · · · , Xn ∼ p. So
we will estimate the PDF first and then use the gradient flow of the density estimator to perform mode
clustering. In particular, we often use the kernel density estimator (KDE)

p̂h(x) =
1

nhd

n∑
i=1

K

(
Xi − x
h

)
and its derivative to perform mode clustering.

When we use the Gaussian kernel, the gradient descent can be done by using the mean-shift algorithm.
Suppose x(0) is the initial point that we want to start the gradient flow with. We updates it by

x(t+1) =

∑n
i=1XiK

(
Xi−x(t)

h

)
∑n
j=1K

(
Xj−x(t)

h

) . (9.1)

You can show that this iteration is indeed a gradient ascent algorithm and the convergent point x(∞) will be
a local mode of p̂h for most initial points. When the mode clustering is done by the mean shift algorithm,
it is also called mean-shift clustering.

Using the mean-shift algorithm, we can define the sample basin of attraction

D̂(m) = {x : π̂x(∞) = m},

where π̂x(t) is the gradient flow of p̂h and m ∈ M̂h such that M̂h is the local modes of p̂h. We set Xi into a

cluster m if Xi ∈ D̂(m).

Here is a paper that you may want to read if you are interested in the idea of mode clustering:

Chacón, J. E. (2015). A population background for nonparametric density-based clustering.
Statistical Science, 30(4), 518-532.

9.2.1 Stability of mode clustering

Since the mode clustering can be applied to a population PDF and what we computed is the sample version
of the mode clustering, we can define the concept of convergence of clustering in this case– we want the
sample clusters to converge to the population clusters.
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There are two ways to quantify the convergence of a mode clustering result. The first one is to show that
the convergent points (i.e., local modes) in p̂h converge to the local modes in p. The second one is to show
that the two partitions of the observations agrees with each other (often measured by the rand index1).

To quantify the convergence of local modes, we use the Hausdorff distance. For two sets A and B, their
Hausdorff distance is

Haus(A,B) = max

{
sup
x∈A

d(x,B), sup
x∈B

d(x,A)

}
.

You can view the Hausdorff distance as an L∞ distance of sets.

Theorem 9.1 (Chen, Genovese, Wasserman (2016)) Assume that p is a Morse function and has a
compact support K. Moreover, p has bounded third derivatives over K and has a finite number of local
modes. Then h→ 0, logn

nhd+4 → 0,

Haus(M̂h,M) = O(h2) +OP

(√
1

nhd+2

)
.

The above theorem is from the following paper:

Chen, Y. C., Genovese, C. R., & Wasserman, L. (2016). A comprehensive approach to mode
clustering. Electronic Journal of Statistics, 10(1), 210-241.

Note that the smoothing bandwidth requirement is stronger than the convergence rate. The requirement
h→ 0, logn

nhd+4 → 0 is to make sure that the Hessian matrix is consistently estimated so that the modes can be
consistently estimated. Here is an intuitive explanation on why we need a consistent estimate of the second
derivative but the rate only depends on the first derivative. Let m be a local mode of p and m̂h be a local
mode of p̂h that is closest to m. By definition of local modes, we have

∇p(m) = 0 = ∇p̂h(m̂h).

Thus, by the Taylor expansion,

∇p̂h(m)−∇p(m)︸ ︷︷ ︸
=0

= ∇p̂h(m)−∇p̂h(m̂h)

= ∇∇p̂h(m)(m− m̂h) +O(‖m̂h −m‖2).

Ignoring the second order term, we obtain

m̂h −m = [∇∇p̂h(m)]−1(∇p̂h(m)−∇p(m)).

When the second derivatives converge, the first term converges to [∇∇p(m)]−1, which will be of a constant
order. So the rate is determined by ∇p̂h(m)−∇p(m), the gradient estimation rate. This analysis also reveals
the importance of being a Morse function–we need the Hessian matrix to be invertible around local modes,
i.e., eigenvalues of the Hessian matrix are all non-zero.

Thus, when the density function is smooth, the estimated local modes converge to the population local
modes.

1https://en.wikipedia.org/wiki/Rand_index

https://en.wikipedia.org/wiki/Rand_index
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Figure 9.2: An example of level set clustering.

Let C(Xi) be the cluster label of Xi using the population mode clustering and Ĉ(Xi) be the cluster label
of Xi using the sample mode clustering. Then rand index between the two population and sample mode
clustering is

rand(C, Ĉ) =
1(
n
2

) n∑
i,j=1

I(C(Xi) = C(Xj), Ĉ(Xi) 6= Ĉ(Xj)) + I(C(Xi) 6= C(Xj), Ĉ(Xi) = Ĉ(Xj))

= ratio of pairs that the two clustering methods disagree.

Theorem 9.2 (Chen, Genovese, Wasserman (2017)) Assume conditions in Chen, Genovese, Wasser-
man (2017). Then

rand(C, Ĉ) = O(h2) +OP

(√
log n

nhd+2

)
.

The above theorem is from the following paper:

Chen, Y. C., Genovese, C. R., & Wasserman, L. (2017). Statistical inference using the morse-
smale complex. Electronic Journal of Statistics, 11(1), 1390-1433.

Namely, asymptotically the sample mode clustering and population mode clustering return the same partition
of the data (except only a small fraction of observations).

9.3 Level set clustering

Another density-based clustering method is the level set clustering. The idea is very simple. Consider the
λ-upper level set:

Lλ = {x : p(x) ≥ λ}.

Namely, Lλ is the collection of regions where the PDF is greater than or equal to λ.

When p has multiple local modes, some level sets would lead to several connected components. The level
set clustering group observations into the same cluster if they are all on the same connected component.
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Again, in practice we estimate the PDF by a density estimator and use the estimated level set to perform
clustering. Namely, suppose that p̂ is a density estimator. Then we use

L̂λ = {x : p̂(x) ≥ λ}

as an estimator of Lλ and the corresponding connected components to cluster observations.

Sometimes estimating the level set itself is of research interest since level sets are regions characterizing
high density area. In addition to clustering, the idea of level sets can also be applied to perform anomaly
detection– observations fall in the low density area LCλ = {x : p(x) < λ} will be classified as anomalies.

I would recommend the following two papers for learning more about level set clustering:

Rinaldo, A., Singh, A., Nugent, R., & Wasserman, L. (2012). Stability of density-based clustering.
Journal of Machine Learning Research, 13(Apr), 905-948.
Rinaldo, A., & Wasserman, L. (2010). Generalized density clustering. The Annals of Statistics,
38(5), 2678-2722.

9.3.1 Stability of level sets

There are many theoretical results on the stability of a level set. Often a key assumption we need to make
is the behavior of p(x) around Lλ. As you may expect, if p(x) is close to flat around Lλ, the level set is
unstable whereas if p(x) has a high gradient around Lλ, the level set is stable.

Theorem 9.3 Assume that the PDF p has bounded second derivatives and has a compact support K. Assume
further that there exists g0 > 0 such that

(G) inf
x∈Lλ

‖∇p(x)‖ ≥ g0.

Then for any density estimator pn converging to p in the sense that

‖pn − p‖∞ = o(1), sup
x
‖∇pn(x)−∇p(x)‖max = o(1),

we have
Haus(Lλ,n, Lλ) ≤ gmax

g20
· ‖pn − p‖∞,

where Lλ,n is the level set of pn and gmax = supx ‖∇p(x)‖.

Proof: Let ε = ‖pn−p‖∞. Consider a point x ∈ pn. It is easy to see that pn(x) = λ and p(x) ∈ [λ−ε, λ+ε].

Moreover, because of assumption (G) and the fact that p has bounded second derivative, for any point x
with p(x) ∈ [λ− ε, λ+ ε], the gradient ‖∇p(x)‖ ≥ 1

2g0 (think about why this is the case). Note that 1
2 can

be replaced by any number that is strictly less than 1
2 .

Now we define a gradient ascent flow πx(t)

πx(0) = x, π′x(t) = ∇p(πx(t)).

Since πx(t) is a gradient ascent flow, the density value p(πx(t)) satisfies

d

dt
p(πx(t)) = [∇p(πx(t))]Tπ′x(t) = ‖∇p(πx(t))‖2 ≥ 1

4
g20 > 0
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whenever p(πx(t)) ∈ [λ− ε, λ+ ε].

Since the density is increasing, let τ be the time such that p(πx(τ)) = λ. Then

λ− p(x) = p(πx(τ))− p(πx(0))

=

∫ t=τ

t=0

d

dt
p(πx(t))dt

≥ 1

4
g20τ.

Because pn(x) = λ and ε = ‖pn − p‖∞, the above inequality implies

ε ≥ 1

2
g0τ ⇒ τ ≤ 4ε

g20
.

Thus, we obtain an upper on the time τ . Because πx(τ) ∈ Lλ,

d(x, Lλ) ≤ ‖πx(τ)− x‖
= ‖πx(τ)− πx(0)‖

≤
∫ t=τ

t=0

‖π′x(t)‖dt

≤ τ · gmax,

where gmax = supx ‖∇p(x)‖. So the upper bound on τ implies

d(x, Lλ) ≤ τ · gmax ≤
4gmax

g20
ε.

This works for every x ∈ Lλ,n so we have proved the result for the case of x ∈ Lλ,n.

The same argument also applies to the case for x ∈ Lλ by exchanging Lλ and Lλ,n. Thus, we have proved
the result for both quantities in the Hausdorff distance so the proof is completed.

Note that there are a couple of alternative approach to derive the same bound as the above theorem under
a similar condition. See the following papers for some examples

Cadre, B. (2006). Kernel estimation of density level sets. Journal of multivariate analysis, 97(4),
999-1023.
Cuevas, A., González-Manteiga, W., & Rodŕıguez-Casal, A. (2006). Plug-in estimation of general
level sets. Australian & New Zealand Journal of Statistics, 48(1), 7-19.

It is possible to construct a confidence set of the level sets. One possible way is to use the following insight.
Let tα be the 1− α quantile of Haus(L̂λ, Lλ). Then

P (Lλ ⊂ L̂λ ⊕ tα) ≥ 1− α

so the set L̂λ ⊕ tα is a 1 − α confidence set of Lλ. The following paper derives the asymptotic theory and
propose a bootstrap approach to construct a confidence set of Lλ:

Chen, Y. C., Genovese, C. R., & Wasserman, L. (2017). Density level sets: Asymptotics, infer-
ence, and visualization. Journal of the American Statistical Association, 112(520), 1684-1696.
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9.3.2 Level set by a probability mass

Instead of fixing a level λ, sometimes we would like to construct a level set such that P (Lλ) covers 1 − γ
probability. Namely, we specify 1 − γ first and the tune λ such that P (Lλ) covers exactly a probability of
1− γ.

However, sometimes we cannot find an exact level λ such that the level set covers exactly 1− γ probability.
In this case, we will find the largest level λ such that we have at least 1 − γ probability. Namely, the level
is defined as

λ(γ) = inf{λ > 0 : P (Lλ) ≥ 1− γ}.

The probability level set can be defined using the level set of density ranking, a transform quantity from the
PDF. Let

α(x) = P (x ≥ X), X ∼ p

be the probability that a new observation X has less than or equal density compared to the given point x.
With this, the level set

Γγ = {x : α(x) ≥ 1− γ}

has the property that P (Γγ) = 1− γ and Γγ = Lλ(γ).

We can estimate α(x) by

α̂(x) =
1

n

n∑
i=1

I(p̂(x) ≥ p̂(Xi)).

Under good conditions, α̂(x) will be a consistent estimator of α(x). In particular, the following theorem
shows the convergence.

Theorem 9.4 (Chen (2019)) Assume conditions in Chen (2019) and we are use the KDE as the density
estimator and p has a regular PDF. Then when h→ 0, logn

nhd+4 → 0,∫
‖α̂(x)− α(x)‖2dx = O(h4) +OP

(
log n

nhd

)
.

The smoothing bandwidth requirement is of rate of estimating Hessian matrix. We need the Hessian matrix
to be consistently estimated because of the stability of local modes.

Note that the density ranking can be applied to singular distribution (the PDF does not even exist). You
can find more details from

Chen, Y. C. (2019). Generalized cluster trees and singular measures. The Annals of Statistics,
47(4), 2174-2203.

The level set indexed by the probability mass has another formulation. It can be interpreted as the minimum
volume set. You can show that Γγ is a feasible solution of the following minimization problem

minimize Vol(A), subject to P (A) ≥ 1− γ.

When the PDF exists and is smooth, any solution to the above minimization problem is the same as Γγ
except for a set of 0 Lebesgue measure (volume).

Because the level set Γγ has the above minimum volume property, it is often used as a prediction region–given
an accuracy of 1− γ, Γγ is the best prediction region we can have in the sense that the size is minimal.
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Figure 9.3: An 1D example of cluster tree. The red tree structure illustrates how the cluster tree is con-
structed. The blow intervals at the bottom of each panel are the upper level set at each level (indicated by
the purple horizontal line).

9.4 Cluster trees

In level set clustering, a common problem is how to choose the level λ (or the probability γ) in reality.
Statistical theory and principle can only give you the stability of a level set, not the proper level to use.
Different levels lead to different clustering results.

Here is an elegant idea that allows us to examine level set clustering across different levels–cluster tree. A
cluster tree is a tree structure summarizing the evolution of the upper level sets of a function. When the
function is a PDF, the cluster tree is also called a density tree. Figure 9.3 shows an example of a 1D cluster
tree and how it is constructed.

Recall that Lλ = {x : p(x) ≥ λ} is the upper level set. Using the connected components of Lλ, we can
decompose it to

Lλ = Lλ,1 ∪ · · · ∪ Lλ,N(λ),

where N(λ) is the number of connected components in Lλ. Let {Lλ} = ∪N(λ)
k=1 {Lλ,k} be the collection of

connected components at level λ. Then the collection

T (p) = ∪λ{Lλ}

forms a tree structure, i.e, for any two elements A,B ∈ T (p) one and only one of the follow three conditions
hold

(1)A ⊂ B, (2)B ⊂ A, (3)A ∩B = ∅.

Thus, the set T (p) forms a tree structure. The cluster tree is the tree structure summarizing T (p). Figure 9.4
provides one example of a cluster tree in 2D case.

There is an interesting connection that cluster tree reveals about level set clustering and mode clustering–
the local modes correspond to the leaves of a cluster tree. So a cluster tree simultaneously display the number
of local modes of p and how regions around local modes connected with each other.

In practice, we estimate the PDF by a density function and then construct the corresponding cluster tree.
Some recent work on the cluster tree can be found in the following papers (and the references therein):

1. Chaudhuri, K., Dasgupta, S., Kpotufe, S., & Von Luxburg, U. (2014). Consistent procedures
for cluster tree estimation and pruning. IEEE Transactions on Information Theory, 60(12),
7900-7912.
2. Jisu, K. I. M., Chen, Y. C., Balakrishnan, S., Rinaldo, A., & Wasserman, L. (2016). Statistical
inference for cluster trees. In Advances in Neural Information Processing Systems (pp. 1839-
1847).
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Figure 9.4: A 2D cluster tree. The first five panels are the level sets (and the corresponding clusters) at
different levels. The last panel (bottom-right panel) shows the cluster tree. Note that in 2D or higher
dimensional cases, the vertical axis of the cluster tree no longer has a specific meaning. The Y-axis (height)
shows the density level that forms a clustering result.

3. Stuetzle, W. (2003). Estimating the cluster tree of a density by analyzing the minimal spanning
tree of a sample. Journal of classification, 20(1), 025-047.

In addition to seeing how clusters evolve, cluster tree can be used as a visualization tool for a multivariate
density function since we cannot directly see how the density function looks like.

9.4.1 Persistence

Cluster tree only shows partial information about the topology of the density function. There are other
approaches that reveals other topological information of the density function. One famous example is the
persistence diagrams formed by the collection of upper level sets. This is often studied in the field of
topological data analysis. For more details, I would highly recommend the following review paper:

Wasserman, L. (2018). Topological data analysis. Annual Review of Statistics and Its Applica-
tion, 5, 501-532.

9.5 Hierarchical clustering

The hierarchical clustering is a clustering approach that forms a hierarchical structure of linking observations.
There are generally two directions to perform a hierarchical clustering:

• Agglomerative: A bottom-up approach that we start with treating every observation as a single
cluster and start merging them according to some criterion.
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Figure 9.5: Hierarchical clustering on the old faithful dataset. The first panel shows the scatter plot of the
original data. We then use the Euclidean distance for form the distance matrix and applies hierarchical
clustering with three different linkage.

• Divisive: A top-down approach that starts with merging all observations into the same cluster and
proceeds to split it.

The divisive approach is a computationally challenging approach and often requires some heuristics. So in
what follows, we will use the agglomerative approach in performing a hierarchical clustering.

To use a hierarchical clustering, we need to choose a measure of distance (or similarity) between observations.
If observations fall within Euclidean space, L2 distance is a common choice to measure the distance between
two observations. However, sometimes other distances may have a better performance. With a distance (for
simplicity we use L2), we obtain an n× n distance matrix D whose elements

Dij = ‖Xi −Xj‖.

With the distance matrix, we merge two clusters if their distance is less than the level h and varies h to form
a tree-like structure summarizing the merging of clusters.

In addition to D, we also need a merging criterion to decide if two clusters will be merged at the distance level
h since one cluster may have several elements. The criterion converts the pairwise distance of observations
into a cluster-wise distance is called linkage.

Choice of linkage. Let A and B be two collection of observations (clusters). Here are common linkage
criteria:

• Single linkage. The single linkage merges A and B at the distance level h if

min

{
min
x∈A

d(x,B),min
x∈B

d(x,A)

}
≤ h.

Namely, as long as we can find a pair x, y such that x ∈ A and y ∈ B and ‖x− y‖ ≤ h, we merge the
two clusters. The single linkage can be viewed as the merging criterion requires the least evidence—as
long as there exists one pair, we merge them.

• Complete linkage. The complete linkage is the opposite of the single linkage–it requires the most
evidence that we merge two clusters only if every pair of distance is less than or equal to h. Namely,
we merge A and B at the distance level h if

max

{
max
x∈A

d(x,B),max
x∈B

d(x,A)

}
≤ h.
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• Average linkage. The average linkage uses the average distance between pairs of elements in the
two sets. This is also called the UPGMA (unweighted pair group method with arithmetic mean). We
merge the two clusters if

1

‖A‖‖B‖
∑

a∈A,b∈B

d(x, y) ≤ h,

where ‖A‖ denotes the number of elements in A.

• Centroid linkage. Let cA be the centroid of A and cB be the centroid of B (the definition of centroid
is user-specific; you may simply use the mean). We merge the two clusters if

d(cA, cB) ≤ h.

Having chosen the distance and the linkage, the hierarchical clustering returns a tree structure that summa-
rizing the merging of observations. This merging process is often illustrated by the dendrogram. Figure 9.5
shows the dendrogram of applying the hierarchical clustering over the old faithful dataset. When we choose
a specific distance level, we obtain the final clustering result. The dendrogram provides a quick summary of
how the clusters will be formed when we cut at a particular level.

Single linkage hierarchical clustering is related to the level set clustering in the following sense.

Theorem 9.5 Suppose we use single linkage hierarchical clustering with threshold r0 and obtain clusters
C1, · · · , CN . Let clusters D1, · · · , DM be the one from the level set clustering with a KDE and the spherical

kernel K(x) ∝ I(‖x‖ ≤ 1) and bandwidth r0/2 and the level λ ≤ 2d+1

rd0
K(0). Then for any Cj, there exists

Dk such that Cj ⊂ Dk.

Proof: WLOG, let X1, X2 belongs to the same cluster using the single linkage hierarchical clustering. This
implies that there exists a sequence of observations Xi1 , Xi2 , · · · , Xim such that

Xi1 = X1, Xim = X2, ‖Xi` −Xi`+1
‖ ≤ r0

for all ` = 1, · · · ,m− 1.

When using the level set clustering with a KDE and the spherical kernel K(x) ∝ I(‖x‖ ≤ 1) and bandwidth
r0/2, it is easy to see that for any point on the line connecting two consecutive observations x ∈ [Xi` , Xi`+1

],
the density value

p̂h(x) =
1

n(r0/2)dK(0)

n∑
i=1

I(‖x−Xi‖ ≤ r0/2)

≥ 1

n(r0/2)dK(0)

(
I(‖x−Xi`‖ ≤ r0/2) + I(‖x−Xi`+1

‖ ≤ r0/2)
)

=
2

n(r0/2)dK(0)
=

2d+1

rd0
K(0).

Thus, as long as we choose λ ≤ 2d+1

rd0
K(0), any two consecutive points will be in the same cluster under level

set clustering, which implies that X1 and X2 are in the same cluster.

This works for any pair of observations belongs to the same cluster from the single linkage hierarchical
clustering, which completes the proof.
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9.6 k-means clustering

k-means clustering is one of the most popular clustering technique. It directly clusters observations into k
groups without explicitly estimating the density function. The idea is very simple. We want to find the
k best points (called centers) such that the sum of squared distance from each observation to the nearest
center is minimized.

Formally, the k-means clustering is to solve the following optimization problem:

minimizeC:‖C‖≤kΦ̂n(C), Φ̂n(C) =
1

n

n∑
i=1

d2(Xi, C), (9.2)

where
d2(Xi, C) = min

c∈C
‖Xi − c‖2

is the distance to the nearest center. The quantity Φ̂n is also called the k-means objective function.

Although the idea is very simple, the above optimization problem is non-convex (although locally convex)
and finding an optimum is actually an NP-hard problem. A common heuristic approach to find a locally
optimal solution is the Lloyd algorithm. Before introducing the Lloyd algorithm, we first introduce the
concept of Voronoi cells.

Voronoi cells. The k-means clustering can be defined as a clustering approach using the Voronoi cells. Let
c1, · · · , ck be the centers of k-means algorithm (they can be from the population or sample version k-means).
The Voronoi cells of these centers are the partition of the entire sample space

C1, · · · ,Ck, Cj = {x : d(x, cj) ≤ d(x, c`) ∀` 6= j}.

Note that strictly speaking, this is not a partition of the space since there are some regions that two
sets overlap but the overlap region has a Lebesgue measure 0 under regular conditions. The clustering of
observations is obtained by which region that an observation Xi belongs to. Using the Voronoi cells, we can
define clusters for arbitrary k centers–we just assign cluster label of each observation to the nearest center.

Lloyd algorithm. The Lloyd algorithm is an iterative approach to solve the minimization problem in
equation (9.2). It requires an initialization of the k centers and according to these centers, the algorithm
iteratively improves the objective function until it reaches a local optimum. The algorithm works as follows.

1. We choose z
(0)
1 , · · · , z(0)k as the initial points (these points are often chosen randomly). We iterate the

following two steps until convergence.

2. Suppose that at t-th iteration, the centers are z
(t)
1 , · · · , z(t)k . These centers lead to clusters of regions

C(t)
1 , · · · ,C(t)

k .

3. We update each center

z
(t+1)
j =

∑
Xi∈C(t)

j
Xi

n
(t)
j

,

where n
(t)
j =

∑
Xi∈C(t)

j
1 is the number of observations belong to cluster C(t)

j .

This algorithm is from

Lloyd, S. (1982). Least squares quantization in PCM. IEEE transactions on information theory,
28(2), 129-137.
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The Lloyd’s algorithm has a limitation that it only finds a local optimum and is very sensitive to the choice
of the initial points. Thus, often we will re-initialize the algorithm several times and choose the clusters that
have the smallest value of the objective function.

Choice of k. Choosing k is very challenging for k-means clustering. A common idea is to use the sum of
average within cluster distance:

E(k) =

k∑
`=1

1

n`

∑
i,j∈C`

‖Xi −Xj‖2,

where C1, · · · , Ck are the clusters output from the k-means clustering algorithm and n` = ‖C`‖ is the
number of observations within cluster C`. As you can see, E(k) decreases when k increases. Under the
idealize scenario where there are K0 distinct connected components in the data, E(k) decreases rapidly
when before k > K0 when we decrease k and decreases slowly when k < K0. Thus, a heuristic approach is
to find the elbow E(k) versus k. This idea can be dated back to the following paper

Thorndike, R. L. (1953). Who belongs in the family?. Psychometrika, 18(4), 267-276.

Another more statistical approach is based on the idea of gap statistic from the following paper:

Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set
via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
63(2), 411-423.

The gap statistic is
Gap(k) = E(logE(k))− logE(k).

When the data is in d dimensional space and the data is uniformly distributed, then the expectation of
logE(k) is about

E(logE(k)) ≈ log

(
dn

12

)
− 2

d
log k + c0

for some constant c0. We choose k by maximizing the gap statistic.

k-means++. k-means++ is a method for initializing the Lloyd algorithm from the following paper:

Arthur, D., & Vassilvitskii, S. (2007, January). k-means++: The advantages of careful seeding.
In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms (pp.
1027-1035). Society for Industrial and Applied Mathematics.

The idea is very simple–suppose that we have chosen s initial points for the centers (s < k), the next initial
point should be away from the other s initial points. They propose the following approach for initializing
the Lloyd algorithm:

1. Choose the first initial point z1 randomly from one observation (with equal probability). Repeat the
following two steps until we have k initial points:

2. Suppose that we have chosen Zs = {z1, · · · , zs} initial points. Compute Ds(x) = d(x,Zs), the distance
to the nearest chosen initial points.

3. We choose the next initial point zs+1 from observations Xi with a probability of

P (zs+1 = Xi|Zs) =
D2
s(Xi)∑n

j=1D
2
s(Xj)

.
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Using the the k-means++ method for initialization, the objective function is close to the optimal objective
in the following sense. Let Ĉ++ be the centers obtained by initialization of the k-means++ method and the
Lloyd algorithm. Then Arthur and Vassilvitskii (2007) proves that

E(Φ̂n(Ĉ++)|X1, · · · , Xn) ≤ 8(log k + 2) · min
C:‖C‖≤k

Φ̂n(C).

The expectation in the above expression is for the random initialization.

Vector quantization. The early work of the k-means is mostly in signal processing. It occurs in scenarios
where people want to compress a distribution with a limited amount of budget. The k-means algorithm can
be viewed as finding the optimal k points such that the quantization error (k-means objective function) Ψ
is minimized. Thus, the k-means algorithm is also called the vector quantization. Specifically, let c1, · · · , ck
be the locations of the k centers that minimizes Ψ. Then the empirical distribution

P̂k =
1

k

k∑
`=1

δc`

is the quantized version of the underlying distribution P . There are several papers about the quality of
quantization; see, e.g.,

1. Fischer, A. (2010). Quantization and clustering with Bregman divergences. Journal of Multi-
variate Analysis, 101(9), 2207-2221.
2. Canas, G., & Rosasco, L. (2012). Learning probability measures with respect to optimal
transport metrics. In Advances in Neural Information Processing Systems (pp. 2492-2500).
3. Canas, G., Poggio, T., & Rosasco, L. (2012). Learning manifolds with k-means and k-flats.
In Advances in Neural Information Processing Systems (pp. 2465-2473).

Gaussian mixture limit. The centers of k-means can be obtained by a limiting result of a k-Gaussian
mixture model. Consider fitting a k-Gaussian mixture model that every Gaussian has the same covariance
matrix Σ = σ2Id (i.e., the correlation between two variables are 0) that is given. Let µ1, · · · , µk be the
MLE under this Gaussian mixture model. As you would expect, these centers will depends on the variance
parameter σ. When σ → 0, these k centers of Gaussians will converge to the optimal solution of the k-means.

9.6.1 Asymptotic theory

Although the k-means clustering is defined directly for observations, there exists a population version of it.
Equation (9.2) implies that a population version of the k-means problem is

minimizeC:‖C‖≤kΦ(C), Φ(C) = E(d2(X1, C)). (9.3)

It is easy to see that the the Φ̂n is a sample analogue to Φ so we call Φ the population k-mean objective.

Theorem 9.6 (Pollard (1981)) Assume that E(X2) <∞ and the minimizer of equation (9.3) C∗ is unique

(after relabeling). Let Ĉn be the sample k-means solution (minimizer of equation (9.3)). Then

Haus(Ĉn, C∗)→ 0 a.s., Φ̂n(Ĉn)→ Φ(C∗) a.s.

Theorem 9.6 shows that the sample k-means centers converge to the population k-means centers. Note that
this assumes that the number of clusters k is fixed. This result is from the following paper:
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Pollard, D. (1981). Strong consistency of k-means clustering. The Annals of Statistics, 9(1),
135-140.

Moreover, Pollard also proved an even stronger result on k-means clustering–a central limit theory of the
centers.

Theorem 9.7 (Pollard (1982)) Assume that conditions in Pollard 1982 and let Ĉn and C∗ be the sample

and population solution to the k-means problem. Then for any c ∈ C∗, there exists one and unique one ĉ ∈ Ĉn
such that √

n(ĉ− c) D→ N(0,Σ)

for some covariance matrix Σ.

This theorem is from the following paper:

Pollard, D. (1982). A central limit theorem for k-means clustering. The Annals of Probability,
10(4), 919-926.

Another line of research on the convergence of k-means clustering is to focus on the excess risk type of
error of the k-means approach as a vector quantization. The quantity Φ(C∗) can be viewed as the optimal
quantization of the distribution using k points and the difference

`(Ĉn, C∗) = Φ(Ĉn)− Φ(C∗)

can be interpreted as the excess risk of the k-mean estimator.

Theorem 9.8 (Levrard (2015)) Assume conditions in Theorem 3.1 of Levrard (2015). Then

`(Ĉn, C∗) = O

(
k3+4/d

n

)
+OP

(
k2+4/d

n

)
.

This theorem is from the following paper:

Levrard, C. (2015). Non-asymptotic bounds for vector quantization in Hilbert spaces. The
Annals of Statistics, 43(2), 592-619.

An interesting feature is that Theorem 9.8 allows the case of increasing k.

9.7 Spectral clustering

I would recommend the following paper for spectral clustering:

Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and computing, 17(4),
395-416.
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The spectral clustering is another very popular clustering method. It first converts observations into a graph
such that the nodes are the observations and edges represent the similarity between pairs of observations
and then forms a graph Laplacian to perform clustering. It directly works on similarity between points.

The first step of the spectral clustering is to construct a similarity matrix S ∈ Rn×n such that Eij represents
the similarity between Xi and Xj . Here are three common choice of the simliarity.

• ε-neighborhood. Sij = 1 whenever ‖Xi −Xj‖ ≤ ε. The resulting graph is also called the ε-neighbor
graph.

• k-NN. There are two common k-NN approaches to construct S. Both methods start with finding the
k-nearest neighbors of every observation. In the first approach (called the k-NN graph), Sij = 1 either
Xi is among the k-NN of Xj or Xj is among the k-NN of Xi. In the second approach (called the mutal
k-NN graph), Sij = 1 only if both Xi and Xj are in each other’s k-NN. The resulting graphs are called
the k-NN graphs.

• Distance approach. We define the similarity Sij = g(d(Xi, Xj)) for some distance d between Xi and
Xj and a non-increasing function g(·). A popular distance is the Gaussian kernel distance

Sij = exp

(
− 1

2σ2
‖Xi −Xj‖2

)
,

where σ is a tuning parameter. This approach often results in a fully connected graph.

With a similarity matrix S, we construct a degree matrix D that is a diagonal matrix with Dii =
∑n
j=1 Sij .

The unnormalized Laplacian is

Lun = D − S (9.4)

The unnormalized Laplacian has the following properties:

• For every vector v ∈ Rn, we have

vTLunv =
1

2

n∑
i,j=1

Sij(vi − vj)2.

• Lun is symmetric and positive semi-definite.

• The smallest eigenvalue of Lun is 0, the corresponding eigenvector is the constant one vector 1n.

• Lun has n non-negative, real-valued eigenvalues 0 = λn ≤ λn−1 ≤ · · · ≤ λ1.

A powerful feature of the unnormalized Laplacian is the following property:

Theorem 9.9 Let E ∈ {0, 1}n×n be the edge matrix such that Eij = I(Sij > 0). Suppose that the graph
G = (V,E) has k connected components denoted as V1, · · · , Vk ⊂ V . Then

• the graph Laplacian has k zero eigenvalues,

• and the eigenvector of these k eigenvalues is spanned by 1V1
, · · · , 1Vk ∈ Rn, where 1A is a binary vector

that takes 1 at the location of A and 0 otherwise.
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Theorem 9.9 states that under the idealized case, we just need to count the number of 0 eigenvalues and use
the corresponding eigenvectors to map the data into an eigenspace. Observations can be easily separated in
the eigenspace.

There are other alternatives to the unnormalized Laplacians called the normalized/symmetrized Laplacian
and random walk Laplacian:

Lsym = D−1/2LunD
−1/2 = I −D−1/2SD−1/2 (9.5)

LRW = D−1Lun = I −D−1S. (9.6)

You can easily see that LRW defines a transition probability matrix over the graph G. Here are some
properties of these two Laplacians:

• For every vector v ∈ Rn, we have

vTLsymv =
1

2

n∑
i,j=1

Sij

(
vi√
di
− vj√

dj

)2

.

• The eigenvalues of Lsym are the same as LRW and the eigenvectors have the following correspondence:
usym = D1/2uRW.

• Let (λ, u) be an eigenvalue and eigenvector pair of LRW. Then it must solves the generalized eigenvalue
problem: Lunu = λDu.

• 0 is an eigenvalue of LRW and 1n is the corresponding eigenvector. Note that by property 2, 0 is also
an eigenvalue of Lsym with eigenvector D1−/21n.

• Both Lsym and LRW are positive semi-definite and has eigenvalues 0 = λn ≤ λn−1 ≤ · · · ≤ λ1.

Note that the random walk Laplacian is introduced by Prof. Marina Meila, a faculty member at our
department, in the following paper:

Meila, M., & Shi, J. (2001). Learning segmentation by random walks. In Advances in neural
information processing systems (pp. 873-879).

The two graph Laplacian also share a similar property as the unnormalized Laplacian.

Theorem 9.10 Under the same conditions as Theorem 9.9, the same conclusion holds for both Lsym and
LRW as Theorem 9.9 and the only difference is that Lsym has eigenvector D1/21Aj for each j = 1, · · · , k.

Theorem 9.10 shows that the two graph Laplacians can also be used to cluster observations when the graph
indeed consists of several connected components. When we project observations into the eigenvectors, the
eigenvectors provide useful information about clusters in the data.

Although Theorem 9.9 and 9.10 show that the graph Laplacians are useful, in reality the graph may not
be well-separated. So we often need an additional step of clustering. So there will be an additional step of
clustering with other algorithm (e.g., k-means) after we transform the data using the eigenvectors. Figure 9.6
summarizes the procedure of spectral clustering.
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Spectral clustering algorithm.

Input: A similarity matrix S and the number of cluster k that we wish to construct.

1. Build a graph Laplacian L using any one of the above methods.

2. Compute the k eigenvectors un, · · · , un−k+1 that corresponds to the k smallest eigen-
values.

3. Construct the matrix U = [un, · · · , un−k+1] ∈ Rn×k.

4. Define a set of new observations Y1, · · · , Yn such that Yi = Ui·, the i-th row of U .

5. Perform k-means clustering to Y1, · · · , Yn to form the final clusters.

Figure 9.6: Spectral clustering algorithm.

Remark (graph cut). Spectral clustering can be interpreted as a relaxation of a graph cut problem.
Suppose that we have a partition of the nodes A1, · · · , Ak. The graph cut is defined as

cut(A1, · · · , Ak) =
1

2

k∑
i=1

S(Ai, Āi),

where
S(A,B) =

∑
i∈A,j∈B

Sij .

And there are other alternative cuts such as the ratio cut and normalized cut:

Rcut(A1, · · · , Ak) =
1

2

k∑
i=1

S(Ai, Āi)

‖Ai‖
,

Ncut(A1, · · · , Ak) =
1

2

k∑
i=1

S(Ai, Āi)

Vol(Ai)
,

Vol(Ai) =
∑
j∈Ai

Djj .

Spectral clustering with the unnormalized graph Laplacian is a relaxation of the problem of minimizing the
ratio cut Rcut and if we change to use normalized graph Laplacian, the spectral clustering is a relaxation of
minimizing the normalized cut Ncut problem.

Remark (linear smoother). So far, we have seen three different kernel functions. The smoothing kernel,
the reproducing kernels (in RKHS), and the similarity kernel (in constructing the similarity matrix S).
Interestingly, the smoothing kernel and the similarity kernel are associated in the following sense. Consider
the random walk graph Laplacian

LRW = I −D−1S,

where Sij = K(− 1
σ‖Xi−Xj‖) is constructed from a similarity kernel except Sii = 0. Suppose that now every

observation is associated with a response variable. Namely, at Xi, we also observe Yi for each i. Consider
the response vector Y = (Y1, · · · , Yn)T . Then the vector

E = LRWY
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has a very interesting interpretation. Its i-th element

Ei = [LRWY]i = Yi −
n∑
j=1

D−1ii SijYj

= Yi −
∑n
j=1 YiK(− 1

σ‖Xi −Xj‖)∑
`=1K(− 1

σ‖Xi −X`‖)
= Yi − m̂h(Xi),

where m̂h(Xi) is the kernel regression. In fact, the part D−1S describes a transition probability matrix and
can be associated with the weight matrix of a linear smoother. So the random walk Laplacian and linear
smoother are related. Here is a paper that describes this relation in a greater detail:

Ting, D., & Jordan, M. I. (2018). On nonlinear dimensionality reduction, linear smoothing and
autoencoding. arXiv preprint arXiv:1803.02432.

Remark (consistency of spectral clustering). There is the convergence theory of the spectral clustering.
The convergence is more complicated since the population version of spectral clustering is not easy to define.
But one can still prove that the graph Laplacian can be written as a linear operator and the convergence
can be defined using the convergence of spectra of an operator. See the following paper for more details:

Von Luxburg, U., Belkin, M., & Bousquet, O. (2008). Consistency of spectral clustering. The
Annals of Statistics, 555-586.

9.7.1 Graph Laplacian and Laplacian operator

One may be wondering why we call the matrix L graph Laplacian. Here is an intuitive explanation of that.
Suppose that we have observations X1, · · · , Xn that are from a uniform distribution over a region R and
we use ε-neighborhood method to construct the similarity matrix S. In this case, S induces a graph that is
known as the ε-neighborhood graph G = (V,E = S).

Now suppose that we have a function f : R 7→ R that maps any point in the support R into a real number.
Let F = (f(X1), · · · , f(Xn)) be the vector of evaluating f on each observation and let Lun = D − S be the
unnormalized graph Laplacian with D = diag(d1, · · · , dn) be the degree matrix with di =

∑
j Sij .

Define the vector W = LunF ∈ Rn. The vector W has an interesting interpretation. Consider its i-th
component:

Wi = [LunF ]i =
∑
j

Lun,ijFj = diFi −
∑
j

SijFj =
∑

j∈Nε(i)

(Fi − Fj) = −
∑

j∈Nε(i)

(Fj − Fi),

where Nε(i) = {j 6= i : ‖Xi − Xj‖ ≤ ε} is the observations in the ε-neighborhood of Xi. The difference
Fi − Fj can be viewed as a discrete approximation of the gradient ∇f(x). The equality

Wi = −
∑

j∈Nε(i)

(Fj − Fi)

behaves like integrating the change of f from Fi = f(Xi) to its neighborhood Nε(i) so it can be viewed as
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an approximation

Wi = −
∑

j∈Nε(i)

(Fj − Fi)

= −
∑

j∈Nε(i)

(f(Xj)− f(xi))

≈ −
∫
y∈B(Xi,ε)

(f(y)− f(Xi))p(y)dy,

where p(y) is the PDF that generates X1, · · · , Xn. Since we assume the observations are from a uniform
distribution of R, p(y) = ρ0 is just a constant so we obtain

Wi ≈ −ρ0
∫
y∈B(Xi,ε)

(f(y)− f(Xi))dy.

Because we integrate y over the ball B(Xi, ε), when ε → 0, we can apply Taylor expansion of f(y) around
f(Xi), which leads to

Wi ≈ −ρ0
∫
y∈B(Xi,ε)

(f(y)− f(Xi))dy

≈ −ρ0
∫
y∈B(Xi,ε)

[
(y −Xi)

T∇f(Xi) +
1

2
(y −Xi)

T∇∇f(Xi)(y −Xi) + o(‖y −Xi‖2)

]
dy

≈ −ρ0
∫
y∈B(Xi,ε)

1

2
(y −Xi)

T∇∇f(Xi)(y −Xi)dy

≈ −C0ρ0ε
3∇ · ∇f(Xi)

≈ −C0ρ0ε
34f(Xi)

where C0 is some constant and 4 = ∇ · ∇ =
∑d
j=1

∂2

∂x2 is the usual Laplacian operator. Note that the first

order term (y −Xi)
T∇f(Xi) becomes 0 after integration due to symmetry. So we obtain

[LunF ]i = Wi ∝ 4f(Xi),

which shows that the unnormalized graph Laplacian is indeed an approximation to the Laplacian operator.

In fact, it has been shown that under good conditions, Lun converges to the Laplace-Beltrami operator LLB
2,

a generalization of Laplacian operator on a Riemannian manifold. See the following two papers for more
details:

1. Hein, M., Audibert, J. Y., & Von Luxburg, U. (2005, June). From graphs to manifoldsweak and
strong pointwise consistency of graph Laplacians. In International Conference on Computational
Learning Theory (pp. 470-485). Springer, Berlin, Heidelberg.
2. Singer, A. (2006). From graph to manifold Laplacian: The convergence rate. Applied and
Computational Harmonic Analysis, 21(1), 128-134.

Here is an interesting note about the requirement on how fast ε→ 0. In the first paper, the authors proved
the convergence with the choice of ε satisfying nεd+4 →∞, which is the rate of estimating a Hessian matrix.
However, in the second paper (and most of the last works on the convergence of a graph Laplacian), the
author showed that we only need nεd+2 →∞–we only need the rate of consistently estimating the gradient,

2see https://en.wikipedia.org/wiki/Laplace%E2%80%93Beltrami_operator

https://en.wikipedia.org/wiki/Laplace%E2%80%93Beltrami_operator
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not the Hessian. This is a very peculiar phenomenon since the Laplacian is an operator involving second
derivatives so it is reasonable that the requirement should be with respect to the Hessian estimation (first
paper). But the second paper proved that we actually only need the gradient being consistently estimated.
One possible explanation is that in the graph Laplacian, what operationally being used is the difference
f(Xj) − f(Xi) and this is a discrete approximation to the gradient. So we only need a consistent estimate
of the gradient.

Now we discuss a very interesting property about the graph Laplacian. In the graph Laplacian, we see that
the ‘dimensions’ of the kernel vector, i.e., the dimension of {v : Lunv = 0} represents the number of connected
components of the corresponding graph. This reveals an interesting relation between the topological feature
(connected components) and the Laplacian. One may be wondering that if we view the graph Laplacian as
an approximation to the Laplacian operator, will there be a connection between a Laplacian operator and
the topology?

The answer is yes. In algebraic topology, the Laplacian operator and the topology (formally it will be
homology/cohomology groups) are associated via the Hodge theory3. Roughly speaking, one result from
the Hodge theory is that the dimension of the kernel space of a Laplacian operator (i.e., the dimension of
{f : 4f = 0}) equals to the dimension of the corresponding homology group. Note that any function f with
4f = 0 is called a harmonic function. The connected components are the simplest topological structure (it
is the 0-th order homology/cohomology group) and the dimension is the number of connected components4.
In fact, what actually happens is the followings. The graph Laplacian is a discrete approximation of the
Laplace-Beltrami operator. The Laplace-Beltrami operator is the same as the Laplace-de Rham operator
when applied to a scalar function f . The Hodge theory links the dimension of the kernel space of the
Laplace-de Rham operator to the dimension of the 0-th order cohomology group. And this is why in the
graph Laplacian, we see that the dimension of {v : Lunv = 0} equals to the number of connected components.

Here is an extremely simple example of showing how dimension of {f : 4f = 0} is associated with the
number of connected components. Consider univariate functions f : R 7→ R, where the region R is the
union of two intervals R = [0, 1] ∪ [2, 3]. Apparently, there are two connected components. In this case,

the Laplacian operator is 4 = d2

dx2 when acting on f in the interior of R and on the boundary of R, it will
reduces to taking gradient toward the interior region of R. Thus, in the interior of the first region [0, 1], we
have 4f(x) = 0⇒ f(x) = a+ bx. On the boundary (f(x) = 0 or 1), we have b = 0. So in the interval [0, 1],
the set {f : 4f = 0} is any constant function. Similar argument applies to the second interval [2, 3], the
function 4f = 0 has to be a constant function within [2, 3]. Thus, the set

{f : 4f = 0} = {f(x) = a1I(0 ≤ x ≤ 1) + a2I(2 ≤ x ≤ 3) : a1, a2 ∈ R},

which has a dimension of 2, the same as the number of connected components.

The use of Hodge theory to graph Laplacian can be seen in the following paper:

Berry, T., & Sauer, T. (2019). Consistent manifold representation for topological data analysis.
Foundations of Data Science, 1(1), 1-38.

Note that when X1, · · · , Xn are from a PDF p that is not uniformly distributed over R, the unnormalized
graph Laplacian converges to the operator 4p which is

4pf(x) = p(x)εd+2(4f(x)− 2[∇ log p(x)]T∇f(x)).

So the graph Laplacian and the Laplace-Beltrami/de Rham operator is slightly different. The following
paper mentioned the above result:

3https://en.wikipedia.org/wiki/Hodge_theory
4 Note that there are different levels of Laplacian operator that corresponds to different homology groups.

https://en.wikipedia.org/wiki/Hodge_theory
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Ting, D., Huang, L., & Jordan, M. I. (2010, June). An analysis of the convergence of graph
Laplacians. In Proceedings of the 27th International Conference on International Conference on
Machine Learning (pp. 1079-1086). Omnipress.

In fact, the study of graph Laplacian is called the spectral graph theory, which is a branch in applied
mathematics and computer science and it has been studied for decades. If you are interested in this topic, I
would recommend the following book

Chung, F. R., & Graham, F. C. (1997). Spectral graph theory (No. 92). American Mathematical
Soc..

9.8 Model-based clustering

Model-based clustering uses a mixture of parametric models to form clusters. In model-based clustering,
observations are viewed as IID from a mixture distribution

p(x; θ) =

G∑
`=1

π`f(x; θ`),

where πs` are the weight of component `. One famous example is the Gaussian mixture model:

p(x;µ,Σ) =

G∑
`=1

π`φ(x;µ`,Σ`),

where (µ`,Σ`) is the mean and covariance matrix of the `-the component.

The model-based clustering has a nice property that every cluster is summarized by the underlying parameter
and the distribution. So it is easy to interpret the clusters.

Given observations X1, · · · , Xn, the parameters in a mixture model is often estimated by the MLE. In this
case, the likelihood function is

L(θ|X1, · · · , Xn) =

n∏
i=1

G∑
`=1

π`f(Xi; θ`).

There are three key issues that we need to address to use the MLE.

• Identifiability. Without additional constraints, the model may not be identifiable. For instance,
when using the Gaussian mixture, swapping the sets of parameters between two components leads to
the same distribution. A common approach to deal with this is to add an additional ordering constraint
so that parameters are identifiable (e.g., µ1 < µ2 < µ3 < · · · ).

• No-closed form of MLE. In general, a mixture model will not a closed-form MLE so we need a
numerical procedure to optimize the likelihood function. A common approach is the EM algorithm5

but you can use a gradient ascent algorithm to find the MLE as well. However, a challenge of both EM
algorithm and a gradient ascent method is that the likelihood function often has several local modes–
both EM and the gradient method will stuck at the local modes. So we often have to re-initialize the
algorithm several times to increase the chance of getting the MLE, although there is no guarantee of
that. See,

5See http://faculty.washington.edu/yenchic/18A_stat516/Lec8_EM_SGD.pdf

http://faculty.washington.edu/yenchic/18A_stat516/Lec8_EM_SGD.pdf
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Chen, Y. C. (2023). Statistical inference with local optima. Journal of the American Statis-
tical Association, 118(543), 1940-1952.

• Selection of the number of clusters. Similar to the k-means and spectral clustering, we need
to choose the number of mixtures in a model-based clustering. A principled approach is to choose it
via the BIC although other information criteria are also applicable. See the following paper for more
details:

Fraley, Chris, and Adrian E. Raftery. “How many clusters? Which clustering method?
Answers via model-based cluster analysis.” The computer journal 41, no. 8 (1998): 578-588.

A review on model-based clustering and mixture model can be found in

Melnykov, Volodymyr, and Ranjan Maitra. ‘Finite mixture models and model-based clustering.”
Statistics Surveys 4 (2010): 80-116.

In fact, many pioneer work in the model-based clustering is done by our faculty member Prof. Adrian
Raftery. I would highly recommend the following classical papers:

1. Banfield, Jeffrey D., and Adrian E. Raftery. “Model-based Gaussian and non-Gaussian clus-
tering.” Biometrics (1993): 803-821.
2. Fraley, Chris, and Adrian E. Raftery. “Model-based clustering, discriminant analysis, and
density estimation.” Journal of the American statistical Association 97, no. 458 (2002): 611-631.

If you are interested in this topic, here is a new book about model-based clustering:

Bouveyron, Charles, Gilles Celeux, T. Brendan Murphy, and Adrian E. Raftery. Model-Based
Clustering and Classification for Data Science: With Applications in R. Vol. 50. Cambridge
University Press, 2019.
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