
STAT 535: Statistical Machine Learning Autumn 2024

Lecture 7: Nonparametric Regression
Instructor: Yen-Chi Chen

Reference: Section 6 of All of Nonparametric Statistics by Larry Wasserman.

7.1 Introduction

Let (X1, Y1), · · · , (Xn, Yn) be a bivariate random sample. In the regression analysis, we are often interested
in the regression function

m(x) = E(Y |X = x).

Sometimes, we will write

Yi = m(Xi) + εi,

where εi is a mean 0 noise. The simple linear regression model is to assume that m(x) = β0 + β1x, where β0

and β1 are the intercept and slope parameter. In the first part of the lecture, we will talk about methods that
direct estimate the regression function m(x) without imposing any parametric form of m(x). This approach
is called the nonparametric regression.

7.2 Regressogram (Binning)

We start with a very simple but extremely popular method. This method is called regressogram but people
often call it binning approach. You can view it as

regressogram = regression + histogram.

For simplicity, we assume that the covariates Xi’s are from a distribution over [0, 1].

Similar to the histogram, we first choose M , the number of bins. Then we partition the interval [0, 1] into
M equal-width bins:

B1 =

[
0,

1

M

)
, B2 =

[
1

M
,

2

M

)
, · · · , BM−1 =

[
M − 2

M
,
M − 1

M

)
, BM =

[
M − 1

M
, 1

]
.

When x ∈ B`, we estimate m(x) by

m̂M (x) =

∑n
i=1 YiI(Xi ∈ B`)∑n
i=1 I(Xi ∈ B`)

= average of the responses whose covariates is in the same bin as x.

Theorem 7.1 Assume that the PDF of X p(x) ≥ p0 > 0 for all x ∈ [0, 1] and E(Y 2|X = x) <∞. Then

bias(m̂M (x)) = O

(
1

M

)
, Var(m̂M (x)) = O

(
M

n

)
.
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Proof: Suppose that x belongs to bin B`. Let µM (x) = E(YiI(Xi ∈ B`)) and qM (x) = E(I(Xi ∈ B`)) and
let µ(x) = m(x) · p(x).

Using m̂M (x) = µ̂M (x)
q̂M (x) , where

µ̂M (x) =
1

n

n∑
i=1

YiI(Xi ∈ B`), q̂M (x) =

n∑
i=1

I(Xi ∈ B`),

the difference can be decomposed into

m̂M (x)−m(x) =
µ̂M (x)

q̂M (x)
− µM (x)

qM (x)︸ ︷︷ ︸
∼Variance

+
µM (x)

qM (x)
− µ(x)

p(x)︸ ︷︷ ︸
bias

.

Bias. Since we have M bins, the width of each bin is 1/M . Thus, it is easy to see that M · qM (x) can be
viewed as a density histogram estimator of p(x). Therefore, by the theory of histogram, the bias will be
p(x)−M · qM (x) = O(1/M). Similarly, one can show that M ·µM (x) can be viewed as an estimator of µ(x)
and µ(x) −M · µM (x) = O(1/M). Using the fact that 1

1+ε = 1 − ε + O(ε2) when ε → 0, we conclude that
the bias part

µM (x)

qM (x)
− µ(x)

p(x)
=
MµM (x)

MqM (x)
− µ(x)

p(x)

=
µ(x) +O(1/M)

p(x) +O(1/M)
− µ(x)

p(x)

=
O(1/M)

p(x)
+
µ(x)

p2(x)
O(1/M)

= O(1/M).

Variance. For the variance part, it is easy to see that E(µ̂M (x)) = µM (x) and E(q̂M (x)) = qM (x). Also, it
is easy to see that the variance (using the same derivation as histogram),

Var(µ̂M (x)) = O

(
1

Mn

)
, Var(q̂M (x)) = O

(
1

Mn

)
.

Thus,

Var(Mµ̂M (x)) = O

(
M

n

)
, Var(Mq̂M (x)) = O

(
M

n

)
.

Let ∆µ(x) = Mµ̂M (x)−MµM (x) = OP (
√
M/n) and ∆q(x) = Mq̂M (x)−MqM (x) = OP (

√
M/n). Then

µ̂M (x)

q̂M (x)
− µM (x)

qM (x)
=
Mµ̂M (x)

Mq̂M (x)
− MµM (x)

MqM (x)

=
MµM (x) + ∆µ(x)

MqM (x) + ∆q(x)
− MµM (x)

MqM (x)

=
MµM (x) + ∆µ(x)

MqM (x)
− MµM (x)

M2q2
M (x)

∆q(x)− MµM (x)

MqM (x)
+ smaller order terms

≈ 1

MqM (x)
∆µ(x)− MµM (x)

M2q2
M (x)

∆q(x)

≈ 1

p(x)
∆µ(x)− µ(x)

p2(x)
∆q(x).
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Note that the last ≈ sign is due to the bias analysis. Thus, the variance of µ̂M (x)
q̂M (x) equals the variance of

1
p(x)∆µ(x)− µ(x)

p2(x)∆q(x), which is of rate O(M/n).

Therefore, the MSE and MISE will be at rate

MSE = O

(
1

M2

)
+O

(
M

n

)
, MISE = O

(
1

M2

)
+O

(
M

n

)
,

leading to the optimal number of bins M∗ � n1/3 and the optimal convergence rate O(n−2/3), the same as
the histogram.

Similar to the histogram, the regressogram has a slower convergence rate compared to many other com-
petitors (we will introduce several other candidates). However, they (histogram and regressogram) are still
very popular because the construction of an estimator is very simple and intuitive; practitioners with little
mathematical training can easily master these approaches.

Note that if we assume that the response variable Y is bounded, you can construct a similar concentration
bound as the case of histogram and obtain the rate under the L∞ metric.

7.3 Kernel Regression

Given a point x0, assume that we are interested in the value m(x0). Here is a simple method to estimate
that value. When m(x0) is smooth, an observation Xi ≈ x0 implies m(Xi) ≈ m(x0). Thus, the response
value Yi = m(Xi) + εi ≈ m(x0) + εi. Using this observation, to reduce the noise εi, we can use the sample
average. Thus, an estimator of m(x0) is to take the average of those responses whose covariate are close to
x0.

To make it more concrete, let h > 0 be a threshold. The above procedure suggests to use

m̂loc(x0) =

∑
i:|Xi−x0|≤h Yi

nh(x0)
=

∑n
i=1 YiI(|Xi − x0| ≤ h)∑n
i=1 I(|Xi − x0| ≤ h)

, (7.1)

where nh(x0) is the number of observations where the covariate X : |Xi − x0| ≤ h. This estimator, m̂loc,
is called the local average estimator. Indeed, to estimate m(x) at any given point x, we are using a local
average as an estimator.

The local average estimator can be rewritten as

m̂loc(x0) =

∑n
i=1 YiI(|Xi − x0| ≤ h)∑n
i=1 I(|Xi − x0| ≤ h)

=

n∑
i=1

I(|Xi − x0| ≤ h)∑n
`=1 I(|X` − x0| ≤ h)

· Yi =

n∑
i=1

Wi(x0)Yi, (7.2)

where

Wi(x0) =
I(|Xi − x0| ≤ h)∑n
`=1 I(|X` − x0| ≤ h)

(7.3)

is a weight for each observation. Note that
∑n
i=1Wi(x0) = 1 and Wi(x0) > 0 for all i = 1, · · · , n; this implies

that Wi(x0)’s are indeed weights. Equation (7.2) shows that the local average estimator can be written as
a weighted average estimator so the i-th weight Wi(x0) determines the contribution of response Yi to the
estimator m̂loc(x0).

In constructing the local average estimator, we are placing a hard-thresholding on the neighboring points–
those within a distance h are given equal weight but those outside the threshold h will be ignored completely.
This hard-thresholding leads to an estimator that is not continuous.
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To avoid problem, we consider another construction of the weights. Ideally, we want to give more weights
to those observations that are close to x0 and we want to have a weight that is ‘smooth’. The Gaussian
function G(x) = 1√

2π
e−x

2/2 seems to be a good candidate. We now use the Gaussian function to construct

an estimator. We first construct the weight

WG
i (x0) =

G
(
x0−Xi

h

)∑n
`=1G

(
x0−X`

h

) .
The quantity h > 0 is the similar quantity to the threshold in the local average but now it acts as the
smoothing bandwidth of the Gaussian. After constructing the weight, our new estimator is

m̂G(x0) =

n∑
i=1

WG
i (x0)Yi =

n∑
i=1

G
(
x0−Xi

h

)∑n
`=1G

(
x0−X`

h

)Yi =

∑n
i=1 YiG

(
x0−Xi

h

)∑n
`=1G

(
x0−X`

h

) . (7.4)

This new estimator has a weight that changes more smoothly than the local average and is smooth as we
desire.

Observing from equation (7.1) and (7.4), one may notice that these local estimators are all of a similar form:

m̂h(x0) =

∑n
i=1 YiK

(
x0−Xi

h

)∑n
`=1K

(
x0−X`

h

) =

n∑
i=1

WK
i (x0)Yi, WK

i (x0) =
K
(
x0−Xi

h

)∑n
`=1K

(
x0−X`

h

) , (7.5)

where K is some function. When K is a Gaussian, we obtain estimator (7.4); when K is a uniform over
[−1, 1], we obtain the local average (7.1). The estimator in equation (7.5) is called the kernel regression
estimator or Nadaraya-Watson estimator1. The function K plays a similar role as the kernel function in
the KDE and thus it is also called the kernel function. And the quantity h > 0 is similar to the smoothing
bandwidth in the KDE so it is also called the smoothing bandwidth.

7.3.1 Theory

Now we study some statistical properties of the estimator m̂h. Suppose that we are interested in m(x) over
a compact interval K ⊂ R.

Theorem 7.2 Assume that

• infx∈K p(x) > 0 and p(x) has bounded second derivatives.

• E(Y 2|X = x) <∞ and m(x) has bounded third derivatives.

Then

bias(m̂h(x)) =
h2

2
µK

(
m′′(x) + 2

m′(x)p′(x)

p(x)

)
+ o(h2)

Var(m̂h(x)) =
σ2 · σ2

K

p(x)
· 1

nh
+ o

(
1

nh

)
,

where µK =
∫
x2K(x)dx is the same constant of the kernel function as in the KDE and σ2 = Var(εi) is the

error of the regression model and σ2
K =

∫
K2(x)dx is a constant of the kernel function (the same as in the

KDE).

1https://en.wikipedia.org/wiki/Kernel_regression

https://en.wikipedia.org/wiki/Kernel_regression
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The bias has two components: a curvature component m′′(x) and a design component m′(x)p′(x)
p(x) . The

curvature component is similar to the one in the KDE; when the regression function curved a lot, kernel
smoothing will smooth out the structure, introducing some bias. The second component, also known as the
design bias, is a new component compare to the bias in the KDE. This component depends on the density
of covariate p(x). Note that in some studies, we can choose the values of covariates so the density p(x) is
also called the design (this is why it is known as the design bias).

The expression of variance tells us possible sources of variability. First, the variance increases when σ2

increases. This makes perfect sense because σ2 is the noise level. When the noise level is large, we expect
the estimation error increases. Second, the density of covariate p(x) is inversely related to the variance. This
is also very reasonable because when p(x) is large, there tends to be more data points around x, increasing
the size of sample that we are averaging from. Last, the convergence rate is O

(
1
nh

)
, which is the same as

the KDE.

MSE and MISE. Using the expression of bias and variance, the MSE at point x is

MSE(m̂h(x)) =
h4

4
µ2
K

(
m′′(x) + 2

m′(x)p′(x)

p(x)

)2

+
σ2 · σ2

K

p(x)
· 1

nh
+ o(h4) + o

(
1

nh

)
and the MISE is

MISE(m̂h) =
h4

4
µ2
K

∫ (
m′′(x) + 2

m′(x)p′(x)

p(x)

)2

dx+
σ2 · σ2

K

nh

∫
1

p(x)
dx+ o(h4) + o

(
1

nh

)
. (7.6)

Optimizing the major components in equation (7.6) (the AMISE), we obtain the optimal value of the smooth-
ing bandwidth

hopt = C∗ · n−1/5,

where C∗ is a constant depending on p and K.

7.3.2 Cross-Validation

The smoothing bandwidth h has to be chosen to construct our estimator. The theory suggests that we
choose it to be hopt = C∗ · n−1/5 but this involves an unknown quantity C∗. So in practice, how can we
choose it? A good news is that–unlike the density estimation problem, there is a simple approach to choose
h: the cross-validation (CV)2.

Before we discuss the details of CV, we first introduce the predictive risk. Let m̂h be the kernel regression
using the n observations. Let Xn+1, Yn+1 be a new observation (from the same population). We define the
predictive risk of our regression estimator as

R(h) = E (Yn+1 − m̂h(Xn+1))
2
. (7.7)

Namely, the quantity R(h) is the expected square error of predicting the next observation using the kernel
regression.

CV is a collection of approaches that tries to estimate the predictive risk R(h) using a data-splitting approach.
A classical version of CV is the leave-one out cross-validation (LOO-CV):

R̂(h) =
1

n

n∑
i=1

(Yi − m̂h,−i(Xi))
2,

2https://en.wikipedia.org/wiki/Cross-validation_(statistics)

https://en.wikipedia.org/wiki/Cross-validation_(statistics)
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where m̂h,−i(Xi) is the kernel regression using all observations except i-th observation Xi, Yi. Namely, LOO-
CV leaves each observation out once at a time and use the remaining observations to train the estimator and
evaluate the quality of the estimator using the left out observation. The main reasoning of such a procedure
is to make sure we do not use the data twice.

Another popular version of CV is the K-fold CV. We randomly split the data into K equal size groups. Each
time we leave out one group and use the other K-1 groups to construct our estimator. Then we use the left
out group to evaluate the risk. Repeat this procedure many times and take the average as the risk estimator
R̂(h).

K-fold Cross-Validation.

1. Randomly split D = {(X1, Y1), · · · , (Xn, Yn)} into K groups: D1, · · · ,DK .

2. For `-th group, construct the estimator m̂
(`)
h using all the data except `-th group.

3. Evaluate the error by

R̂(`)(h) =
1

n`

∑
(Xi,Yi)∈D`

(Yi − m̂(`)
h (Xi))

2

4. Compute the average error

R̂(h) =
1

K

K∑
`=1

R̂(`)(h).

5. Repeat the above 4 steps N times, leading to N average errors

R̂∗(1)(h), · · · , R̂∗(N)(h).

6. Estimate R(h) via

R̂∗(h) =
1

N

N∑
`=1

R̂∗(`)(h).

The CV provides a simple approach of estimating the predictive errors. To choose the smoothing bandwidth,
we pick

h∗ = argminh>0R̂(h).

In practice, we apply the CV to various values of h and choose the one with the minimal predictive risk.
Generally, we will plot R̂(h) versus h and determine if the minimal value makes sense. Sometimes there
might be no well-defined minimum value (like a flat region).

Why do we want to split the data into two parts and construct the estimator on one part and evaluate the
risk on the other part? The main reason is to obtain a reliable estimate of the predictive risk. If we use the
same set of data to construct our estimator and evaluate the errors, the estimated predictive risk will be
smaller than the actual predictive risk. To see this, consider the local average estimator with h ≈ 0. When
h is very very small, m̂loc(Xi) = Yi because the neighborhood only contain this single observation. In this
case, the estimated predictive risk will be

∑n
i=1(Yi − Yi)2 = 0. This is related to the so-called overfitting3.

The cross-validation is a very popular and common approach to choose a tuning parameter. Other tuning

3https://en.wikipedia.org/wiki/Overfitting

https://en.wikipedia.org/wiki/Overfitting
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parameters such as the number of basis N and the penalization λ (will be introduced in a minute) can all
be chosen by minimizing the cross-validation error.

7.3.3 Uncertainty and Confidence Intervals

How do we assess the quality of our estimator m̂h(x)?

We can use the bootstrap to do it. In this case, empirical bootstrap, residual bootstrap, and wild bootstrap all
can be applied. But note that each of them relies on slightly different assumptions. Let (X∗1 , Y

∗
1 ), · · · , (X∗n, Y ∗n )

be the bootstrap sample. Applying the bootstrap sample to equation (7.5), we obtain a bootstrap kernel
regression, denoted as m̂∗h. Now repeat the bootstrap procedure B times, this yields

m̂
∗(1)
h , · · · , m̂∗(B)

h ,

B bootstrap kernel regression estimator. Then we can estimate the variance of m̂h(x) by the sample variance

V̂arB(m̂h(x)) =
1

B − 1

B∑
`=1

(
m̂
∗(`)
h (x)− ¯̂m

∗
h,B(x)

)
, ¯̂m

∗
h,B(x) =

1

B

B∑
`=1

m̂
∗(`)
h (x).

Similarly, we can estimate the MSE as what we did in Lecture 5 and 6. However, when using the bootstrap
to estimate the uncertainty, one has to be very careful because when h is either too small or too large, the
bootstrap estimate may fail to converge its target.

When we choose h = O(n−1/5), the bootstrap estimate of the variance is consistent but the bootstrap
estimate of the MSE might not be consistent. The main reason is: it is easier for the bootstrap to estimate
the variance than the bias. Thus, when we choose h in such a way, both bias and the variance contribute a
lot to the MSE so we cannot ignore the bias. However, in this case, the bootstrap cannot estimate the bias
consistently so the estimate of the MSE is not consistent.

Confidence interval. To construct a confidence interval of m(x), we will use the following property of the
kernel regression.

Theorem 7.3 Assume the conditions in Theorem 7.2. Then

√
nh (m̂h(x)− E(m̂h(x)))

D→ N

(
0,
σ2 · σ2

K

p(x)

)
m̂h(x)− E(m̂h(x)

Var(m̂h(x))

D→ N(0, 1).

The variance depends on three quantities: σ2, σ2
K , and p(x). The quantity σ2

K is known because it is just a
characteristic of the kernel function. The density of covariates p(x) can be estimated using a KDE. So what
remains unknown is the noise level σ2. A good news is: we can estimate it using the residuals. Recall that
residuals are

ei = Yi − Ŷi = Yi − m̂h(Xi).

When m̂h ≈ m, the residual becomes an approximation to the noise εi. The quantity σ2 = Var(ε1) so we
can use the sample variance of the residuals to estimate it (note that the average of residuals is 0):

σ̂2 =
1

n− 2ν + ν̃

n∑
i=1

e2
i , (7.8)
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where ν, ν̃ are quantities acting as degree-of-freedom in which we will explain later. Thus, a 1−α CI can be
constructed using

m̂h(x)± z1−α/2
σ̂ · σK√
p̂n(x)

,

where p̂n(x) is the KDE of the covariates.

However, note that this confidence interval is a pointwise confidence interval, i.e., we are controlling the
type-1 error at a given point x. Also, this confidence interval has a limitation that the bias may decrease
our coverage– the construction shows that our confidence interval has the right coverage for E(m̂h(x)), not
the true regression function m(x). Thus, we often need to undersmooth the data a bit to obtain a proper
coverage. One possible solution to this problem is to use the debiased estimator; see the following paper for
more information

Cheng, G., & Chen, Y. C. (2019). Nonparametric inference via bootstrapping the debiased
estimator. Electronic Journal of Statistics, 13(1), 2194-2256.

7.3.4 Relation to KDE

Many theoretical results of the KDE apply to the nonparametric regression. For instance, we can generalize
the MISE into other types of error measurement between m̂h and m. We can also use derivatives of m̂h as
estimators of the corresponding derivatives of m. Moreover, when we have a multivariate covariate, we can
use either a radial basis kernel or a product kernel to generalize the kernel regression to multivariate case.

The KDE and the kernel regression has a very interesting relationship. Using the given bivariate random
sample (X1, Y1), · · · , (Xn, Yn), we can estimate the joint PDF p(x, y) as

p̂n(x, y) =
1

nh2

n∑
i=1

K

(
Xi − x
h

)
K

(
Yi − y
h

)
.

This joint density estimator also leads to a marginal density estimator of X:

p̂n(x) =

∫
p̂n(x, y)dy =

1

nh

n∑
i=1

K

(
Xi − x
h

)
.

Theorem 7.4 The conditional expectation of Y given X = x implied by the 2D KDE is the same as the
kernel regression estimator.

Proof: Recalled that the regression function is the conditional expectation

m(x) = E(Y |X = x) =

∫
yp(y|x)dy =

∫
y
p(x, y)

p(x)
dy =

∫
yp(x, y)dy

p(x)
.

Replacing p(x, y) and p(x) by their corresponding estimators p̂n(x, y) and p̂n(x), we obtain an estimate of
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m(x) as

m̂n(x) =

∫
yp̂n(x, y)dy

p̂n(x)

=

∫
y 1
nh2

∑n
i=1K

(
Xi−x
h

)
K
(
Yi−y
h

)
dy

1
nh

∑n
i=1K

(
Xi−x
h

)
=

∑n
i=1K

(
Xi−x
h

)
·
∫
y ·K

(
Yi−y
h

)
dy
h∑n

i=1K
(
Xi−x
h

)
=

∑n
i=1K

(
Xi−x
h

)
Yi∑n

i=1K
(
Xi−x
h

)
=

∑n
i=1 YiK

(
Xi−x
h

)∑n
i=1K

(
Xi−x
h

)
= m̂h(x).

Note that when K(x) is symmetric,
∫
y ·K

(
Yi−y
h

)
dy
h = Yi.

Namely, we may understand the kernel regression as an estimator inverting the KDE of the joint PDF into
a regression estimator.

7.4 Local Polynomial Regression

The kernel regression estimator has a limitation that it suffers a lot from the boundary bias, i.e., when x
is close to the support of p(x), the bias will be very large. To address this issue, we may use a modified
estimator called the local polynomial regression (LPR).

LPR starts with the following localized least squared estimation problem. Suppose that we want to estimate
the regression function m(x) at point x. Consider fitting the following local linear function

LPR(β0, β1;x) =

n∑
i=1

K

(
x−Xi

h

)
(Yi − β0 − β1(Xi − x))2,

where K(·) is the usual kernel function. This is fitting a weighted linear regression where the observations

close to x are given higher weights. Let β̂0(x), β̂1(x) be the minimizer of LPR(β0, β1;x). Then the estimator

β̂0(x) is called the local linear smoother and is a consistent estimator of m(x), the regression function.

There is a closed-form of the local linear smoother. Define the diagonal matrix

W (x) ∈ Rn×n = Diag

(
K

(
x−X1

h

)
, · · · ,K

(
x−Xn

h

))
and the matrix X ∈ Rn×2

X = (1n, X − x1n),

where X is a column vector of X1, · · · , Xn and 1n is a column vector of 1’s. Let Y be the column vector of
Y1, · · · , Yn. Using the derivation as linear regression, you can show that the local linear smoother β̂0(x) is

β̂0(x) = eT1 (XTW (x)X)−1XTW (x)Y,
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where eT1 = (1, 0) is a 1× 2 vector. We write m̂LL(x) = β̂0(x).

We can generalize the local linear smoother to higher order polynomials. For instance, we can fit it to the
q-th order polynomial

LPR(β0, β1, · · · , βq;x) =

n∑
i=1

K

(
x−Xi

h

)
(Yi − β0 − β1(Xi − x)− · · ·βq(Xi − x)q)2.

Fitting a higher order polynomial is often used to estimate the derivative of the regression function. In fact,
if we want to consistently estimate m(β), the β−the derivative of m(x), then we will fit a (β + 1)-th order
polynomial. Using the same derivation as the local linear smoother, you can obtain a closed-form of the
estimator.

Theorem 7.5 (Fan (1992)) Suppose that Yi = m(Xi) + σ(Xi)εi and Xi ∈ K with E(εi) = 0,Var(εi) = 1
and X1, · · · , Xn ∼ p and we are interested in a point x in the interior of K. Assume the followings:

• p(x) > 0.

• p, m′′, and σ are continuous in the neighborhood of x.

• h→ 0, nh→∞.

Then the local linear smoother satisfies

bias(m̂LL(x)) =
h2

2
m′′(x)µK + o(h2), Var(m̂LL(x)) =

σ2(x)

p(x)nh
σ2
K + o

(
1

nh

)
.

Namely, the local linear smoother does not suffer from the design bias. The above theorem is from the
following paper:

Fan, J. (1992). Design-adaptive nonparametric regression. Journal of the American statistical
Association, 87(420), 998-1004.

7.5 Linear Smoother

Now we are going to introduce a very important notion called linear smoother. Linear smoother is a collection
of many regression estimators that have nice properties. The linear smoother is an estimator of the regression
function in the form that

m̂(x) =

n∑
i=1

`i(x)Yi, (7.9)

where `i(x) is some function depending on X1, · · · , Xn but not on any of Y1, · · · , Yn.

The residual for the j-th observation can be written as

ej = Yj − m̂(Xj) = Yj −
n∑
i=1

`i(Xj)Yi.
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Let e = (e1, · · · , en)T be the vector of residuals and define an n× n matrix L as Lij = `j(Xi):

L =


`1(X1) `2(X1) `3(X1) · · · `n(X1)
`1(X2) `2(X2) `3(X2) · · · `n(X2)

...
...

...
...

...
`1(Xn) `2(Xn) `3(Xn) · · · `n(Xn)


Then the predicted vector Ŷ = (Ŷ1, · · · , Ŷn)T = LY , where Y = (Y1, · · · , Yn)T is the vector of observed Yi’s

and e = Y− Ŷ = Y− LY = (I − L)Y.

Example: Linear Regression. For the linear regression, let X denotes the data matrix (first column is all

value 1 and second column is X1, · · · , Xn). We know that β̂ = (XTX)−1XTY and Ŷ = Xβ̂ = X(XTX)−1XTY.
This implies that the matrix L is

L = X(XTX)−1XT ,

which is also the projection matrix in linear regression. Thus, the linear regression is a linear smoother.

Example: Regressogram. The regressogram is also a linear smoother. Let B1, · · · , Bm be the bins of the
covariate and define B(x) be the bin such that x belongs to. Then

`j(x) =
I(Xj ∈ B(x))∑n
i=1 I(Xi ∈ B(x))

.

Example: Kernel Regression. As you may expect, the kernel regression is also a linear smoother. Recall
from equation (7.5)

m̂h(x0) =

∑n
i=1 YiK

(
x0−Xi

h

)∑n
`=1K

(
x0−X`

h

) =

n∑
i=1

WK
i (x0)Yi, WK

i (x0) =
K
(
x0−Xi

h

)∑n
`=1K

(
x0−X`

h

)
so

`j(x) =
K
(
x−Xj

h

)
∑n
`=1K

(
x−X`

h

) .
Example: Local Linear Smoother. You can easily show that the LPR is a linear smoother. In particular,
the linear smoother has the vector `(x) = (`1(x), · · · , `n(x))T as

`(x) = eT1 (XTW (x)X)−1XTW (x).

7.5.1 Variance of Linear Smoother

The linear smoother has an unbiased estimator of the underlying noise level σ2 under the fixed design, i.e.,
the covariates are non-random. Recall that then noise level σ2 = Var(εi).

We need to use two tricks about variance and covariance matrix. For a matrix A and a random variable X,

Cov(AX) = ACov(X)AT .

Thus, the covariance matrix of the residual vector

Cov(e) = Cov((I − L)Y) = (I − L)Cov(Y)(I − LT ).



7-12 Lecture 7: Nonparametric Regression

Because Y1, · · · , Yn are IID, Cov(Y) = σ2In, where In is the n× n identity matrix. This implies

Cov(e) = (I − L)Cov(Y)(I − LT ) = σ2(I − L− LT + LLT ).

Now taking matrix trace in both side,

Tr(Cov(e)) =

n∑
i=1

Var(ei) = σ2Tr(I − L− LT + LLT ) = σ2(n− ν − ν + ν̃),

where ν = Tr(L) and ν̃ = Tr(LLT ). Because the residual square is approximately Var(ei), we have

n∑
i=1

e2
i ≈

n∑
i=1

Var(ei) = σ2(n− 2ν + ν̃).

Thus, we can estimate σ2 by

σ̂2 =
1

n− 2ν + ν̃

n∑
i=1

e2
i , (7.10)

which is what we did in equation (7.8). The quantity ν is called the degree of freedom. In the linear regression
case, ν = ν̃ = p + 1, the number of covariates so the variance estimator σ̂2 = 1

n−p−1

∑n
i=1 e

2
i . If you have

learned the variance estimator of a linear regression, you should be familiar with this estimator.

The degree of freedom ν is easy to interpret in the linear regression. And the power of equation (7.10) is that
it works for every linear smoother as long as the errors εi’s are IID. So it shows how we can define effective
degree of freedom for other complicated regression estimator.

7.6 Basis Approach

Recall that we observes pairs (X1, Y1), · · · , (Xn, Yn) and we are interested in the regression function m(x) =
E(Y1|X1 = x). In this section, we will make the following two assumptions:

• Yi = m(Xi) + σ · εi, where εi ∼ N(0, 1) is the noise. Moreover, ε1, · · · , εn are IID.

• Xi = i
n . Namely, the covariates consist a uniform grid over [0, 1] and is non-random.

Similar to the basis approach for the density estimation problem where we approximate the density function
by the sum of coefficients and basis, we will approximate the regression function by a basis:

m(x) =

∞∑
j=1

θjφj(x),

where {φ1, φ2, · · · } is an orthonormal basis and θ1, θ2, · · · are the coefficients.

Again, here we consider the cosine basis:

φ1(x) = 1, φj(x) =
√

2 cos((j − 1)πx), j = 2, 3, · · · .

As is done in the density estimation, we will use only the top M basis to form our estimator. Namely,

m̂M (x) =

M∑
j=1

θ̂jφj(x),
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for some coefficient estimates θ̂1, · · · . Again, M is the tuning parameter in our estimator.

Here is a simple choice of the coefficient estimates that we will be using:

θ̂j =
1

n

n∑
i=1

Yiφj(Xi) =
1

n

n∑
i=1

Yiφj

(
i

n

)
.

To determine the tuning parameter M , we analyze the MISE. We start with analyzing the bias and variance
of θ̂j .

7.6.1 Asymptotic theory

Asymptotic normality. Note that the estimator can be rewritten as

m̂M (x) =
M∑
j=1

θ̂jφj(x)

=

M∑
j=1

1

n

n∑
i=1

Yiφj

(
i

n

)
φj(x)

=
1

n

n∑
i=1

Yi

M∑
j=1

φj

(
i

n

)
φj(x).

Thus, for M being fixed, we have

√
n (m̂M (x)− E(m̂M (x)))

D→ N(0, σ2
M )

for some σ2
M . Note that later our analysis will demonstrate

E(m̂M (x)) =

M∑
j=1

θjφj(x), σ2
M = σ2

M∑
j=1

φ2
j (x).

Bias.

bias(θ̂j) = E(θ̂j)− θj

= E

(
1

n

n∑
i=1

Yiφj

(
i

n

)
|Xi =

i

n

)
− θj

=
1

n

n∑
i=1

E
(
Yi|Xi =

i

n

)
φj

(
i

n

)
− θj

=
1

n

n∑
i=1

m

(
i

n

)
φj

(
i

n

)
− θj

=
1

n

n∑
i=1

m

(
i

n

)
φj

(
i

n

)
−
∫ 1

0

m(x)φj(x)dx.

Namely, the bias is the difference between actual integration and a discretized version of integration. We
know that when n is large, the two integrations are almost the same so we can ignore the bias. Thus, we
will write

bias(θ̂j) = 0
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for simplicity.

Variance.

Var(θ̂j) = Var

 1

n

n∑
i=1

(
m

(
i

n

)
+ σ · εi

)
︸ ︷︷ ︸

=Yi

φj

(
i

n

)
=

1

n2

n∑
i=1

φ2
j

(
i

n

)
Var (εi)σ

2

=
σ2

n2

n∑
i=1

φ2
j

(
i

n

)
.

Note that 1
n

∑n
i=1 φ

2
j

(
i
n

)
≈
∫ 1

0
φ2
j (x)dx = 1. For simplicity, we just write

Var(θ̂j) =
σ2

n
.

MISE. To analyze the MISE, we first note that the bias of m̂M (x) is

bias(m̂M (x)) = E(m̂M (x))−m(x) =

M∑
j=1

θjφj(x)−
∞∑
j=1

θjφj(x) =

∞∑
j=M+1

θjφj(x).

This further implies that the integrated sqaured bias∫ 1

0

bias2(m̂M (x))dx =

∫ 1

0

∞∑
j=M+1

θjφj(x)

∞∑
`=M+1

θ`φ`(x)dx

=

∞∑
j=M+1

θj

∞∑
`=M+1

θ`

∫ 1

0

φj(x)φ`(x)dx︸ ︷︷ ︸
=I(j=`)

=

∞∑
j=M+1

θ2
j .

Again, if we assume that m satisfies
∫ 1

0
|m′′(x)|2dx <∞, we have

∞∑
j=M+1

θ2
j = O(M−4).

Now we turn to the analysis of variance.

Var(m̂M (x)) = Var

 M∑
j=1

θ̂jφj(x)


=

M∑
j=1

Var(θ̂j)φ
2
j (x) +

M∑
j 6=k

Cov(θ̂j , θ̂k)φj(x)φk(x)

=
σ2

n

M∑
j=1

φ2
j (x) +

M∑
j 6=k

Cov(θ̂j , θ̂k)φj(x)φk(x).
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After integration,
∫ 1

0
φj(x)φk(x)dx = 0 so the integrated variance is

∫ 1

0

Var(m̂M (x))dx =
σ2

n

M∑
j=1

∫ 1

0

φ2
j (x)dx =

σ2M

n
= O

(
M

n

)
.

Recall that the MISE is just the sum of integrated bias and integrated variance, we obtain

MISE(m̂M ) =

∫ 1

0

bias2(m̂M (x))dx+

∫ 1

0

Var(m̂M (x))dx = O(M−4) +O

(
M

n

)
.

Thus, the optimal choice is

M∗ � n1/5.

7.6.2 Basis approach as a linear smoother

The basis estimator is another linear smoother. To see this, we use the follow expansion:

m̂M (x) =

M∑
j=1

θ̂jφj(x)

=

M∑
j=1

1

n

n∑
i=1

Yiφj(Xi)φj(x)

=

n∑
i=1

 M∑
j=1

1

n
φj(Xi)φj(x)

Yi

=

n∑
i=1

`i(x)Yi,

where `i(x) =
∑M
j=1

1
nφj(Xi)φj(x).

Recall that from the linear smoother theory, we can estimate σ2 using the residuals and the degree of freedom:

σ̂2 =
1

n− 2ν + ν̃

n∑
i=1

e2
i ,

where ei = Ŷi − Yi = m̂M (Xi)− Yi and ν, ν̃ are the degree of freedoms (see the previous lecture note).

With this variance estimator and the fact that Var(m̂M (x)) = σ2

n

∑M
j=1 φ

2
j (x) and the asymptotic normality,

we can construct a confidence interval (band) of m using

m̂M (x)± z1−α/2
σ̂2

n

M∑
j=1

φ2
j (x).

Note that this confidence interval is valid for E(m̂M (x)) =
∑M
j=1 θjφj(x), not the actual m(x). The difference

between them is the bias of our estimator.
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7.6.3 Least square approach for basis

An alternative approach to estimate θj is from the least square method. Given M basis coefficients, we are
approximating

Yi ≈
M∑
j=1

θjφj(Xi).

With this, we estimate θ by

θ̂LS = argminθ
1

n

n∑
i=1

Yi − M∑
j=1

θjφj(Xi)

2

. (7.11)

You may have noticed that the above form looks like linear regression. Indeed, is can be written as a linear
model. Let θ = (θ1, · · · , θM )T be the parameter vector and Φ ∈ Rn×M be the ‘design’ matrix such that

Φij = φj(Xi)

and Y = (Y1, · · · , Yn)T . Then the least square estimator in equation (7.11) can be written as

θ̂LS = argminθ
1

n
‖Y− Φθ‖22, (7.12)

which leads to a closed-form solution
θ̂LS = (ΦTΦ)−1ΦTY.

Under the least square method with M basis coefficients, there are effectively M parameters. Thus, we do
need M to be smaller than the sample size but this is a condition that is easily satisfied.

The least square approach has a benefit that you can easily combine it with penalization method because it
is essentially a linear model problem. This is particularly useful when there are more than one covariate.

7.6.4 Multivariate case

When there are more than one covariates, i.e., x ∈ Rd, we need to use a multivariate basis. A simple
approach is to use a product basis. Consider d = 2 case, we then use the basis

φ`1,`2(x1, x2) = φ`1(x1)φ`2(x2).

Clearly, this leads to an orthonormal basis as long as the univariate basis is orthonormal. With this, we can
easily generalize this into d dimensional problem.

Curse of dimensionality. However, when d is not small, this approach quickly run into the curse of
dimensionality. To see this, suppose we use M basis coefficients for each coordinate. This will ensure the
bias is of the order O(M−4) under 2-Soblev space. However, since we are using a product basis and there
are d coordinates, there will be a total of Md coefficients. Thus, the variance will be of the rate O(Md/n),
which leads to the optimal MISE

O(n−
4

4+d ),

the same as the kernel regression but we suffer from the curse of dimensionality again.

Regularization. In the multivariate case, the least square approach is often preferred because we can use
penalization. The least square problem in equation (7.11) remains the same but the coefficients will be a
long vector of length Md, which can easily exceed the sample size n. Thus, L1 or L2 regularization is often
applied in this case to obtain a feasible estimate.
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7.7 Regression Tree

In this section, we assume that the covariate may have multiple dimensions, i.e., x = (x1, · · · , xd). And our
data are (X1, Y1), · · · , (Xn, Yn) ∼ P for some CDF P . Again, we are interested in the regression function
m(x) = E(Y1|X1 = x).

Regression tree constructs an estimator of the form:

m(x) =

M∑
`=1

c`I(x ∈ R`),

where R` is some rectangle partition of the space of covariates.

Here is an example of a regression tree and its splits. In this example, there are two covariates (namely,
d = 2) and we have 3 regions R1, R2, R3:

R1 = {(x1, x2) : x1 < 10, x2 < 5}, R2 = {(x1, x2) : x1 < 10, x2 ≥ 5}, R3 = {(x1, x2) : x1 ≥ 10}.

x1

x2

R1 R2

R3

< 10 ≥ 10

< 5 ≥ 5

x1

x2

R3

R1

R2

A regression tree estimator will predict the same value of the response Y within the same area of the covariate.
Namely, m(x) will be the same when x is within the same area.

To use a regression tree, there are 2M quantities to be determined: the regions R1, · · · , RM and the predicted
values c1, · · · , cM . When R1, · · · , RM are given, c1, · · · , cM can be simply estimated by the average within
each region, i.e.,

ĉ` =

∑n
i=1 YiI(Xi ∈ R`)∑n
i=1 I(Xi ∈ R`)

.

Thus, the difficult part is the determination of R1, · · · , RM .

Unfortunately, there is no simple closed form solution to these regions. We only have a procedure for
computing it. Here is what we will do in practice. Let Xij be the j-th coordinate of the i-th observation
(Xi).
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1. For a given j, we define

Ra(j, s) = {xj : xj < s}, Rb(j, s) = {xj : xj ≥ s}.

2. Find ca and cb that minimizes ∑
Xi∈Ra

(Yi − ca)2,
∑
Xi∈Rb

(Yi − cb)2,

respectively.

3. Compute the score

S(j, s) =
∑

Xi∈Ra

(Yi − ca)2 +
∑
Xi∈Rb

(Yi − cb)2.

4. Change s and repeat the same calculation until we find the minimizer of S(j, s), denoted the minimal
score as S∗(j).

5. Compute the score S∗(j) for j = 1, · · · , d.

6. Pick the dimension (coordinate) and the corresponding split point s that has the minimal score S∗(j).
Partition the space into two parts according to this split.

7. Repeat the above procedure for each partition until certain stopping criterion is satisfied.

Using the above procedure, we will eventually end up with a collection of rectangle partitions R̂1, · · · , R̂M .
Then the final estimator is

m̂(x) =

M∑
`=1

ĉ`I(x ∈ R̂`).

For the stopping criterion, sometimes people will pick the number of M so as long as we obtain M regions,
the splitting procedure will stop. However, such a choice M is rather arbitrary. A popular alternative is to
top the criterion based on minimizing some score that balances the fitting quality and the complexity of the
tree. For instance, we may stop the criterion if the following score is no longer decreasing:

Cλ,n(M) =
1

n

n∑
i=1

(Yi − m̂(Xi))
2 + λM,

where λ > 0 is a tuning parameter that determines the ‘penalty’ for having a complex tree. In the next
lecture, we will talk more about this penalty type tuning parameter.

Cross-validation. The tuning parameter How to choose the tuning parameter λ? There is a simple
approach called the cross-validation4 that can compute a good choice of this quantity. Not only λ, other
tuning parameters such as the number of basis M , the smoothing bandwidth h, the bin size b, can be chosen
using the cross-validation.

Remark.

• Interpreation. Regression tree has a powerful feature that it is easy to interpret. Even without
much training, a practitioner can use the output from a regression tree very easily. A limitation of
the regression tree is that it partitions the space of covariates into rectangle regions, which may be
unrealistic for the actual regression model.

4https://en.wikipedia.org/wiki/Cross-validation_(statistics)

https://en.wikipedia.org/wiki/Cross-validation_(statistics)
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• MARS (multivariate adaptive regression splines). The regression tree has another limitation
that it predicts the same value within the same region. This creates a jump on the boundary of
two consecutive regions. There is a modified regression tree called MARS (multivariate adaptive
regression splines) that allows a continuous (and possibly smooth) changes over two regions. See
https://en.wikipedia.org/wiki/Multivariate_adaptive_regression_splines.

7.8 Penalized regression

In the regression tree, we talk about the case that we want to select the number of leaves M based on the
following criterion:

Cλ,n(M) =
1

n

n∑
i=1

(Yi − m̂(Xi))
2

︸ ︷︷ ︸
fitting to the data

+ λM︸︷︷︸
penalty on the complexity

. (7.13)

It turns out that this type of criterion is very general in regression analysis because we want to avoid the
problem of overfitting.

The overfitting means that you fit a too complex model to the data so that although the fitted curve is close
to most of the observations, the actual prediction is very bad. For instance, the following picture shows the
fitted result using a smoothing/cubic spline (here the quantity spar is related to λ):

This data is generated from a sine function plus a small noise. When λ is too small (orange curve), we fit a
very complicated model to the data, which does not capture the right structure. On the other hand, when
λ is too large (green curve), we fit a too simple model (a straight line), which is also bad in predicting the
actual outcome. When λ is too small, it is called overfitting (orange curve) whereas when λ is too large,
it is called underfitting (green curve). In fact, overfitting is similar to undersmoothing and underfitting is
similar to oversmoothing. It regression analysis, people prefer to use overfitting and underfitting to describe
the outcome and in density estimation, people prefer to use undersmoothing and oversmoothing.

Finding a regression estimator using a criterion with a fitting to the data plus a penalty on the complexity
is called a penalized regression. In the case of regression tree, let

MTree = {all possible regression trees}

be the collection of all possible regression trees. We can rewrite equation (7.13) as

m̂Tree = argmin
m∈MTree

1

n

n∑
i=1

(Yi −m(Xi))
2 + Pλ(m),

https://en.wikipedia.org/wiki/Multivariate_adaptive_regression_splines
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where Pλ(m) = λ×number of regions in m. Thus, with the penalty on the number of regions, the regression
tree is a penalized regression approach.

For any penalized regression approach, there is an abstract expression for them:

m̂ = argmin
m∈M

1

n

n∑
i=1

(Yi −m(Xi))
2 + Pλ(m), (7.14)

whereM is a collection of regression estimators and Pλ(m) is the amount of penalty imposed for a regression
estimator m ∈ M and λ is a tuning parameter that determines the amount of penalty. The penalized
regression always have a fitting part (e.g., 1

n

∑n
i=1(Yi−m(Xi))

2) and a penalized part (also called regularized
part) Pλ(m). The fitting part makes sure the model fits the data well while the penalized part guarantees
that the model is not too complex. Thus, the penalized regression often leads to a simple model with a good
fitting to the data.

7.9 Spline

Smoothing spline is a famous example in penalized regression methods. Here we consider the case of uni-
variate regression (i.e., the covariate X is univariate or equivalently, d = 1) and focus on the region where
the covariates belongs to [0, 1]. Namely, our data is (X1, Y1), · · · , (Xn, Yn) with Xi ∈ [0, 1] ⊂ R for each i.

LetM2 denotes the collection of all univariate functions with second derivative on [0, 1]. The cubic (smooth-
ing) spline finds an estimator

m̂ = argmin
m∈M2

1

n

n∑
i=1

(Yi −m(Xi))
2 + λ

∫ 1

0

|m′′(x)|2dx. (7.15)

In the cubic spline the penalty function is λ
∫ 1

0
|m′′(x)|2dx, which imposes restriction on the smoothness –

the curve m(x) cannot change too drastically otherwise the second derivatives will be large. Thus, the cubic
spline leads to a smooth curve but fits to the data well.

Why the estimator m̂ is called a cubic spline? This is because it turns out that m̂ is a piecewise polynomial
function (spline) with degree of 3. Namely, there exists knots τ1 < · · · < τK such that for x ∈ (τk, τk+1),

m̂(x) = γ0,k + γ1,kx+ γ2,kx
2 + γ3,kx

3,

for some γ0,k, · · · , γ3,k with restriction that m̂(x) has continuous second derivatives at each knot. In the case
of cubic spline, it turns out that the knots are just data points.

The representation of a cubic spline is often done using some basis function. Here we will introduce a simple
basis called the truncated power basis. Let X(1) < X(2) < · · · < X(n) be the ordered statistics of X1, · · · , Xn.
In the cubic spline, the knots are

τ1 = X(1), τ2 = X(2), · · · , τn = X(n).

The truncated power basis uses a collection of functions

h1(x) = 1, h2(x) = x, h3(x) = x2, h4(x) = x3,

and
hj(x) = (x− τj−4)3

+, j = 5, 6, · · · , n+ 4,
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where (x)+ = max{x, 0}. Then the estimator m̂ can be written as

m̂(x) =

n+4∑
j=1

β̂jhj(x),

for some properly chosen β̂j .

How do we compute β̂1, · · · , β̂n+4? They should be chosen using equation (7.15). Here how we will compute
it. Define an n× (n+ 4) matrix H such that

Hij = hj(Xi)

and an (n+ 4)× (n+ 4) matrix Ω with

Ωij =

∫ 1

0

h′′i (x)h′′j (x)dx.

In this case, we define m(x) =
∑n+4
j=1 βjhj(x) so the criterion in the right-hand side of (7.15) becomes

1

n

n∑
i=1

(Yi −m(Xi))
2 + λ

∫ 1

0

|m′′(x)|2dx

=
1

n

n∑
i=1

Yi − n+4∑
j=1

βjhj(Xi)

2

+ λ

∫ 1

0

n+4∑
j=1

βjhj(x)

(n+4∑
`=1

β`h`(x)

)
dx

= ‖Y−Hβ‖2 + λβTΩβ

= Rn(β)

where Y = (Y1, · · · , Yn) and β = (β1, · · · , βn+4). Thus,

β̂ = argminβRn(β) = (HTH + λΩ)−1HTY.

Given a point x, let H(x) = (h1(x), h2(x), · · · , hn+4(x)) be an (n+4)-dimensional vector. Then the predicted
value m̂(x) has a simple form:

m̂(x) = HT (x)β̂ = HT (x)(HTH + λΩ)−1HTY =

n∑
i=1

`i(x)Yi,

where
`i(x) = HT (x)(HTH + λΩ)−1HT ei,

with ei = (0, 0, · · · , 0, 1︸︷︷︸
i-th coordinate

, 0, · · · , 0) is the unit vector in the i-th coordinate. Therefore, again the

cubic spline is a linear smoother.

Note that when the sample size n is large, the spline estimator behaves like a kernel regression in the sense
that

`i(x) ≈ 1

p(Xi)h(Xi)
K

(
Xi − x
h(Xi)

)
and

h(x) =

(
λ

np(x)

)1/4

, K(x) =
1

2
exp

(
− |x|√

2

)
sin

(
|x|√

2
+
π

4

)
.

This is formally stated in the following paper:
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Silverman, B. W. (1984). Spline smoothing: the equivalent variable kernel method. The Annals
of Statistics, 12(3), 898-916.

Remark.

• Regression spline. In the case where we use the spline basis to do regression but without a penalty
and use fewer number of knots (and we allow the knots to be at non data points), the resulting
estimator is called a regression spline. Namely, a regression spline is an estimator of the form m̂(x) =∑M
j=1 β̂jhj(x), where β̂1, · · · , β̂M are determined by minimizing

1

n

n∑
i=1

Yi − M∑
j=1

βjhj(Xi)

2

.

Using our notations, the regression spline can be written as

m̂(x) = HT (x)β̂ = HT (x)(HTH)−1HTY.

• B-spline basis. There are other basis that can be used in constructing a spline estimator. One of
the most famous basis is the B-spline basis. This basis is defined through a recursive way so we will
not go to the details here. If you are interested in, you can check https://cran.r-project.org/

web/packages/crs/vignettes/spline_primer.pdf. The advantage of using a B-spline basis is the
computation.

• M-th order spline. There are higher order spline. If we modify the optimization criterion to

1

n

n∑
i=1

(Yi −m(Xi))
2 + λ

∫ 1

0

|m(β)(x)|2dx,

where m(β) denotes the β-th derivative, then the estimator is called a (β + 1)-th order spline. As you
may expect, we can construct a truncated power basis using polynomials up to the order of β + 1.
Namely, we will use 1, x, x2, · · · , xβ+1 and knots to construct the basis.

7.10 Additive models

All nonparametric regression suffers from the curse of dimensionality; namely, when the number of covariates
d is large, the convergence rate could be extremely slow. For instance, in the kernel regression, the optimal

rate under a standard smoothness (2-Hölder) condition is OP

(
n−

4
4+d

)
. When d is greater than 6, this rate

is very slow.

To deal with this problem, a common solution is the additive model. Namely, we assume that the regression
model

E(Y |X = x) ≡ m(x) = µ0 + µ1(x1) + · · ·+ µd(xd) (7.16)

with the condition that

E(mj(Xj)) =

∫
mj(xj)pj(xj)dxj = 0, j = 1, 2, · · · , d (7.17)

to avoid identification problem. Note that pj(xj) is the marginal PDF of Xj . This is called the additive
model.

Here we will introduce three common methods for estimating the additive model.

https://cran.r-project.org/web/packages/crs/vignettes/spline_primer.pdf
https://cran.r-project.org/web/packages/crs/vignettes/spline_primer.pdf
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7.10.1 Direct approach

From equations (7.16) and (7.17), we immediately have the following result:

E(m(x1, X2, · · · , Xd)) = m0 + µ1(x1) +

d∑
j=2

E(µj(Xj)) = m0 + µ1(x1).

The same result holds for any µj(xj). Note that m0 = E(Y ) can be estimated by the simple sample mean
Ȳn. Thus, all we need is a multivariate regression estimator m̂(x) and then construct the estimator

µ̂1(x1) = −Ȳn +
1

n

n∑
i=1

m̂(x1, Xi,2, · · · , Xi,d).

A similar idea can be applied to other m̂j(xj).

However, this idea may not give an estimator with a fast convergence rate because we are still estimating
the full-dimensional regression model m̂. To obtain a fast rate, we consider a ‘partial’ local polynomial
regression. Let

(
α̂1(x), β̂1(x)

)
= argminα,β

n∑
i=1

(Yi − α− β(Xi1 − x1))2K

(
Xi1 − x1

h

) d∏
j 6=1

K

(
Xij − xj

b

)
,

where h, b are smoothing bandwidth that may not necessarily be the same. Note that the above local linear
model is linear only in x1 but the kernel (localization) is on all variables. The constant term α̂1(x) is an
estimator of the regression model. To obtain the estimator µ̂1(x1), we average out other variables:

µ̂1(x1) =
1

n

n∑
i=1

α̂1(x1, Xi2, · · · , Xid). (7.18)

We can apply the same idea to other coordinates. It can be shown that estimator in equation (7.18) has a

convergence rate O(h2) + OP

(√
1
nh

)
, which can recover the convergence rate to n−4/5; see the following

paper5:

Fan, J., Härdle, W., & Mammen, E. (1998). Direct estimation of low-dimensional components
in additive models. The Annals of Statistics, 26(3), 943-971.

We provide a high-level derivation on the convergence rate in Section 7.10.4.

7.10.2 Least square approach

A second approach to the additive model is the least square method. The high-level idea is that we want to
construct estimators µ̂1, · · · , µ̂d from the minimizing the following criterion

n∑
i=1

Yi − d∑
j=1

µj(Xij)

2

.

5 A caveat is that we still need nhbd−1 →∞ and b/h→ 0. To obtain the optimal rate h � n−1/5, we need d < 5, so there
is still a restriction on the dimension.



7-24 Lecture 7: Nonparametric Regression

While this minimization could be challenge, we may restrict our model to a particular form such as the
orthonormal basis or spline (with penalization on the smoothness) to make it easier.

Suppose that each Xj ∈ [0, 1]. Let {φ`(z) : ` = 1, · · · , } be an orthonormal basis (e.g., cosine basis). We
then consider M basis functions φ1(z), · · · , φM (z) and approximate each function

µj(xj) ≈
M∑
`=1

θj`φ`(xj).

All we need is to estimate the coefficients θ ∈ Rd×M . Under the least-square criterion, we may estimate the
coefficients by

θ̂ = argminθ

n∑
i=1

Yi − d∑
j=1

M∑
`=1

θj` · φ`(Xij)

2

.

The estimator

µ̂j(xj) =

M∑
`=1

θ̂j` · φ`(xj).

Under the regular smoothness (2-Soblev), the bias will be O(M−2) and the variance is O(Md/n), so the
optimal rate will be O(d · n−4/5) with M � n1/5, which does not suffer too much from the curse of dimen-
sionality.

The above method has a limitation that the asymptotic distribution is difficult to characterize. To resolve
this problem, people recommend to perform an additional step that for each j, we compute a pseudo-outcome

Ŷij = Yi − Ȳn −
∑
k 6=j

µ̂k(Xik)

by leaving out the j-th coordinate. Then we use a marginal model of regressing Ŷij against Xij such as a
kernel regression:

µ̃j(xj) =

∑n
i=1K

(
Xij−xj

h

)
Ŷij∑n

i=1K
(
Xij−xj

h

) .

The estimator µ̃j(xj) has a nice asymptotic distribution (asymptotically normal).

See the following papers for the use of this idea

1. Wang, L., & Yang, L. (2007). Spline-backfitted kernel smoothing of nonlinear additive autore-
gression model.
2. Horowitz, J. L., & Mammen, E. (2004). Nonparametric estimation of an additive model with
a link function.

7.10.3 Backfitting approach

The backfitting is perhaps the most popular method for the additive model. Note that the additive model
in equation (7.16) can be written as

Y = µ0 + µ1(X1) + · · ·+ µd(Xd) + ε.
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Now we take conditional expectation E(·|Xj = xj) in both sides, leading to

E(Y |Xj = xj) = µ0 + µj(xj) +
∑
k 6=j

E(µk(Xk)|Xj = xj).

By rearrangements and using the fact that µ0 = E(Y ),

µj(xj) = E(Y |Xj = xj)− E(Y )−
∑
k 6=j

E(µk(Xk)|Xj = xj)

= E(Y |Xj = xj)− E(Y )−
∑
k 6=j

∫
µk(xk)p(xk|xj)dxk.

(7.19)

Equation (7.19) is the famous backfitting equation.

The function E(Y |Xj = xj) can be easily estimated by any marginal nonparametric regression model and
E(Y ) can be estimated by the simple sample mean Ȳn. Thus, a good estimator m̂uj(xj) should satisfies the
following empirical equation

µ̂j(xj) = m̂j(xj)− Ȳn −
∑
k 6=j

∫
µ̂k(xk)p̂(xk|xj)dxk, (7.20)

where m̂j(xj) is an estimator of the marginal model E(Y |Xj = xj) and p̂(xk|xj) is the conditional PDF
estimator. Our goal is to find estimators solving equation (7.20).

Numerically, the backfitting method is the following iterative procedure:

1. Start with initial estimates
µ̂

(0)
j (xj), j = 1, · · · , d.

2. For t = 1, · · · , do the following until a stopping criterion is met:

(a) For j = 1, · · · , d, do:

µ̂
(t)
j (xj) = m̂j(xj)− Ȳn −

∑
k<j

∫
µ̂

(t)
k (xk)p̂(xk|xj)dxk +

∑
k>j

µ̂
(t−1)
k (xk)p̂(xk|xj)dxk.

Namely, we sequentially update the estimator µ̂j according to equation (7.20).

Theoretical properties of the backfitting method can be found in the following paper:

Mammen, E., Linton, O., & Nielsen, J. (1999). The existence and asymptotic properties of a
backfitting projection algorithm under weak conditions. The Annals of Statistics, 27(5), 1443-
1490.

A very common conditional PDF estimator is the KDE:

p̂(xk|xj) =

∑n
i=1K

(
Xik−xk

h

)
K
(
Xij−xj

h

)
h ·
∑n
i=1K

(
Xij−xj

h

) .

Note that we may use a kernel CDF approach to replace the PDF estimator in equation (7.20) in the sense

that p̂(xk|xj)dxk can be replaced by dP̂ (xk|xj), where

P̂ (xk|xj) =

∑n
i=1 I(Xik ≤ xk)K

(
Xij−xj

h

)
∑n
i=1K

(
Xij−xj

h

) .
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With this, ∫
µ̂k(xk)dP̂ (xk|xj) =

n∑
i=1

Wji(xj) · µ̂k(Xik),

where Wji(xj) ≥ 0,
∑n
i=1Wji(xj) = 1, and

Wji(xj) =
K
(
Xij−xj

h

)
∑n
i=1K

(
Xij−xj

h

)
which is the kernel weight of j-th coordinate for each observation. Thus, backfitting equation can be reex-
pressed as

µ̂j(xj) = m̂j(xj)− Ȳn −
∑
k 6=j

n∑
i=1

Wij(xj) · µ̂k(Xik).

7.10.4 A high-level idea of the rate in the direct approach

Here we illustrate the high-level idea on how the direct approach in Section 7.10.1 in the additive model can
improve the convergence rate. The original work in [FHM1998] is on local polynomial regression and the
derivation is a lot more involved. To simplify the problem, we use the kernel regression as an example.

Suppose X ∈ R2 and let

m̂(x) =

∑n
i=1 YiK

(
Xi1−x1

h1

)
K
(
Xi2−x2

h2

)
∑n
i=1K

(
Xi1−x1

h1

)
K
(
Xi2−x2

h2

)
be the kernel regression estimator. When using the direct approach, the estimator of the first component
µ1(x1) will be

µ̂1(x1) = −Ȳn +
1

n

n∑
i=1

m̂(x1, Xi,2) = −Ȳn +

∫
m̂(x1, x2)dP̂ (x2),

where P̂ (x2) = 1
n

∑n
i=1 I(Xi2 ≤ x2) is the empirical distribution.

Clearly, the convergence rate of µ̂1(x1) is dominated by the rate in the second term 1
n

∑n
i=1 m̂(x1, Xi,2). So

we focus on deriving its rate.

Using the fact that the denominator of m̂(x) is the 2-D KDE, we have the following approximation of the
kernel regression:

m̂(x) =

∑n
i=1 YiK

(
Xi1−x1

h1

)
K
(
Xi2−x2

h2

)
∑n
i=1K

(
Xi1−x1

h1

)
K
(
Xi2−x2

h2

)
=

1
nh1h2

∑n
i=1 YiK

(
Xi1−x1

h1

)
K
(
Xi2−x2

h2

)
1

nh1h2

∑n
i=1K

(
Xi1−x1

h1

)
K
(
Xi2−x2

h2

)
=

Rn(x1, x2)

p̂h1,h2
(x1, x2)

≈ Rn(x1, x2)

p(x1, x2)
− R̄(x1, x2)

p(x1, x2)

p̂h1,h2
(x1, x2)− p(x1, x2)

p(x1, x2)
,
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where Rn(x1, x2) = 1
nh1h2

∑n
i=1 YiK

(
Xi1−x1

h1

)
K
(
Xi2−x2

h2

)
and R̄(x1, x2) =

∫
yp(y, x1, x2)dy is the asymp-

totic limit of Rn and p(x1, x2) is the joint PDF and ph1,h2
(x1, x2) is the 2-D KDE.

Applying this into µ̂1(x1), we obtain

µ̂1(x1) =

∫
m̂(x1, x2)dP̂ (x2)

≈
∫
Rn(x1, x2)

p(x1, x2)
dP̂ (x2)︸ ︷︷ ︸

(I)

−
∫
R̄(x1, x2)

p(x1, x2)

p̂h1,h2(x1, x2)− p(x1, x2)

p(x1, x2)
dP̂ (x2)︸ ︷︷ ︸

(II)

.

Clearly, the bias in both (I) and (II) will be O(h2
1 +h2

2). So we now focus on the variance/stochastic variation
in both terms.

Variance in (I). A direct calculation shows that

(I) =

∫
Rn(x1, x2)

p(x1, x2)
dP̂ (x2)

=
1

nh1h2

n∑
i=1

YiK

(
Xi1 − x1

h1

)∫
K

(
Xi2 − x2

h2

)
/p(x1, x2)dP̂ (x2)

=
1

nh1

n∑
i=1

YiK

(
Xi1 − x1

h1

)
1

nh2

n∑
j=1

K

(
Xi2 −Xj2

h2

)
/p(x1, Xj2).

The quantity 1
nh2

∑n
j=1K

(
Xi2−Xj2

h2

)
/p(x1, Xj2) is essentially a 1D weighted KDE centered at Xi2 with a

weight 1
p(x1,Xj2) and asymptotically,

1

nh2

n∑
j=1

K

(
Xi2 −Xj2

h2

)
/p(x1, Xj2) =

p(Xi2)

p(x1, Xi2)
+O(h2

2) +OP

(√
1

nh2

)
≈ 1

p(x1|Xi2)
.

Thus,

(I) ≈ 1

nh1

n∑
i=1

Yi
p(x1|Xi2)

K

(
Xi1 − x1

h1

)
.

Clearly, the variance of (I) will be of the order of O( 1
nh1

), which is the desired result.

Variance in (II). The variance of the second term can be derived from essentially the same approach. We
now focus only on p̂h1,h2(x1, x2) since the other quantity is non-random.

(II ′) =

∫
R̄(x1, x2)

p(x1, x2)

p̂h1,h2
(x1, x2)

p(x1, x2)
dP̂ (x2)

=
1

nh1h2

n∑
i=1

K

(
Xi1 − x1

h1

)∫
R̄(x1, x2)

p2(x1, x2)
K

(
Xi2 − x2

h2

)
dP̂ (x2)

=
1

nh1

n∑
i=1

K

(
Xi1 − x1

h1

)
1

nh2

n∑
j=1

R̄(x1, Xj2)

p2(x1, Xj2)
K

(
Xi2 −Xj2

h2

)

≈ 1

nh1

n∑
i=1

K

(
Xi1 − x1

h1

)
· R̄(x1, Xi2)p(Xi2)

p2(x1, Xi2)
.
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This term clearly has an asymptotic variance of the order of O( 1
nh1

).

Finally, using the fact that Var(X + Y ) ≤ 2Var(X) + 2Var(Y ), we conclude that the variance of µ̂1(x1) is of
the order of O( 1

nh1
).

Formally, the rate should be written as

µ̂1(x1)− µ1(x1) = O(h2
1) +O(h2

2) +OP

(√
1

nh1

)
when h1 → 0, h2 → 0, nh1h2 → ∞. We still need nh1h2 → ∞ to ensure the 2-D KDE can approximate
p(x1, x2) well. In some paper, we add an additional condition h2

h1
→ 0, so that we can drop O(h2

2) in the

rate, making it O(h2
1) +OP

(√
1
nh1

)
, the usual 1-D rate.

Remark.

1. The key to improve the rate is the integral
∫
m̂(x1, x2)dP̂ (x2) that removes the effect of the second

variable. This integral converts the kernel into a weight at each observation. Without this integral, we
will still be in the usual 2D rate.

2. While we only consider d = 2, the whole derivation remains the same when we have more variables.
Suppose we have d variables, then we still have

µ̂1(x1)− µ1(x1) = O

(
d∑
`=1

h2
`

)
+OP

(√
1

nh1

)
under the condition that nh1h2 · · ·hd →∞.

3. In fact, this derivation holds if we are considering the additive model in the form of

m(x) = µ1(x1) + η(x2, · · · , xd).

We will still obtain the same convergence rate using the estimator µ̂1(x1)! In [FHM1998], they even
consider a more general setup that

m(x) = µ1(x1) + µ2(x2)

with x1 ∈ Rp and x2 ∈ Rd. Let h be the smoothing bandwidth for x1 and b be the smoothing bandwidth
for x2. The convergence rate will be

µ̂1(x1)− µ1(x1) = O
(
h2 + b2

)
+OP

(√
1

nhp

)
,

under the constraint nhpbd →∞.
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