STAT 535: Statistical Machine Learning Autumn 2024

Lecture 4: Linear Regression and Penalization
Instructor: Yen-Chi Chen

Reference: Hastie, Trevor, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity: the
lasso and generalizations. Chapman and Hall/CRC, 2015.

4.1 Introduction

In a regression problem, the observe data
(Xlayl)v Tty (Xn7 Yn)
that are IID from an unknown distribution F'x y such that X; € R? and Y; € R.

The regression problem refers to investigating the relation between X and Y. In particular, the regression
problem is often motivated by the prediction problem:

given X, how can we best predict Y ¢

4.2 Mean-square error prediction

In the prediction framework, we can think of using a function g(X) as a prediction of Y.

To measure how good the predictor g(X) is, we often use the mean-square error (MSE):
R(g) =E((Y - 9(X))?).

Namely, the MSE is the expected squared deviation from our predictor g(X) to the target Y.

Ideally, we want to choose g that minimizes R(g). Formally, we want to find

g* = argmin R(g).

We now take a deeper look at the MSE R(g) = E((Y — g(X))?). Using the law of total expectation,
E((Y - 9(X))?) = E[E[(Y — g(X))?|X]].
Using the fact that for any fixed constant c,
E[(Y — ¢)’] =E[(Y —E[Y] + E[Y] - ¢)*] = E[(Y — E[Y])’] + (E[Y] — ¢)* = Var(Y) + (E[Y] - ¢)?,
we can rewrite the MSE as
R(g) = E[E[(Y — g(X))?|X]] = E[Var(Y[X) + (E[Y|X] - 9(X))’] = E[Var(Y|X)] + E[(E[Y|X] - 9(X))?].
The first quantity is independent of g so it does not matter in the selection of g. The second quantity involves

(E[Y|X] - g(X))? > 0.
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The only case that the equality holds is g(X) = E[Y|X]. As a result, to minimize the MSE, we should use
the conditional expectation E[Y|X] as our predictor. The conditional expectation E[Y|X = z] = m(z) is
also known as the regression function or the best predictor.

With the regression function, we can decompose Y as

Y = E[Y|X] +(Y-E[Y|[X]). (4.1)
—— —_———
best predictor residuals

Here are some interesting properties of the decomposition in equation (4.1):

e Unbiased. E[best predictor] = E[E[Y|X]] = E[Y] and E[residual] = 0.

e Uncorrelated. Cov(E[Y|X],Y — E[Y|X]) = 0.

e Residual variance. Var(Y — E[Y|X]) = E[Var(Y|X)]. To see this,

Var(Y — E[Y|X]) = Var(Y) — 2Cov(Y, E[Y|X]) + Var(E[Y|X])

=E[Y?] - E[Y]* - 2(E[YE[Y|X]] - E[Y]E[E[Y|X]]) + E[E[Y]|X]?] - E[E[Y|X]]?
=E[Y? - E[Y]? - 2E[E[Y|X]?] + 2E[Y]* + EE[Y|X]?] - E[Y]?

Y2 - E[E[Y|X]?]

E[Y?|X] - E[Y|X]?]

e Variance decomposition. With the above properties, we obtain
Var(Y) = Var(E[Y'|X]) + E[Var(Y|X)].
Although this is the same formula as the law of total variance, it now can be interpreted as:

Var(Y) = Var(E[Y|X]) + E[Var(Y|X)]

Var(best predictor) average Var(residuals)

4.3 Linear model

Let m be a regression estimator (estimator of the regression function). We often use the squared error as
our measure of accuracy. Under the squared error, the prediction risk is

where (X,Y) is a new pair of observation from the same population. Note that the expectation is taken over
both new observation (X,Y) and the estimator m.

Let m be the true regression function, i.e. E(Y|X = z) = m(z). The prediction risk can be decomposed into

R(m) = 0% + E(b2 (X)) +E(V, (X)),
N—_——

where
o? =E((Y = m(X))?), bu(z) =E(m(z)) —m(z), Vu(x)= Var(i(z)).



Lecture 4: Linear Regression and Penalization 4-3

When using the linear regression, we do not (and should not) assume that the linear model is correct. The
linear regression can be viewed as the best linear predictor that minimizes E((Y — 87 X)2). Namely, the
optimal coefficients

B* = argmingE((Y — BT X)?)

and you can easily see that a sample analogue to 8* is

~ 1<
B = argming — Z(K - BT X;)?,
i=1

which is the least squared estimator (LSE).

When ¥ = E(XXT) is non-singular, the minimizer 8* has the following closed-form
B =%""a,

where o = E(XY"). Similarly, the LSE also has the following closed-form
Bn =X, G,

where &,, = LS X, X[ is the Gram matrix and @, = 1 Y7 | X,Y;.

4.3.1 Asymptotic properties

Consistency of Bn By the law of large numbers,
DI 3, an > a.

Thus, by the continuous mapping theorem, we have

Asymptotic normality. Recall that &, = 1 3" | X,Y;. Let €f =Y; — X7'3* be the oracle residual. Note

that €7, -+ , €, are independent. With the oracle residuals, we can rewrite
G = I X (XTE ) =S8+ LY X
[t ' Z i '
Thus,

3 _oo1a RS *
Bn=37'a, =B+ E;Xiei.
So we conclude that
B — B = Zn,
where Z,, = %Z:L:l Z; with Z; = X;ef are sample average of independent random vectors Zy, - - , Z, with

the key property that

E(Z;) = E(X;e) = E(X(Y; — X[ 8%)) = 0.
Due to the fact that (X1,Y1),---,(Xy,Y,) are IID, Z; = Xef = X(Y; — XTpB*) will also make Zy,--- , Z,
IID. Thus, by the multivariate central limit theorem,

Va(Ba — 8% % N(0,9),
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where
Q=2""EEXxXxN)y 1t =x1ux!

such that
M=EEXXT) =E(Y - XTp")xXx7T).

Sandwich estimator. A consistent estimator of 2 is

1 n
1 r 2 T
, M, =— E e; X X, ,
n -
=1

where e¢; = Y; — BZ X; is the residual. ﬁn is also called the sandwich estimator.

The above results do not assume that a linear model is correct—it is for the best linear predictor. We can
use the sandwich estimator to construct a confidence interval of 5* or the bootstrap method in this case.

Here is one caveat. In many standard textbooks, there is a common formula for computing the standard
errors of the regression coefficients:

The estimator ﬁn is not the sandwich estimator; ﬁn works only if 1. the linear model is correct, and 2.
the error is homogenous. It is a consistent estimator if the linear model is correct. So you have to be very
careful about the conclusion when using this formula. On the other hand, if you are using the sandwich
estimator or the bootstrap approach, you can always interpret the confidence interval as covering the best
linear predictor. More details are in

Buja, A., Berk, R., Brown, L., George, E., Pitkin, E., Traskin, M., ... & Zhang, K. (2015).
Models as approximations: A conspiracy of random regressors and model deviations against
classical inference in regression. Statistical Science, 1460.

4.3.2 Bounding the excess risk

Now we study the excess risk of Bn, ie.,
E(Bu) = R(Ba) — R(B")-

The excess risk tells us that the expected loss when we are using the LSE compare to using the optimal
predictor.

Theorem 4.1 Assume the distribution Fxy is supported on a compact set and X is non-singular. Then
there exists c1,co > 0 such that

P(R(Bn) > R(B*) + 2€) < cre™ ">

The above bound is also called the concentration bound. It is another way to express how good an estimator
is.
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Proof: Let Z = (Y, X) and let 8 = (-1, ). With this notation, (Y — 7X) = —QTZ. So the prediction
risk can be written as

R(B) =E((Y - 8"X)*) =E(B"22"B) = B"E(ZZ")B = B'TB.

Similarly, the sample version of the prediction risk (called empirical risk) is

n

Ra() = = S (% — 67X = 72 Zz 278 = B7T0p.

Thus, the difference between the empirical risk and prediction risk is

IR.(8) — R(B)| = |87T8 — 8718 = |87 (Tr — D)8 < BIITn — Tllmax-

Note that ||A|lmax = max;  |A;k| is the matrix maximum norm. Using the Hoeffding’s inequality to each
entry with the fact that Fxy has a compact support, we conclude that

P(ITs = Tllmax > €) < (d+1)?2e7",
where c3 is a constant depending on the size of the support. Note that when 3 is non-singular and Fxy has

a compact support, there exists B such that || 5n|| < B a.s. so we will assume that 5n is bounded. Thus, the
above concentration inequality implies that

P( sup |Rn(B) — R(B)| > e) < (d+1)22e 155

BilIBlIE<B

Finally, because Bn is the minimizer of the empirical risk, i.e., }A%n(gn) < fin(,ﬁ) for all 3, on the event that
supg.g12<s [Bn(B8) — R(B)| < €, we have

R(8*) < R(Bn) < R(By) + € < R(B*) + € < R(B") + 2e.

Thus, we obtain the desired concentration bound.

A refined bound can be obtained in Theorem 11.3 of

Gyorfi, L., Kohler, M., Krzyzak, A., & Walk, H. (2006). A distribution-free theory of nonpara-
metric regression. Springer Science & Business Media,

which states the following (note that the result is stated in terms of estimation error).

Theorem 4.2 Assume that sup, Var(Y|X = z) < oo and Fxy are bounded and ¥ is non-singular. Then

(137X - m(OP) < 8imf (57X — () + B,

where C' is some positive constant.
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4.4 High-Dimensional Linear Regression

The high-dimensional problem refers to the case where the number of covariates d is large and may be
growing with sample size n even in the regime d > n. In this case, the linear regression has infinite number
of solution due to the fact that we have n linear equations and d parameters. Moreover, the covariance matrix
¥ = E(XXT) is not invertible. Even a simple model like linear model cannot be used in high-dimensional
setting without further assumptions.

One way to advance in high-dimensional problem is to assume that many covariates are actually irrelevant
in the prediction problem. Namely, only s out of d covariates are indeed correlated with the outcome Y and
s is a much much smaller number than d and is small relative to n as well. This assumption is known as
sparsity assumption.

In the sparsity setting, a common approach is to consider a penalized regression, i.e., we add a penalty on the
parameter § so that the risk increases as more parameters are non-zero. This penalty can be characterized
by the Lg-norm. For a vector (8, its Lo-norm is

I8]lo = number of non-zero elements.

The Ly-penalized regression is

n

~ 1
Best = argmin > (¥ = B7X:)% + AllBllo-
=1

The resulting coefficients are related to the so-called best subset estimators.

However, a problem of the Ly penalty is that finding the minimum of + 37" (Y; — B7X;)% + N8| is
difficult. It is a non-convex problem and is an NP-hard problem (you can just view these two statements as
‘computationally very very very difficult’). Thus, in many situations we will replace the Lo penalty by an L,
penalty because solving an L; penalty problem is still a convex problem, so computationally it is not very
challenging. The process of replacing Lo penalty (or other non-convex problem) by L; penalty (or other
convex problem) is called convez relazation. A common trick in machine learning and optimization.

The idea of penalization/regularization can help in this case. There are two comment penalized parametric
regression model: (i) the ridge regression model, and (ii) LASSO (least absolute shrinkage and selection
operator).

4.5 Ridge regression

The ridge regression added a penalty called the Lo penalty in the minimization criterion. Namely, the ridge
regression finds the fitted parameter as

~ 1<
Dridge = argmin > (¥ - 87X + AIBI3,

i=1

where |33 = Z?Zl f7 is the square 2-norm of the vector 3. The penalty A[|3]]3 is called the Ly penalty
because it is based on the Ly norm of the parameter.

It turns out that the ridge regression has a closed-form solution that is similar to the least square estimator
and the spline:

BRidge = (XTX + n)\]ld) -t XTY7
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where X is the n x d data matrix and I is the d x d identity matrix.

Let B\Ls = (XTX)_l XTY be the ordinary least square estimator (no penalty, the classical approach). The
ridge regression has a very similar coeflicients as the least square estimator but just the coeflicients are moved
toward 0 because in the matrix inverse, there is an extra nAl; term. We will say that the ridge regression
shrinks the estimator Srigge toward 0. As you would expect, the penalty A trades off between the bias and
variance. Large A leads to a large bias but less variance.

When A — 0 properly, we may establish the consistency of ridge regression.

Theorem 4.3 (Hsu, Kakade, Zhang (2014)) Assume that | X|| < B almost surely and X is non-singular.
If the linear model is correct, i.e., the bias b(z) = 8*Tx — m(x) = 0, then

R 1) = (140 (LEEAY) A 0 )

n n 2\
This result can be found in Remark 15 of

Hsu, D., Kakade, S. M., & Zhang, T. (2012, June). Random design analysis of ridge regression.
In Conference on learning theory (pp. 9-1). JMLR Workshop and Conference Proceedings.

Actually, they also derived the convergence rate when the linear model is incorrect—the consistency is with
respect to the best linear predictor. If you are interested in ridge regression, you may check the references
in the above paper.

The ridge regression can be viewed as a Bayesian estimator (posterior mean). To see this, we assume that
the model Y = B7X + € with € ~ N(0,0?) and place a prior over the parameter 3 ~ N(0,72). Then you
can show that the posterior mean is the ridge regression estimator with A = Z—i

Note that ridge regression is sometimes used in low-dimensional problem as well. One scenario that people
would use ridge regression is that when the covariance matrix is singular or nearly singular. The ridge
regression stabilizes the estimate.

4.6 LASSO

Recommended reference: Hastie, Trevor, Robert Tibshirani, and Martin Wainwright. Statistical learning
with sparsity: the lasso and generalizations. Chapman and Hall/CRC, 2015.

LASSO (least absolute shrinkage and selection operator) is one of the most famous penalized parametric
regression model. It has revolutionized the modern statistical research because of its attractive properties.
LASSO finds the regression parameters/coefficients using

n

~ 1 .5
BLasso = argmin > (Vi = BTX)? + MBlh = argmin R (8) + AllBll, (4.2)

i=1
where ||8]]1 = 25:1 |8;] is the 1-norm of the vector 8. The penalty A||3]|; is called the L; penalty. This is
often known as the Lagrangian/requarlized LASSO.

There is a different form of the LASSO problem:

n

1
inimi 75 Y; — 8T X;)? bject t < t. 4.3
mlnlﬁmlze " i:1( 3 ) y subject to ||5H1 > ( )
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When t is chosen to be the value of B\LASSO under the X in the original problem, we obtain the same result.
This is often known as the constrained LASSO.

n

A third version of the LASSO problem is the dual form from the optimization:
minimize 1 Z(Y —u;)? subject to  max
n K3 (2 k) .

n
u =1, d Z Xiji
i=1 e Pt

Under the so-called KKT (KarushKuhnTucker conditions) condition, the solution in the dual problem in
equation (4.4) leads to the same solution in the primal problem in equation (4.3).

<L (4.4)

If we normalized the covariates so that XTX = I, the LASSO estimates can be written as

~ ~ nA
BLasso,j = Bis,; X max 0,1 — ——
|BLs
for j = 1,---,d. Namely, the coefficients from LASSO are those coefficients from the least square method
shrinking toward 0 and for those parameters whose value are below n\, they will be shrink to 0.

When A is large or the signal is small, many coefficients will be 0. This is called sparsity in statistics (only
a few non-zero coeflicients). Thus, we will say that the LASSO outputs a sparse estimate. Those Ej will be
0 if it does not provide much improvement on predicting Y. So it naturally leads to an estimator with an
automatic variable selection property. The value of A will affect the estimates 3. Larger A encourages a
sparser [ (namely, more coefficients are 0) whereas smaller X leads to a less sparse £.

Although ridge regression also shrinks the coefficients toward 0, it does not yield a sparse estimator. The
coefficients are just smaller but generally non-zero. On the other hand, LASSO not only shrinks the values
of coefficients but also set them to be 0 if the effect is very weak. Actually, this is a property of the L
penalty — it tends to yield a sparse estimator — an estimator with many 0’s.

4.6.1 When linear model is correct

When the linear model is correct, the LASSO is consistent under good conditions.

For a linear regression model, we say that the model is s-sparse if there are at most s < d coefficients that are
non-zero. Namely, ||5*]o = Z?Zl I(B; #0) < s. Let S = {j: B # 0} be the support of the true parameter
B*. Note that in the high dimensional mode, we allow s, the sparsity, and d, the number of parameters, to
increase as n — oo as well.

Here we display a convergence rate of LASSO from the following book:
Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning with sparsity. Mono-
graphs on statistics and applied probability, 143(143), 8.

In particular, chapter 11 discusses a couple of other results on the LASSO theory.

This result is based on the restrictive eigenvalue condition. Recall that S is the collection of parameters with
non-zero coefficients. Define the set

C(S,a) ={B: [|Bscly < Bs1},

where g = (8 : 7 € §) and Bge = (B : j ¢ S). The design matrix S, is called to have restrictive eigenvalue
with parameter v over class C(S, «) if
. vIT, v
min
vec(S,a) vTv

>
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With this condition, the LASSO has the following asymptotics

Theorem 4.4 (Theorem 11.1 in Hastie, Tibshirani, and Wainwright (2015)) Assume the followings:

1. The linear model is correct and s—sparse.

2. The Gram matriz fn satisfies the restrictive eigenvalue condition with v over class C(S,1).
Then 1. for the Lagrangian LASSO in equation (4.2) with parameter X > 2|| 3" | Xi€;]|oo/n > 0,
~ 3
l|BLasso — 87| < ;\/EA-

2. for the constrained LASSO in equation (4.3) with ||BLASSOH1 < 18*I1,

§ X;€;
| BLasso — 8% < = \/ ==l
vV n

Vn
The proof of the constrained form is simple and inspiring so here we display the proof.

oo

Proof: Consider the empirical risk

%z Vi XE8) = 23 (XF(B -5 +e)”.

i=1

This implies

Ro(BLasso) = — Z T (Buasso — B*) +e;

=—64

1 n
- > (x5 - Ei)2
=1

~ 1 <&
< Rn == 27
< Ru(57) = ; €
where d5 = 8* — BLasso-
Thus, after rearrangements,
TH RS T \2 265 -
05Tndp = — > (x[6p) — > Xie;. (4.5)
i=1 i=1

For the right-hand side, the Holder’s inequality implies that

1 n
- E Xi€i
n -
i=1 o)

257 &

’BZXEZ

i=1

< 2[65l1 (4.6)

Fact: the constraint ||BLA550\\1 < ||B*]lx implies that dg € C(S,1). To see this, because S is the support of
B*, we have

95,5 = PLasso,s — Bs, d8,5¢ = PLASSO,S¢ -
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Thus,
165,511 = > _ |Brassoj — B;1 = Y _ 1851 — |BLasso.

jes jes

= 18l = > |Buassol
jes
> ||Buassolls — D [BLasso,l
JES
=D Buassosl = l16s,s¢ -
Jgs

Applying the fact that dg € C(S,1), we have
105111 = [195,sl1 + 18,5 [l1 < 2[10g,5]l1 < 2v/5[|d5,5]l2 < 25|05 ]2,

where the last second inequality is due to Cauchy-Schwarz inequality. Thus, we can rewrite equation (4.6)

by
26T n 1 n
1Y
n
=1

B
- ;Xﬁi

Thus, after rearrangements, equation (4.5) becomes

< 4V/s|0g2

oo

§TT 85 < 4/3]165]2

1 n
1Y
" i=1

o0

TT .8 "
gLt nlB 1
= ||(5,3||2 < \/g — Xiq
1551 " .
>
4 1 —
= |6sl2 < ;\/g EZXM )
i=1 o

which completes the proof.
|

Note that under the quantity || > ; X;€;|| can be bounded using the concentration inequality. When Xe
is sub-Gaussian, i.e., log E(e!X¢) < %02152 for some finite number ¢ > 0 and any ¢ > 0, we have

ZXiei < Op(y/nlogd).
i=1

Using this fact, Theorem 4.4 implies that

~ logd
| BLasso — B*[| = Op (\/ i (;Lg ) .

There are many other theoretical work on the convergence of LASSO. Here is another example. For a matrix
C, we define its m-sparse minimum and maximum eigenvalues as

= min B Ch = max Gl
lBlo<tm] BTB " B:lBllo<fm] BTB

These quantity are related to the restricted isometry property (RIP)!.

oo

¢min(m; C)

Pmax(m; C)

Thttps://en.wikipedia.org/wiki/Restricted_isometry_property
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Theorem 4.5 (Meinshausen and Yu (2006)) Assume the followings:

1. The linear model is correct.

2. The covariates are bounded and the design matriz is standardized (i.e, the diagonal of in consists of
1’.)

3. The noise ¢; is sub-Exponential, i.e, E(el“) < 0o, and has variance Var(e;) = 0% < 0.

4. There exists 0 < Kmin < Kmax < 00 such that

hn}nlnf ¢min(5n IOg n; in) Z Kmin lim sup ¢max(5n + min{n, dn}a i\:n) S Rmax-
n

5. Ax oy/nlogd,.

Then there exists M such that with a probability tending to 1

~ sp logp
| BLasso — B*||* < MO’Q%'

Sometimes, you will see that people write ||E|_Asso —B*|| = Op <\ / Sl‘;“) This is the common rate for
the LASSO estimator. The above theorem is from

Meinshausen, N.; & Yu, B. (2009). Lasso-type recovery of sparse representations for high-
dimensional data.

Note that a design matrix f]n is called an incoherent design if there exists a sequence e,, (also known as
sparsity multiplier sequence) such that

9 S
min{€n Sy En
lim inf Dmin(€nsyi En)

— > 18
n=00 hax(Sn + min{m, d, }; 3,)

A more general result can be obtained using the incoherent design.

There is one condition that is particularly restrictive in Theorem 4.5: the condition on the eigenvalues (4th
condition). A similar condition is the restrictive eigenvalue condition in Theorem 4.4. Essentially, we need
the design matrix to behave almost like an orthonormal matrix. For problems like compressive sensing, this
is possible since we can manipulate the design matrix but for many other problems such as genetic studies,
the design matrix refers to the gene-gene interaction matrix, which is known to fail this condition.

4.6.2 When linear model is not correct

There is less literature about the behavior of LASSO when the model is incorrect. Here we present a theorem
about the convergence of predictive risk of LASSO when the model is incorrect. Note that the convergence
here refers to the convergence to a ‘population LASSO’. We use the dual form of LASSO to simplify the
problem.
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Theorem 4.6 Assume that |Y| < B and || X||max < B. Define the population LASSO

Biasso = argming, 5y, < E(Y: — 87 X;)? = argming, g, <, R(H)
and the LASSO estimator R R
Brasso = argming, g, < L (5)-
With a probability of at least 1 — §, we have

0

3 4132 o
R(BLasso) < R(Biasso) + \/8(“'711)3 log (2d>

Proof: Define Z = (Y, X) and Z; = (Y, X;) and = (=1, 3). The prediction risk can be written as
R(B) = B"Tp,
where I' = E(ZZ7T).
Similarly, the empirical prediction risk is
R (8) = 57T,
where T,y = 2" 7,77
For any parameter 3, the difference can be written as

R,(8) - R(B) = " (T, -T)B

<3 18,118, /Tn = Tl
Jk
S ”éH%”Fn - F”max
S (L + 1)2”fn - F||max~
By setting n = (L + 1)2||fn — T'||max, we have

R(BLasso) < Rn(BLasso) + 1 < ﬁ(ﬂfAsso) +n < R(Blasso) + 21

Using the Hoeffding’s inequality,
I ’Vl€2
P(HFH - FHmax > 6) < d22672B2 .

7162
Thus, by setting d?2e” 257 = §, we obtain

2B2 o 2d?
€=y — —
n & )
Plugging this into n, we conclude that

3 42 2
R(BLasso) < R(Biasso) + \/8(“‘711)3 log (2d>

0

Note that a more general version appears in the following paper:
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Greenshtein, E., & Ritov, Y. A. (2004). Persistence in high-dimensional linear predictor selection
and the virtue of overparametrization. Bernoulli, 10(6), 971-988.

Remark (sparsistency). Another way to derive the convergence of LASSO is via the concept of sparsis-

tency. An estimator § is sparsisteny if its non-zero element is the same as the non-zero element of §* with
a high probability, i.e., N

P(supp(B) = supp(5”)) — 1,
where supp(8) = {8, : 5; # 0}. Under good assumptions, the LASSO estimator has sparsistency; see, e.g.,

Zhao, P., & Yu, B. (2006). On model selection consistency of Lasso. Journal of Machine learning
research, 7(Nov), 2541-2563.

Remark (WARNING on LASSO). Although we have beautiful theorems on LASSO under sparse and
high-dimensional settings, these theorems may not be applicable to the real data. In particular, the restric-
tive eigenvalue condition is often a too strong condition. It basically requires the covariates to be almost
uncorrelated (or even independent). When analyzing genetic data or images from fMRI, it is well known that
the covariates (genes or voxel values) are highly correlated with each other. So the theorem is not applicable
in this case and we have no idea how will the LASSO behaves (although LASSO is still commonly used in
these secnarios). One situation that the restrictive eigenvalue condition works is compressed sensing—we can
design the covariate so that the restrictive eigenvalue conditions can be obtained by design?.

4.7 Inference in high dimensional regression

Inference in high-dimensional case is very challenging. The major reason is that the convergence rate we
obtain is often done by empirical risk minimization approach. This is different from the usual analysis that
we perform a Taylor expansion over the objective function. Despite the challenges, there are still some
advancements in this direction. In general, there are two common directions for high-dimensional inference.

Sequential testing and post-selection inference. The first approach considers a sequential procedure
of including one and one variable. The challenge is that this procedure runs in to the post-selection inference
problem that at each stage, our hypothesis testing depends on all the previously selected parameters. Some
famous references are:

e Lockhart, Richard, et al. “A significance test for the lasso.” Annals of statistics 42.2 (2014): 413.

e Tibshirani, Ryan J., et al. “Exact post-selection inference for sequential regression procedures.” Journal
of the American Statistical Association 111.514 (2016): 600-620.

e Lee, Jason D., et al. “Exact post-selection inference, with application to the lasso.” The Annals of
Statistics 44.3 (2016): 907-927.

Debiased /Desparsified approach. The debiased/desparsified LASSO is another common approach for
high-dimensional inference. The main idea is: although the LASSO estimator does not have asymptotic
normality when d,, increases much faster than n, the debiased version of the LASSO estimator still have
(LASSO estimator minus an estimate of the bias). An interesting fact about the debiased LASSO estimator
is no longer a sparse estimate—most of its parameter estimates are non-zero. So people also called it a
desparsified LASSO. Here are some famous papers about this idea:

2see https://normaldeviate.wordpress.com/2012/08/07/rip-rip-restricted-isometry-property-rest-in-peace/ for

more discussion.


https://normaldeviate.wordpress.com/2012/08/07/rip-rip-restricted-isometry-property-rest-in-peace/

4-14 Lecture 4: Linear Regression and Penalization

v

v
v

A
RS

Figure 4.1: How the L; norm looks like under different dimensions. The left panel displays the L; norm
||lz|l1 at d = 2. The middle to right panel show the L; norm under higher dimensions.

e Zhang, Cun-Hui, and Stephanie S. Zhang. “Confidence intervals for low dimensional parameters in high
dimensional linear models.” Journal of the Royal Statistical Society: Series B (Statistical Methodology)
76.1 (2014): 217-242.

e Van de Geer, Sara, et al. “On asymptotically optimal confidence regions and tests for high-dimensional
models.” The Annals of Statistics 42.3 (2014): 1166-1202.

e Javanmard, Adel, and Andrea Montanari. “Confidence intervals and hypothesis testing for high-
dimensional regression.” The Journal of Machine Learning Research 15.1 (2014): 2869-2909.

4.8 High-dimenisonal geometry

Why L; penalty leads to a sparse estimator? One simple way to explain this is via the high-dimensional
geometry. In fact, the geometry in high dimension could be very different from low dimension. To start
with, we examine how the L; norm behaves when the dimension is high.

4.8.1 L; norm in high-dimensions

The first thing that the high-dimensional geometry is very different from the low dimensional geometry is
the shape of L1 norm level set. Consider the set

B={8eR:[B, <1}.

What will this set looks like relative to the set [—1,1]9?

In d = 1 case, it covers the entire region. In d = 2 case, it covers half of the region. In d = 3 case, you can
show that it covers actually 1/4 of the region [—1,1]3.

Then what would happen when d is large? It turns out that this L, level set covers 24%1 volume of the
region [—1,1]¢, which means that the regions cover by B will only cover a tiny fraction of the region [—1,1]%
when d is large and the set B will be the regions around the coordinate axes. Figure 4.1 provides a graphical
illustration on this.
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The illustration in Figure 4.1 implies that the L; norm behaves like a spiky structure under high dimensions.
The shape of a squared loss is an ellipse (contour of the squared loss). Thus, when an ellipse hits a spiky
structure, it is very like that the hitting point is on the spike, i.e., some parameters are 0. This is why L,
regularization often leads to a sparse estimator.

In fact, any L, norm regularization with ¢ < 1 leads to a sparse estimator. Another interesting fact:
the minimization problem of L, regularization is NP-hard if ¢ < 1; or informally, you can say that L,
regularization is ‘computable’ if ¢ > 1. We are very fortunate that the intersection of a sparse estimator
(requiring ¢ < 1) and a computable estimator (requiring ¢ > 1) has an intersection at ¢ = 1. Thus, L
regularization is a blessing zone that we can enjoy a sparse and computable estimator.

4.8.2 High-dimensional Gaussian

Another bizarre phenomenon of high dimensional geometry occurs when we are working with high-dimensional
multivariate Gaussian. To simplify the problem, we consider a d-dimensional Gaussian with unit variance.
Let

X ~ N(0,1,),

where I is the d x d identity matrix. The PDF will be
1
p(z) = (27) Y2 exp ~5 fo
j=1

This density is symmetric at 0 and decrease with respect to the distance from the origin r = \/Z;‘Ll xf =
|z|l2- Now we consider the following question: if we are thinking about the density as a function of distance
to the origin, which radius will most of the probability mass concentrate?

To study this, we convert the PDF of coordinate x into a PDF with respect to the radius r. Using the
polar coordinate transform and the fact that p(z) is isotropic,dz = r4=1S,_1dr, where Sy_; is the d — 1
dimensional surface volume of the unit ball {xz : ||z||2 = 1}. Thus, the PDF will be

2

1
p(r) = (27T)7d/25d_1rd71 exp <2r2> o rdlemam

What will the mean and variance be and what will the mode be? Let R be the random variable with a PDF
p(r).

A simple approach to compute the mean and variance is to use the fact that by setting R? = S, we obtain

p(s) x 5T e"3% ~ Gamma <a = g,ﬂ = ;) .
Using the properties of Gamma distribution, we conclude that
E(S)=d
Var(S) = 2d

Mode(S) =d — 2.

What does this tell us about random variable S when d is large? A crucial implication is that the mean and
the variance are of the same order, meaning that the standard deviation will be of the order v/d. Thus, if

we are thinking about S rescaled by its mean, then % £ Also, since w — 0,

5 _ry
Mode(S) '
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Note that the mode of S is the squared of the mode of R, i.e., Mode(R) = v/d — 1. Using the continuous
mapping theorem, we conclude that
R P

Mode(R) — 1

Namely, all probability mass will concentrate around the mode of R when we rescale the entire distribution
so that the mode occurs at radius 1! In a sense, this implies that the distribution p(z) puts almost all its
probability mass around the shell ||z|y = V/d!

4.8.3 Volume of a high-dimensional Ball

Another striking result about high-dimensional geometry is the fact that
most of the volumes of a high dimensional ball or cube are close to the boundary.

To see this, note that for a d-dimensional ball with a radius R, its volume is
/2 ;

Va(R) = m

)

where I'(+) is the Gamma function. Thus, the ratio of a ball with unit length (R = 1) versus with radius
1—e€is
Va(l —¢)
Va(1)

T

=(1- e)d.

When € = r/d, this quantity converges to e™", which decrease rapidly when r increases. Thus, most of the
volume is within e = O(1/d) to the boundary, which means that the majority of the volume is around the
boundary. Or alternatively, if we randomly choose a point within a high dimensional ball, it is very likely
that this point is within O(1/d) distance to the boundary. Not only the ball, a high dimensional cube also
has a similar property— most of the volume is very close to the boundary.

4.9 Benign Overfitting
This section is a simplification of the following paper:

Hastie, T., Montanari, A., Rosset, S., & Tibshirani, R. J. (2022). Surprises in high-dimensional
ridgeless least squares interpolation. Annals of statistics, 50(2), 949.

In recent years, researchers have discovered an interesting phenomenon called benign overfitting: when the
dimension increases (and sample size is fixed), the mean square error of a linear model may be decreasing!
In this section, we will briefly explain how this could happen.

We will consider a special linear model called ridgeless regression, a combination of the usual least squared
model and ridge regression. The ridgeless regression estimator is

Brr = argmin {||b]| : b minimizes ||Y — Xb||}, (4.7)

where Y = (Y1,---,Y,)T € R" is the response vector and X € R"*? is the feature/covariate matrix.
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10
L

Gamma = p/n

Figure 4.2: The MSE of the ridgeless estimator B, as a function of v = 2 under 0? =1 and ||3*| = 1.

B rr has the following property:

~

> JPors if n > p,
Brr = .
Brr if p>n,

where BO Ls is the ordinary least square and BL 1 is the least norm interpolator, a limiting case of the ridge
regression,

5w 3
Brr )\lg%ﬂ/\y
B = argmin,||Y — Xb|| + )\||b|\§

Here is an interesting fact: E rr will demonstrate the benign overfitting! See Figure 4.2.

4.9.1 Setup

To investigate this phenomenon, we will consider the following IID setup:
Y = XB* + ¢, e~ N(0,0%1,),

where I, € R"*" is the identity matrix. Moreover, we assume that entries {X;;} are IID from N(0,1).
Namely, each row vectors X3, -, X, are IID from N(0,L,)

To investigate the mean square error, we will separately analyze the bias and variance. In particular, we will
consider the conditional bias and variance:

Bias(BrL|X) € R”,  Var(Br.|X) = Tr[Cov(BrL|X)],

where Cov(Bgrp|X) is the covariance matrix.

The conditional MSE is
MSE(BrL|X) = ||Bias(BrL|X)||* + Var(BrL|X).



4-18 Lecture 4: Linear Regression and Penalization

4.9.2 Analysison p<n

When p < n, it is clear that the bias is 0 because BRL = B Thus,

Bias(Br. |X) = 0.

For the variance, the story is more interesting. First, let

T
iz—x XGRPXP
n

be the (sample) covariance matrix. For the ordinary least square, we know that

Var(Brr|X) = Tr[Cov(Brz|X)]
= Tr[(X"TX)"1o?]

-2 . T(EY.
—Tr(E7)

Q

Using the property of trace,
T =) u (),
j=1
where 11;(A) is the j-th eigenvalue of A.
To investigate the property of eigenvalues of a Gaussian covariance matrix, we will use the Marchenko-Pastar

theorem (MP theorem,).

Theorem 4.7 (Marchenko-Pastar theorem) Let{Z;;} be IID random variables with E(Z;;) = 0, Var(Z;;) =
1. Let Z € R"*P be the matriz of {Z;;}. Define Q= ZTTZ € RP*P and Sg be the distribution of eigenvalues
of ﬁ, i.e.,

1< ~
,Z (11 () <

When n,p — 00, 2 — v < 1, we have the followmg results:

"@

1. Sg converges in distribution to S, where S, has a PDF

11
Sp=47F1 (b—t)(t—a), t € [a.b]
0 Otherwise.
and a = (1= \7)%b = (1+7)"
2. The Stieltjes transform of S (t) is

—(1=v=2)+ /0 +7-2?2 -4
2z '

3. Using L’Hospital rule, we further have

@y (0) = Jim e (2) = 7.
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The above theorem is from Chapter 3 of

Bai, Z., & Silverstein, J. W. (2010). Spectral analysis of large dimensional random matrices (Vol.

20). New York: Springer.

The power of Theorem 4.7 is that the trace of inverse covariance matrix

can can be written as

p
- 0)= 2
p-wy(0) 1—~
when v = £ < 1, which is our current setting.
To sum up,
Var(BreX) = ST S m ol L g2 0
RE n nl—vy 1—-7’
o)
MSE(BRle) ~ 0’2 i
L=~

when v = 2 < 1. Thus, when 7 increases, the mean square error increases as long as v < 1.

4.9.3 Analysison p>n

4-19

When p > n, BRL = limy_,g BA, so we will first investigate the bias and variance of the ridge regression.

A feature of the ridge regression is its closed form:

Br = (XTX + nAL,) " 'XTY
= XT(XTX 4+ nAL,) 1Y,

where the last equality can be verified by multiplying (X7X + nAlL,) in both sides.
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Analysis of variance. We first analyze the variance.
Var(Br.|X) = Tr[Cov(Brr|X)]
= Jim Tr[Cov(F %))
Cov(Br|X) = XT(XTX + nAL,) %X - 02,
Tr[Cov(Br|X)] = Tr[XT (XX + nAL,)~2X] - 02
= Tr[XXT (XTX + nAL,) %] - o (trace property)

1. [xxT /xTx -2
28 ( + n)\In) 1 o
p

= —Tr
D D D

= ‘jT r[Q(Q + TAL,) 2],

where .
~ XX 1
Q = — €& RTLXTL, T = — = E
p Ap
As A — 0,

Var(BpL|X) = Tr[Cov(BrL|X)]

Now we apply Theorem 4.7 again with swapping n,p in the setting and conclude that

T O'2

Var(Brr|X) ~ o2 = .
ar(Brr|X) ~ 0 — po—

Analysis of bias. To analyze the bias, we will use another property about B rr that it can be expressed by
the pseudo-inverse when p > n: N
Brr = (XTX)TXTY,

where for a matrix A € RP*P its pseudo-inverse A" satisfies AATA = A, ATAAT = AT. Note that if A has
rank 7 < p, then Tr[ATA] = r.

Let Q = XTX. A direct computation shows that
E(Br.|X) = QTQB*
Bias(BrL|X) = (I, — QTQ)*
IBias(BrL|X)|? = A*7(L, — Q1Q)5*.

Here is an interesting property about the Gaussian vectors X; ~ N(0,1,). For any rotation matrix U € RP*P,

Ux; £ X;,



Lecture 4: Linear Regression and Penalization 4-21

i.e., UX; has identical distribution as Xj.
Thus, we can rewrite the bias as
|Bias(Br. |X)|* = 87 (L, — Q10)"
= (UpH)" (@, - QT )Us").
Now we pick Uy, - -, U, such that
Uzﬁ* = ”5*“ " €y
where e; is the unit i-th coordinate vector.

Thus, N o o
|IBias(BrL|X)||*> = (U:B*)" (I, — QTQ)(U;B*) = |87 (1 — [T Q)

fori=1,---,p.

With this result, we ‘average’ them, which leads to

s 1 o PN . PPN . 1
IBias(BrelX) > = = Y 18771 = Q1) = 87]° | 1 — = Tr(Q'Q) | = 187]°(1 - ).
P P v
Putting variance and bias together, we conclude that when p > n,
. 2 2 * |12 1
IBies(Fres 201 = 571 (1 1)
V X) =
ar(Bre|X) N1
-~ N 1 o?
MSE (a2 ~ 11 (1= 2 ) + -2
v/ =1
When 7 = £ — oo and ||3*|| remains fixed, we see that bias is converging to a fixed quantity but the variance

keeps decreasing. Thus, the total mean squared error is decreasing as v — oc.

4.9.4 Summary

Now we consider both regimes and conclude that

S 1 UQﬁ: when p <n
(ﬁRL| )N ||5*H2 (1_%)4_’;77_21 whenp>n.

As v = £ increases from 0, the MSE first increases until 7 = 1, and then the MSE decreases, leading to
the famous phenomenon of the benign overfitting. Figure 4.2 shows the asymptotic MSE under ¢2 = 1 and

18] = 1.

Note that a crucial feature of the MSE decreasing is based on the assumption that ||5*
p — oco. Since the total signal is fixed, the average signal on each coordinate is shrinking.

|? remains fixed as
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