
STAT 535: Statistical Machine Learning Autumn 2024

Lecture 1: Review on Probability and Statistics
Instructor: Yen-Chi Chen

1.1 Sample Space and Random Variables

1.1.1 Sample Space and Probability Measure

The sample space Ω is the collection of all possible outcomes of a random experiment, e.g. toss of a coin,
Ω = {H,T}. Elements ω ∈ Ω are called outcomes, realizations or elements. Subsets A ⊆ Ω are called events.
You should able to express events of interest using the standard set operations. For instance:

• “Not A” corresponds to the complement Ac = Ω \A;

• “A or B” corresponds to the union A ∪B;

• “A and B” corresponds to the intersection A ∩B.

We said that A1, A2, ... are pairwise disjoint/mutually exclusive if Ai ∩ Aj = ∅ for all i 6= j. A partition of
Ω is a sequence of pairwise disjoint sets A1, A2, ... such that ∪∞i=1Ai = Ω. We use |A| to denote the number
of elements in A.

The sample space defines basic elements and operations of events. But it is still too simple to be useful in
describing our senses of ‘probability’. Now we introduce the concept of σ-algebra.

A σ-algebra F is a collection of subsets of Ω satisfying:

(A1) (full and null set) Ω ∈ F , ∅ ∈ F (∅ = empty set).

(A2) (complement)A ∈ F ⇒ Ac ∈ F .

(A3) (countably union) A1, A2, ... ∈ F ⇒
⋃∞
i=1Ai ∈ F .

The sets in F are said to be measurable and (Ω,F) is a measurable space. The intuition of a set being
measurable is that we can find a function that takes the elements of F and output a real number; this
number represents the ‘size’ of the input element.

Now we introduce the concept of probability. Intuitively, probability should be associated with an event –
when we say a probability of something, this ‘something’ is an event. Using the fact that the σ-algebra F is
a collection of events and the property that F is measurable, we then introduce a measure called probability
measure P(·) that assigns a number between 0 and 1 to every element of F . Namely, this function P maps
an event to a number, describing the likelihood of the event.

Formally, a probability measure is a mapping P : F 7→ R satisfying the following three axioms

(P1) P(Ω) = 1.

(P2) P(A) ≥ 0 for all A ∈ F .
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(P3) (countably additivity) P (
⋃∞
i=1Ai) =

∑∞
i=1 P(Ai) for mutually exclusive events A1, A2, ... ∈ F .

The triplet (Ω,F ,P) is called a probability space.

The three axioms imply:

P(∅) = 0

0 ≤ P(A) ≤ 1

A ⊂ B =⇒ P(A) ≤ P(B),

P(Ac) = 1− P(A)

P(A ∪B) = P(A) + P(B)− P(A ∩B)

The countable additivity (P3) also implies that if a sequence of sets A1, A2, . . . in F satisfying An ⊆ An+1

for all n, then

P

( ∞⋃
n=1

An

)
= lim

n→∞
P(An).

If An ⊇ An+1 for all n, then

P

( ∞⋂
n=1

An

)
= lim

n→∞
P(An).

How do we interpret the probability? There are two major views in statistics. The first view is called
the frequentist view – the probability is interpreted as the limiting frequencies observed over repetitions in
identical situations. The other view is called the Bayesian/subjective view where the probability quantifies
personal belief. One way of assigning probabilities is the following. The probability of an event E is the
price one is just willing to pay to enter a game in which one can win a unit amount of money if E is true.
Example: If I believe a coin is fair and am to win 1 unit if a head arises, then I would pay 1

2 unit of money
to enter the bet.

Now we have a basic mathematical model for probability. This model also defines an interesting quantity
called conditional probability. For two events A,B ∈ F , the conditional probability of A given B is

P(A|B) =
P(A ∩B)

P(B)
.

Note that when B is fixed, the function P(·|B) : F 7→ R is another probability measure.

In general, P(A|B) 6= P(B|A). This is sometimes called as the prosecutor’s fallacy:

P(evidence|guilty) 6= P(guilty|evidence).

The probability has a power feature called independence. This property is probably the key property that
makes the ‘probability theory’ distinct from measure theory. Intuitively, when we say that two events are
independent, we refers to the case that the two event will not interfere each other. Two events A and B are
independent if

P(A|B) = P(A) (or equivalently, P(A ∩B) = P(A)P(B)).

For three events A,B,C, we say events A and B are conditional independent given C if

P(A ∩B|C) = P(A|C)P(B|C)
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Probability measure also has a useful property called law of total probability. If B1, B2, ..., Bk forms a
partition of Ω, then

P(A) =

k∑
i=1

P(A|Bi)P(Bi).

In particular, P(A) = P(A|B)P(B) + P(A|Bc)P(Bc). And this further implies the famous Bayes rule: Let
A1, ..., Ak be a partition of Ω. If P(B) > 0 then, for i = 1, ..., k:

P(Ai|B) =
P(B|Ai)P(Ai)∑k
j=1 P(B|Aj)P(Aj)

.

1.1.2 Random Variable

So far, we have built a mathematical model describing the probability and events. However, in reality, we
are dealing with numbers, which may not be directly link to events. We need another mathematical notion
that bridges the events and numbers and this is why we need to introduce random variables.

Informally, a random variable is a mapping X : Ω 7→ R that assigns a real number X(ω) to each outcome
ω ∈ Ω. Fo example, we toss a coin 2 times and let X represents the number of heads. The sample
space is Ω = {HH,HT, TH, TT}. Then for each ω ∈ Ω, X(ω) outputs a real number: X({HH}) = 2,
X({HT}) = X({TH}) = 1, and X({TT}) = 0.

Rigorously, a function X(ω) : Ω→ R is called a random variable (R.V.) if X(ω) is measurable with respect
to F , i.e.

X−1((−∞, c]) := {ω ∈ Ω : X(ω) ≤ c} ∈ F , for all c ∈ R.

Note that the condition is also equivalent to saying that X−1(B) ∈ F for every Borel set B1. This means
that the set X−1(B) is indeed an event so that it makes sense to talk about P(X ∈ B), the probability that
X lies in B, for any Borel set B. The function B 7→ P(X ∈ B) is a probability measure and is called the
(probability) distribution of X.

A very important characteristic of a random variable is its cumulative distribution function (CDF), which is
defined as

F (x) = P (X ≤ x) = P({ω ∈ Ω : X(ω) ≤ x}).

Actually, the distribution of X is completely determined by the CDF F (x), regardless of X being a discrete
random variable or a continuous random variable (or a mix of them).

When X takes discrete values, we may characterize its distribution using the probability mass function
(PMF):

p(x) = P (X = x) = F (x)− F (x−),

where F (x−) = limε→0 F (x−ε). In this case, one can recover the CDF from PMF using F (x) =
∑
x′≤x p(x

′).

If X is an absolutely continuous random variable, we may describe its distribution using the probability
density function (PDF):

p(x) = F ′(x) =
d

dx
F (x).

In this case, the CDF can be written as

F (x) = P (X ≤ x) =

∫ x

−∞
p(x′)dx′.

1A Borel set is a set that can be formed by countable union/intersection and complement of open sets.
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However, the PMF and PDF are not always well-defined. There are situations where X does not have a PMF
or a PDF. The formal definition of PMF and PDF requires the notion of the Radon-Nikodym derivative,
which is beyond the scope of this course.

1.2 Common Distributions

1.2.1 Discrete Random Variables

Bernoulli. If X is a Bernoulli random variable with parameter p, then X = 0 or, 1 such that

P (X = 1) = p, P (X = 0) = 1− p.

In this case, we write X ∼ Ber(p).

Binomial. If X is a binomial random variable with parameter (n, p), then X = 0, 1, · · · , n such that

P (X = k) =

(
n

k

)
pk(1− p)n−k.

In this case, we write X ∼ Bin(n, p). Note that if X1, · · · , Xn ∼ Ber(p), then the sum Sn = X1+X2+· · ·+Xn

is a binomial random variable with parameter (n, p).

Geometric. If X is a geometric random variable with parameter p, then

P (X = n) = (1− p)n−1p

for n = 1, 2, · · · . Geometric random variable can be constructed using ‘the number of trials of the first
success occurs’. Consider the case we are flipping coin with a probability p that we gets a head (this is
a Bernoulli (p) random variable). Then the number of trials we made to see the first head is a geometric
random variable with parameter p.

Poisson. If X is a Poisson random variable with parameter λ, then X = 0, 1, 2, 3, · · · and

P (X = k) =
λke−λ

k!
.

In this case, we write X ∼ Poi(λ). Poisson is often used to model a counting process. For instance, the
intensity of an image is commonly modeled as a Poisson random variable.

Example: Wright-Fisher Model. Recall the Wright-Fisher model: Xn is the number of A alleles in the
population at generation n, with 2m alleles in all. We have 2m Bernoulli trials with P (A) = j/2m where
j is the number of A alleles in the previous generation (recall, assumed sampling with replacement). The
probability of Xn+1 = k given Xn = j is Binomial(2m, j/2m):

P (Xn+1 = k|Xn = j) =

(
2m

k

)(
j

2m

)k (
1− j

2m

)2m−k

,

for j, k = 0, 1, ...., 2m.

1.2.2 Continuous Random Variables

Uniform. If X is a uniform random variable over the interval [a, b], then

p(x) =
1

b− a
I(a ≤ x ≤ b),
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where I(statement) is the indicator function such that if the statement is true, then it outputs 1 otherwise
0. Namely, p(x) takes value 1

b−a when x ∈ [a, b] and p(x) = 0 in other regions. In this case, we write
X ∼ Uni[a, b].

Normal. If X is a normal random variable with parameter (µ, σ2), then

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

In this case, we write X ∼ N(µ, σ2).

Exponential. If X is an exponential random variable with parameter λ, then X takes values in [0,∞) and

p(x) = λe−λx.

In this case, we write X ∼ Exp(λ). Note that we can also write

p(x) = λe−λxI(x ≥ 0).

1.3 Properties of Random Variables

1.3.1 Conditional Probability and Independence

For two random variables X,Y , the joint CDF is

PXY (x, y) = F (x, y) = P (X ≤ x, Y ≤ y).

When both variables are absolute continuous, the corresponding joint PDF is

pXY (x, y) =
∂2F (x, y)

∂x∂y
.

The conditional PDF of Y given X = x is

pY |X(y|x) =
pXY (x, y)

pX(x)
,

where pX(x) =
∫∞
−∞ pXY (x, y)dy is sometimes called the marginal density function.

When both X and Y are discrete, the joint PMF is

pXY (x, y) = P (X = x, Y = y)

and the conditional PMF of Y given X = x is

pY |X(y|x) =
pXY (x, y)

pX(x)
,

where pX(x) = P (X = x) =
∑
y P (X = x, Y = y).

Random variables X and Y are independent if the joint CDF can be factorized as

F (x, y) = P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y).
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For random variables, we also have the Bayes theorem:

pX|Y (x|y) =
pXY (x, y)

pY (y)

=
pY |X(y|x)pX(x)

pY (y)

=


pY |X(y|x)pX(x)∫
pY |X(y|x′)pX(x′)dx′

, if X,Y are absolutely continuous.
pY |X(y|x)pX(x)∑
x′ pY |X(y|x′)pX(x′) , if X,Y are discrete.

1.3.2 Expectation

For a function g(x), the expectation of g(X) is

E(g(X)) =

∫
g(x)dF (x) =

{∫∞
−∞ g(x)p(x)dx, if X is continuous∑
x g(x)p(x), if X is discrete

.

Here are some useful properties and quantities related to the expected value:

• E(
∑k
j=1 cjgj(X)) =

∑k
j=1 cj · E(gj(Xi)).

• We often write µ = E(X) as the mean (expectation) of X.

• Var(X) = E((X − µ)2) is the variance of X.

• If X1, · · · , Xn are independent, then

E (X1 ·X2 · · ·Xn) = E(X1) · E(X2) · · ·E(Xn).

• If X1, · · · , Xn are independent, then

Var

(
n∑
i=1

aiXi

)
=

n∑
i=1

a2
i · Var(Xi).

• For two random variables X and Y with their mean being µX and µY and variance being σ2
X and σ2

Y .
The covariance

Cov(X,Y ) = E((X − µx)(Y − µy)) = E(XY )− µxµy
and the (Pearson’s) correlation

ρ(X,Y ) =
Cov(X,Y )

σxσy
.

The conditional expectation of Y given X is the random variable E(Y |X) = g(X) such that when X = x,
its value is

E(Y |X = x) =

∫
yp(y|x)dy,

where p(y|x) = p(x, y)/p(x). Note that when X and Y are independent,

E(XY ) = E(X)E(Y ), E(X|Y = y) = E(X).
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Law of total expectation:

E[E[Y |X]] =

∫
E[Y |X = x]pX(x)dx =

∫ ∫
ypY |X(y|x)pX(x)dxdy

=

∫ ∫
ypXY (x, y)dxdy = E[Y ].

Law of total variance:

Var(Y ) = E[Y 2]− E[Y ]2

= E[E(Y 2|X)]− E[E(Y |X)]2 (law of total expectation)

= E[Var(Y |X) + E(Y |X)2]− E[E(Y |X)]2 (definition of variance)

= E[Var(Y |X)] +
{
E[E(Y |X)2]− E[E(Y |X)]2

}
= E [Var(Y |X)] + Var (E[Y | X]) (definition of variance).

1.3.3 Moment Generating Function and Characteristic Function

Moment generating function (MGF) and characteristic function are powerful functions that describe the
underlying features of a random variable. The MGF of a RV X is

MX(t) = E(etX).

Note that MX may not exist. When MX exists in a neighborhood of 0, using the fact that

etX = 1 + tX +
(tX)2

2!
+

(tX)3

3!
+ · · · ,

we have

MX(t) = 1 + tµ1 +
t2µ2

2!
+
t3µ3

3!
+ · · · ,

where µj = E(Xj) is the j-th moment of X. Therefore,

E(Xj) = M (j)(0) =
djMX(t)

dtj

∣∣∣∣
t=0

Here you see how the moments of X is generated by the function MX .

For two random variables X,Y , if their MGFs are the same, then the two random variables have the same
CDF. Thus, MGFs can be used as a tool to determine if two random variables have the identical CDF. Note
that the MGF is related to the Laplace transform (actually, they are the same) and this may give you more
intuition why it is so powerful.

A more general function than MGF is the characteristic function. Let i be the imagination number. The
characteristic function of a RV X is

φX(t) = E(eitX).

When X is absolutely continuous, the characteristic function is the Fourier transform of the PDF. The
characteristic function always exists and when two RVs have the same characteristic function, the two RVs
have identical distribution.
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1.4 Convergence

Let F1, · · · , Fn, · · · be the corresponding CDFs of Z1, · · · , Zn, · · · . For a random variable Z with CDF F ,
we say that Zn converges in distribution (a.k.a. converge weakly or converge in law) to Z if for every x
that is continuous in F ,

lim
n→∞

Fn(x) = F (x).

In this case, we write

Zn
D→ Z, or Zn

d→ Z.

Namely, the CDF’s of the sequence of random variables converge to a the CDF of a fixed random variable.

For a sequence of random variables Z1, · · · , Zn, · · · , we say Zn converges in probability to another random
variable Z if for any ε > 0,

lim
n→∞

P (|Zn − Z| > ε) = 0

and we will write

Zn
P→ Z

For a sequence of random variables Z1, · · · , Zn, · · · , we say Zn converges almost surely to a random
variable Z if

P ( lim
n→∞

Zn = Z) = 1

or equivalently,

P ({ω : lim
n→∞

Zn(ω) = Z(ω)}) = 1.

We use the notation

Zn
a.s.→ Z

to denote convergence almost surely.

Note that almost surely convergence implies convergence in probability. Convergence in probability implies
convergence in distribution.

In many cases, convergence in probability or almost surely converge occurs when a sequence of RVs converging
toward a fixed number. In this case, we will write (assuming that µ is the target of convergence)

Zn
P→ µ, Zn

a.s.→ µ.

Later we will see that the famous Law of Large Number is describing the convergence toward a fixed number.

Examples.

• Let {X1, X2, · · · , } be a sequence of random variables such that Xn ∼ N
(
0, 1 + 1

n

)
. Then Xn converges

in distribution to N(0, 1).

Continuous mapping theorem: Let g be a continuous function.

• If a sequence of random variables Xn
D→ X, then g(Xn)

D→ g(X).

• If a sequence of random variables Xn
p→ X, then g(Xn)

p→ g(X).
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Slutsky’s theorem: Let {Xn : n = 1, 2, · · · } and {Yn : n = 1, 2, · · · } be two sequences of RVs such that

Xn
D→ X and Yn

p→ c, where X is a RV c is a constant. Then

Xn + Yn
D→ X + c

XnYn
D→ cX

Xn/Yn
D→ X/c (if c 6= 0).

We will these two theorems very frequently when we are talking about the maximum likelihood estimator.

Why do we need these notions of convergences? The convergence in probability is related to the concept
of statistical consistency. An estimator is statistically consistent if it converges in probability toward its
target population quantity. The convergence in distribution is often used to construct a confidence interval
or perform a hypothesis test.

1.4.1 Convergence theory

We write X1, · · · , Xn ∼ F when X1, · · · , Xn are IID (independently, identically distributed) from a CDF F .
In this case, X1, · · · , Xn is called a random sample.

Theorem 1.1 (Law of Large Number) Let X1, · · · , Xn ∼ F and µ = E(X1). If E|X1| <∞, the sample
average

X̄n =
1

n

n∑
i=1

Xi

converges in probability to µ. i.e.,
X̄n

a.s→ µ.

The above theorem is also known as Kolmogorov’s Strong Law of Large Numbers.

Theorem 1.2 (Central Limit Theorem) Let X1, · · · , Xn ∼ F and µ = E(X1) and σ2 = Var(X1) < ∞.
Let X̄n be the sample average. Then

√
n

(
X̄n − µ
σ

)
D→ N(0, 1).

Note that N(0, 1) is also called standard normal random variable.

Note that there are other versions of central limit theorem that allows dependent RVs or infinite variance
using the idea of ‘triangular array’ (also known as the Lindeberg-Feller Theorem). However, the details are
beyond the scope of this course so we will not pursue it here.

In addition to the above two theorems, we often use the concentration inequality to obtain convergence in
probability. Let {Xn : n = 1, 2, · · · } be a sequence of RVs. For a given ε > 0, the concentration inequality
aims at finding the function φn(ε) such that

P (|Xn − E(Xn)| > ε) ≤ φn(ε)

and φn(ε) → 0. This automatically gives us convergence in probability. Moreover, the convergence rate of
φn(ε) with respect to n is a central quantity that describes how fast Xn converges toward its mean.
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Theorem 1.3 (Markov’s inequality) Let X be a non-negative RV. Then for any ε > 0,

P (X ≥ ε) ≤ E(X)

ε
.

Example: concentration of a Gaussian mean. The Markov’s inequality implies a useful bound on
describing how fast the sample mean of a Gaussian converges to the population mean. For simplicity, we
consider a sequence of mean 0 Gaussians: X1, · · · , Xn ∼ N(0, σ2). Let X̄n = 1

n

∑n
i=1Xi be the sample

mean. It is known that X̄n ∼ N(0, σ2/n). Then

P (X̄n > ε) = P (eX̄n > eε)

= P (esX̄n > esε)

≤ E(esX̄n)

esε
by Markov’s inequality

≤ e 1
2nσ

2s2−sε by the MGF of Gaussian

for any positive number s. In the exponent, it is a quadratic function of s and the maximal occurs at s = nε
σ2 ,

leading to

P (X̄n > ε) ≤ e−
nε2

2σ2 .

The same bound holds for the other direction P (X̄n < −ε) ≤ e−
nε2

2σ2 . So we conclude

P (|X̄n| > ε) ≤ 2e−
nε2

2σ2

or more generally,

P (|X̄n − E(X1)| > ε) ≤ 2e−
nε2

2σ2 .

A bound like the above is often referred to as a concentration inequality.

Theorem 1.4 (Chebyshev’s inequality) Let X be a RV with finite variance. Then for any ε > 0,

P (|X − E(X)| ≥ ε) ≤ Var(X)

ε2
.

Let X1, · · · , Xn ∼ F be a random sample such that σ2 = Var(X1). Using the Chebyshev’s inequality, we
know that the sample average X̄n has a concentration inequality:

P (|X̄n − E(X̄n)| ≥ ε) ≤ σ2

nε2
.

However, when the RVs are bounded, there is a stronger notion of convergence, as described in the following
theorem.

Theorem 1.5 (Hoeffding’s inequality) Let X1, · · · , Xn be IID RVs such that 0 ≤ X1 ≤ 1 and let X̄n be
the sample average. Then for any ε > 0,

P (|X̄n − E(X̄n)| ≥ ε) ≤ 2e−2nε2 .
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Hoeffding’s inequality gives a concentration of the order of exponential (actually it is often called a Gaussian
rate) so the convergence rate is much faster than the one given by the Chebyshev’s inequality. Obtaining
such an exponential rate is useful for analyzing the property of an estimator. Many modern statistical topics,
such as high-dimensional problem, nonparametric inference, semi-parametric inference, and empirical risk
minimization all rely on a convergence rate of this form.

Note that the exponential rate may also be used to obtain an almost sure convergence via the Borel-Cantelli
Lemma.

Example: consistency of estimating a high-dimensional proportion. To see how the Hoeffding’s
inequality is useful, we consider the problem of estimating the proportion of several binary variables. Suppose
that we observe IID observations

X1, · · · , Xn ∈ {0, 1}d.

Xij = 1 can be interpreted as the i-th individual response ‘Yes’ in j-th question. We are interested in
estimating the proportion vector π ∈ [0, 1]d such that πj = P (Xij = 1) is the proportion of ‘Yes’ response in
j-th question in the population. A simple estimator is the sample proportion π̂ = (π̂1, · · · , π̂d)T such that

π̂j =
1

n

n∑
i=1

Xij .

When d is much smaller than n, it is easy to see that this is a good estimator. However, if d = dn →∞ with
n → ∞, will π̂ still be a good estimator of π? To define a good estimator, we mean that every proportion
can be estimated accurately. A simple way to quantify this is the vector max norm:

‖π̂ − π‖max = max
j=1,··· ,d

|π̂j − πj |.

We consider the problem of estimating πj first. It is easy to see that by the Hoeffding’s inequality,

P (|π̂j − πj | > ε) ≤ 2e−2nε2 .

Thus,

P (‖π̂ − π‖max > ε) = P

(
max

j=1,··· ,d
|π̂j − πj | > ε

)
≤

d∑
j=1

P (|π̂j − πj | > ε)

≤ 2de−2nε2 .

(1.1)

Thus, as long as 2de−2nε2 → 0 for any fixed ε, we have the statistical consistency. This implies that we need

log d

n
→ 0,

which allows the number of questions/variables to increase a lot faster than the sample size n!

1.5 Estimators and Estimation Theory

Let X1, · · · , Xn ∼ F be a random sample. Here we can interpret F as the population distribution we are
sampling from (that’s why we are generating data from this distribution). Any numerical quantity (or even
non-numerical quantity) of F that we are interested in is called the parameter of interest. For instance,
the parameter of interest can be the mean of F , the median of F , standard deviation of F , first quartile of
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F , ... etc. The parameter of interest can even be P (X ≥ t) = 1 − F (t) = S(t). The function S(t) is called
the survival function, which is a central topic in biostatistics and medical research.

When we know (or assume) that F is a certain distribution with some parameters, then the parameter of
interest can be the parameter describing that distribution. For instance, if we assume F is an exponential
distribution with an unknown parameter λ. Then this unknown parameter λ might be the parameter of
interest.

Most of the statistical analysis is concerned with the following question:

“given the parameter of interest, how can I use the random sample to infer it?”

Let θ = θ(F ) be the parameter of interest and let θ̂n be a statistic (a function of the random sample

X1, · · · , Xn) that we use to estimate θ. In this case, θ̂n is called an estimator. For an estimator, there are
two important quantities measuring its quality. The first quantity is the bias:

Bias(θ̂n) = E(θ̂n)− θ,

which captures the systematic deviation of the estimator from its target. The other quantity is the variance
Var(θ̂n), which measures the size of stochastic fluctuation.

Example. Let X1, · · · , Xn ∼ F and µ = E(X1) and σ2 = Var(X). Assume the parameter of interest is the
population mean µ. Then a natural estimator is the sample average µ̂n = X̄n. Using this estimator, then

bias(µ̂n) = µ− µ = 0, Var(µ̂n) =
σ2

n
.

Therefore, when n→∞, both bias and variance converge to 0. Thus, we say µ̂n is a consistent estimator

of µ. Formally, an estimator θ̂n is called a consistent estimator of θ if θ̂n
P→ θ.

The following lemma is a common approach to prove consistency:

Lemma 1.6 Let θ̂n be an estimator of θ. If bias(θ̂n) → 0 and Var(θ̂n) → 0, then θ̂n
P→ θ. i.e., θ̂n is a

consistent estimator of θ.

In many statistical analysis, a common measure of the quality of the estimator is the mean square error
(MSE), which is defined as

MSE(θ̂n) = MSE(θ̂n, θ) = E
(

(θ̂n − θ)2
)
.

By simple algebra, the MSE of θ̂n equals

MSE(θ̂n, θ) = E
(

(θ̂n − θ)2
)

= E
(

(θ̂n − E(θ̂n) + E(θ̂n)− θ)2
)

= E
(

(θ̂n − E(θ̂n))2
)

︸ ︷︷ ︸
=Var(θ̂n)

+2E
(
θ̂n − E(θ̂n)

)
︸ ︷︷ ︸

=0

·(E(θ̂n)− θ) +

E(θ̂n)− θ︸ ︷︷ ︸
=bias(θ̂n)


2

= Var(θ̂n) + bias2(θ̂n).

Namely, the MSE of an estimator is the variance plus the square of bias. This decomposition is also known
as the bias-variance tradeoff (or bias-variance decomposition). By the Markov inequality,

MSE(θ̂n, θ)→ 0 =⇒ θ̂n
P→ θ.
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i.e., if an estimator has MSE converging to 0, then it is a consistent estimator. The convergence of MSE is
related to the L2 convergence in probability theory.

Note that we write θ = θ(F ) for the parameter of interest because θ is a quantity derived from the population
distribution F . Thus, we may say that the parameter of interest θ is a ‘functional’ (function of function; the
input is a function, and the output is a real number).

1.6 OP and oP Notations

For a sequence of numbers an (indexed by n), we write an = o(1) if an → 0 when n → ∞. For another
sequence bn indexed by n, we write an = o(bn) if an/bn = o(1).

For a sequence of numbers an, we write an = O(1) if for all large n, there exists a constant C such that
|an| ≤ C. For another sequence bn, we write an = O(bn) if an/bn = O(1).

Examples.

• Let an = 2
n . Then an = o(1) and an = O

(
1
n

)
.

• Let bn = n+ 5 + log n. Then bn = O(n) and bn = o(n2) and bn = o(n3).

• Let cn = 1000n+ 10−10n2. Then cn = O(n2) and cn = o(n2 · log n).

Essentially, the big O and small o notation give us a way to compare the leading convergence/divergence
rate of a sequence of (non-random) numbers.

The OP and oP are similar notations to O and o but are designed for random numbers. For a sequence of
random variables Xn, we write Xn = oP (1) if for any ε > 0,

P (|Xn| > ε)→ 0

when n → ∞. Namely, P (|Xn| > ε) = o(1) for any ε > 0. Let an be a nonrandom sequence, we write
Xn = oP (an) if Xn/an = oP (1).

In the case of OP , we write Xn = OP (1) if for every ε > 0, there exists a constant C such that

P (|Xn| > C) ≤ ε.

We write Xn = OP (an) if Xn/an = OP (1).

Examples.

• Let Xn be an R.V. (random variable) from a Exponential distribution with λ = n. Then Xn = OP ( 1
n )

• Let Yn be an R.V from a normal distribution with mean 0 and variance n2. Then Yn = OP (n) and
Yn = oP (n2).

• Let An be an R.V. from a normal distribution with mean 0 and variance 10100 · n2 and Bn be an R.V.
from a normal distribution with mean 0 and variance 0.1 · n4. Then An +Bn = OP (n2).

If we have a sequence of random variables Xn = Yn + an, where Yn is random and an is non-random such
that Yn = OP (bn) and an = O(cn). Then we write

Xn = OP (bn) +O(cn).

Examples.
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• Let An be an R.V. from a uniform distribution over the interval [n2 − 2n, n2 + 2n]. Then An =
O(n2) +OP (n).

• Let Xn be an R.V from a normal distribution with mean log n and variance 10100, then Xn = O(log n)+
OP (1).

The following lemma is an important property for a sequence of random variables Xn.

Lemma 1.7 Let Xn be a sequence of random variables. If there exists a sequence of numbers an, bn such
that

|E(Xn)| ≤ an, Var(Xn) ≤ b2n.
Then

Xn = O(an) +OP (bn).

Examples.

• Let X1, · · · , Xn be IID from Exp(5). Then the sample average

X̄n = O(1) +OP (1/
√
n).

• Let Y1, · · · , Yn be IID from N(5 log n, 1). Then the sample average

Ȳn = O(log n) +OP (1/
√
n).

Application.

• Let Xn be a sequence of random variables that are uniformly distributed over [−n2, n2]. It is easy to
see that |Xn| ≤ n2 so E(|Xn|) ≤ n2. Then by Markov’s inequality,

P (|Xn| ≥ t) ≤
E(|Xn|)

t
≤ n2

t
.

Let Yn = 1
n2Xn. Then

P (|Yn| ≥ t) = P

(
1

n2
|Xn| ≥ t

)
= P (|Xn| ≥ n2 · t) ≤ n2

n2 · t
= t

for any positive t. This implies Yn = OP (1) so Xn = OP (n2).

• The Markov inequality and Chebeshev’s inequality are good tools for deriving the OP bound. For a
sequence of random variables {Xn : n = 1, · · · }, the Markov inequality implies

Xn = OP (E(|Xn|)).

The Chebeshev’s inequality implies
Xn = OP (

√
Var(Xn))

if E(Xn) = 0.

• If we obtain a bound like equation (1.1), we can use OP notation to elegantly denote it as

‖π̂ − π‖max = OP

(√
log d

n

)
.
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