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Lecture 14: Causal inference
Instructor: Yen-Chi Chen

14.1 Potential outcome model

The causal inference is a very popular topic in modern statistics and machine learning research. To draw
causal conclusion in a statistical models, we need to setup a framework for making causal statements. There
are two popular frameworks: the potential outcome model and the graphical model. We first introduce the
potential outcome model.

Let Y ∈ R be the response variable/variable of interest and A ∈ {0, 1} be the binary treatment. A = 1 refers
to the case that the individual receive a treatment (treatment group) and A = 0 refers to the case that the
individual receive a placebo (control group). You can think of Y as a measure of health condition (such as
blood pressure) and the binary treatment A refers to weather this individual receives certain treatment or
not. The goal is to study the causal effect of A on Y .

Under this scenario, our data consists of pairs

(Y1, A1), · · · , (Yn, An),

where Yi is the outcome of the i-th individual and Ai is the treatment indicator of the i-th individual.

If the treatment A indeed has a causal effect on Y , then we should think of two versions of Y , denoted as
Y (0) and Y (1). Y (0) is the outcome variable if the individual does not receive any treatment (A = 0). Y (1)
is the outcome variable in the case that the individual receive a treatment (A = 1). The above model is
called the potential outcome model. Here is a key concept of the potential outcome model:

“Y |A = 0” = “Y (0)|A = 0”, “Y |A = 1” = “Y (1)|A = 1”.

Namely, given A = 0, we can replace Y by Y (0) and given A = 1, we can replace Y by Y (1).

In the potential outcome model, every individual has two outcomes variables. One is the observed outcome
that we can observe and the other is the potential outcome that we do not observe. For instance, suppose that
Ai = 0 (no treatment) then Yi = Yi(0) is the observed outcome. The other outcome Yi(1) is the potential
outcome of the response Yi (if the individual receive the treatment). Thus, we only observe one of the two
outcomes. Note that the observed response Yi = Yi(Ai).

The causal effect can be viewed as the distributional difference between random variables Y (1) and Y (0). A
simple summary of the difference is the mean difference, which is also known as the average treatment effect
(ATE):

τ = E(Y (1))− E(Y (0)).

So we will think of methods for estimating the ATE.

One may think of using the difference in conditional mean to estimate the ATE. Namely, we use the estimator

τ̂naive =

∑n
i=1 YiI(Ai = 1)∑n
i=1 I(Ai = 1)

−
∑n
i=1 YiI(Ai = 0)∑n
i=1 I(Ai = 0)

=

∑n
i=1 YiAi∑n
i=1Ai

−
∑n
i=1 Yi(1−Ai)∑n
i=1(1−Ai)

.
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However, this estimator may be biased if the response Yi(0), Yi(1) and A are dependent. For a concrete
example, suppose that a doctor always give a treatment to patients that look very sick and the treatment
only have a small effect. Then even if the treatment is effective, the averaged outcome of those who received
the treatment will still be lower than the averaged outcome of those without the treatment.

Thus, a common requirement to ensure that the native estimator converges to the ATE is

(Y (0), Y (1)) ⊥ A. (14.1)

The independence of the two versions of outcomes and the treatment assignment. Under this assumption
(and some other mild conditions such as the absolute mean exists and there is positive probability for an
individual receiving/not receiving a treatment), we have

τ̂naive
P→ τ.

In clinical trial, one scenario to ensure (Y (0), Y (1)) ⊥ A is the randomized-control trial : every individual is
randomly assigned to treatment or control without using any additional information about this individual.

To see why randomization (Yi(0), Yi(1)) ⊥ A makes the naive estimator work, note that E(Y |A = a) =
E(Y (a)|A = a) for a = 0, 1. Then under randomization

Y (1) ⊥ A⇒ E(Y |A = 1) = E(Y (1)|A = 1) = E(Y (1)),

Y (0) ⊥ A⇒ E(Y |A = 0) = E(Y (0)|A = 0) = E(Y (0)).

Thus,
τ = E(Y (1))− E(Y (0)) = E(Y |A = 1)− E(Y |A = 0)

and the right-hand sided is what τ̂naive is consistently estimating.

14.1.1 Relaxing randomization

In practice, the total randomization on the treatment may be very challenging or even unethical (this basically
requires that a doctor has to choose not to treat someone who is very sick when the randomized decision is
A = 0). And randomization is often note the case in an observational study. So we would like to think of
relaxing the condition (Yi(0), Yi(1)) ⊥ A.

One possible approach is to use the confounder (confounding variable) X. Namely, in our data, we not only
observe the outcome Y and the treatment A but also some additional information about each individual,
denoted as X (could be univariate or multivariate). So our data is

(Y1, A1, X1), · · · , (Yn, An, Xn).

In a medical study, X is often the demographic variables (gender, educational level, ...etc) but it could also
be a clinical variable of other diseases or health conditions.

We allow the outcomes (Yi(0), Yi(1)) and the treatment A to be dependent, but they are conditionally
independent given the observed confounding variable X. Namely,

(Y (0), Y (1)) ⊥ A|X. (14.2)

Under this assumption, we have

Y (1) ⊥ A|X ⇒ E(Y |A = 1, X) = E(Y (1)|A = 1, X) = E(Y (1)|X),

Y (0) ⊥ A|X ⇒ E(Y |A = 0, X) = E(Y (0)|A = 0, X) = E(Y (0)|X).
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• Regression adjusted estimator. By the law of total expectation, E(Y (a)) = E(E(Y (a)|X)) so we
can rewrite the ATE as

τ = E(Y (1))− E(Y (0)) = E(E(Y (1)|X))− E(E(Y (0)|X))

= E(E(Y |A = 1, X))− E(E(Y |A = 0, X)).
(14.3)

Let m1(x) = E(Y |A = 1, X = x) and m0(x) = E(Y |A = 0, X = x) be the regression function of the
treatment and the control groups. It is easy to see that they can be estimated using the group-specific
data (observations with A = 1 or A = 0). Then Equation (14.3) implies that the ATE can be written
as

τ = E(m1(X)−m0(X)).

Thus, let m̂1(x) and m̂0(x) be the regression estimator (you may use a parametric estimator or a
nonparametric estimator). Then we can estimate the ATE using

τ̂RA =
1

n

n∑
i=1

(m̂1(Xi)− m̂0(Xi)).

• Inverse probability weighted (IPW) estimator. The IPW uses an alternative property of (14.2)
that the conditional expectation

E(Y I(A = a)|X) = E(E(Y I(A = a)|A,X)|X) = E(E(Y (a)|X)︸ ︷︷ ︸
=ω(X)

I(A = a)|X)

= E(Y (a)|X)P (A = a|X).

The quantity πa(X) = P (A = a|X) is called the propensity score, which can be easily estimated (by
treating A as the response variable and apply a regression with respect to X). The above equation
implies

E(Y (a)) = E(E(Y (a)|X)) = E
{
E(Y I(A = a)|X)

πa(X)

}
= E

{
E
{
Y I(A = a)

πa(X)
|X
}}

= E
{
Y I(A = a)

πa(X)

}
,

which implies that following estimator of E(Y (a)):

Ê(Y (a)) =
1

n

n∑
i=1

YiI(Ai = a)

πa(Xi)
.

With the estimated propensity scores π̂a(x), the ATE can be estimated using

τ̂IPW =
1

n

n∑
i=1

(
YiI(Ai = 1)

π̂1(Xi)
− YiI(Ai = 0)

π̂0(Xi)

)
.

This estimator is called IPW because we inversely weighting each response Yi according to the propen-
sity score π̂a(Xi).

• Doubly-robust estimator. We may combine both RA and IPW estimators to form a doubly-robust
estimator. The key insight is as follows. We can rewrite E(Y (a)) as

E(Y (a)) = E
{

(Y −ma(X))I(A = a)

πa(X)
+ma(X)

}
= E

{
1

πa(X)
[Y I(A = a) +ma(X)(πa(X)− I(A = a))]

}
.
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Her is an interesting property about this equality. If the regression function ma(X) = E(Y |A = a,X),

then even if the propensity score πa(x) 6= P (A = a|X = x), we still have E
{

(Y−ma(X))I(A=a)
πa(X)

}
= 0

so the first equality gives E(Y (a)) = E(ma(X)), which is still consistent. On the other hand, if the
propensity score πa(x) = P (A = a|X = x) but the regression function is mis-specified ma(X) 6=
E(Y |A = a,X), we still have E

(
1

πa(X)ma(X)(πa(X)− I(A = a))
)

= 0 so the second equality leads

to E(Y (a)) = E
{

1
πa(X)Y I(A = a)

}
, again still consistent. Thus, either the regression function or the

propensity score is correctly specified, we have a consistent estimator. This means that our estimator
is doubly-robust to the models we are using and the corresponding estimator is called a doubly-robust
estimator.

14.1.2 Local average treatment effect and instrumental variable

Some useful references:

• http://www.cedlas-er.org/sites/default/files/cer_ien_activity_files/miami_late.pdf

• http://ec2-184-72-107-21.compute-1.amazonaws.com/_assets/files/events/slides_late

In many medical research, although we randomized the treatment assignment to participants, they may not
comply with what we ask them to do. This creates a problem when we are attempting to estimate the causal
effect since the treatment assignment and the actual treatment are different.

One possible solution to this problem is to introduce the concept of instrumental variable (IV) and view
the treatment assignment as an instrument and define a separate variable for the actual treatment that is
being used. Again, let Y denote the outcome variable of interest and A denote the actual treatment and
Z denote the instrument (the assigned treatment). For simplicity, assume that both A and Z are binary.
A = 1 denotes the case where the individual receive a treatment and Z = 1 denotes the case where we assign
the individual to receive a treatment (but the individual may refuse to take it, leading to the case A = 0
and Z = 1). On the other hand, A = 0 is the control case and Z = 0 is the assignment that the individual
is assigned to be in the control group (it could happen that A = 1 and Z = 0–the individual still takes the
treatment even if we assign him/her not to). So our data is

(Y1, A1, Z1), · · · , (Yn, An, Zn).

In this case, the actual treatment A has two potential outcome A(0) and A(1). According to the potential
outcome, we can definite the individual to 4 categories: Note that we only get to observe A(z)|Z = z, namely,

(A(0), A(1))
1,1 Always-taker
0,1 Complier
0,0 Never-taker
1,0 Defier

“A|Z = 0” = “A(0)|Z = 0”, “A|Z = 1” = “A(1)|Z = 1”.

In this case, the outcome variable has 4 potential outcomes, depending on A,Z: Y (a, z). We only have
access to observe Y (a, z)|A = a, Z = z, namely, one of the four potential outcomes:

“Y |A = 0, Z = 0” = “Y (0, 0)|A = 0, Z = 0”, “Y |A = 0, Z = 1” = “Y (0, 1)|A = 0, Z = 1”,

“Y |A = 1, Z = 0” = “Y (1, 0)|A = 1, Z = 0”, “Y |A = 1, Z = 1” = “Y (1, 1)|A = 1, Z = 1”.

http://www.cedlas-er.org/sites/default/files/cer_ien_activity_files/miami_late.pdf
http://ec2-184-72-107-21.compute-1.amazonaws.com/_assets/files/events/slides_late
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In this case, we often assumed that

(Exclusion Restriction) Y (a, z) = Y (a, z′) for all a, z, z′. (14.4)

Namely, the IV has no effect on the potential outcomes–the difference is due to the actual treatment. This
reduces the 4 potential outcomes into 2 potential outcomes {Y (a) : a = 0, 1}. Also, the randomization of Z
can be viewed as the condition

(Randomization) Z ⊥ Y (0), Y (1), A(0), A(1). (14.5)

Due to the problem that the actual treatment and the potential outcomes may be dependent (we only
randomized at the assignment Z), it is hard to identify meaningful causal effect without making assumptions.
Identifying the ATE is not feasible with the above two conditions. However, we are able to identify the local
average treatment effect (LATE)

τLATE = E(Y (1)− Y (0)|complier).

The LATE measures the causal effect on those who complied with our assignment. You can show that under
Exclusion Restriction and Randomization1, the LATE can be written as

τLATE =
E(Y |Z = 1)− E(Y |Z = 0)

E(A|Z = 1)− E(A|Z = 0)
, (14.6)

and we can easily each expectation using conditional mean.

14.1.3 Dynamic treatment regime

The dynamic treatment regime is a popular approach to the precision medicine (also known as the person-
alized medicine). It has received a lot of attentions these days from the causal inference community. Here
we briefly discuss its basic concept and give a high-level introduction about how the method works.

The dynamic treatment regime considers the problem where we have multiple time points that we need to
make a decision on the treatment that an individual receive. Meanwhile, there will be new information
coming up before we make a new treatment assignment.

Consider the simplest case where we have two time points so we have two possible treatment assignment
A1, A2 ∈ {0, 1} that are both binary (it can be easily generalized to multiple categories). When the individual
enters the study, we collect their baseline information, denoted as X. Then we make the decision on the
first treatment A1 = a1(X) using the baseline information. After some time, the individual comes back and
we measure his/her first outcome variable Y1. Then we use all the information available (i.e., X,A1, Y1) to
make a second treatment A2 = a2(X,A1, Y1). After a while, the individual comes back and we collect the
final information on the outcome variable Y2. The goal is to maximizes the expected outcome Y2 by choosing
the optimal treatments a1, a2. In this case, (a1, a2) is called the treatment regime.

The techniques used in solving a dynamic treatment regime problem involve ideas from 1. classification, 2.
Markov chains, and 3. dynamic programming.

To analyze this problem, we introduce an objective/utility function of a1, a2:

V (a1, a2) = E(Y2|A1 = a1, A2 = a2),

1See https://faculty.washington.edu/yenchic/short_note/note_IV.pdf

https://faculty.washington.edu/yenchic/short_note/note_IV.pdf
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which is the expected (final) outcome of the study variable Y2 under a treatment regime (a1, a2) (sometimes
it is called a policy in the bandit problem). The best treatment regime is

(a∗1, a
∗
2) = argmaxa1,a2V (a1, a2).

Note that a∗1 = a∗1(X), a∗2 = a∗2(Y1, A1, X).

We can further expand V (a1, a2) as

V (a1, a2) = E(Y2|A1 = a1, A2 = a2)

= E(E(Y2|A1 = a1, A2 = a2, X, Y1))

=

∫ ∫
E(Y2|A1 = a1, A2 = a2, X = x, Y1 = y1)p(y1|A1 = a1, X = x)dy1p(x)dx.

The above equality shows a very interesting feature–the only part that involves a2 is in the conditional
expectation of Y2. Thus, the optimal treatment regime a∗2 will be the one that maximizes it, i.e.,

a∗2(Y1, a1, X) = argmaxa2E(Y2|A1 = a1, A2 = a2, X, Y1).

We can rewrite it as

a∗2(Y1, a1, X) =

{
1, if E(Y2|A1 = a1, A2 = 1, X, Y1) ≥ E(Y2|A1 = a1, A2 = 0, X, Y1)

0, if E(Y2|A1 = a1, A2 = 1, X, Y1) < E(Y2|A1 = a1, A2 = 0, X, Y1)
. (14.7)

With this, we can then rewrite the conditional expectation under the optimal treatment a∗2 as

ω2(a1, Y1, X) = E(Y2|A1 = a1, A2 = a∗2, X, Y1).

To obtain the optimal treatment of a1, we consider the case where the optimal a∗2 is used so the objective
function becomes

V (a1, a
∗
2) =

∫ ∫
E(Y2|A1 = a1, A2 = a∗2, X = x, Y1 = y1)p(y1|A1 = a1, X = x)dy1p(x)dx

=

∫ ∫
ω2(a1, Y1, X)p(y1|A1 = a1, X = x)dy1p(x)dx.

The only part that involves a1 is the integral∫
ω2(a1, Y1, X)p(y1|A1 = a1, X)dy1 = E(ω2(A1, Y1, X)|A1 = a1, X)

so the optimal treatment will be

a∗1 = argmaxa1E(ω2(A1, Y1, X)|A1 = a1, X).

Namely,

a∗1(X) =

{
1, if E(ω2(A1, Y1, X)|A1 = 1, X) ≥ E(ω2(A1, Y1, X)|A1 = 0, X)

0, if E(ω2(A1, Y1, X)|A1 = 1, X) < E(ω2(A1, Y1, X)|A1 = 0, X)
. (14.8)

As you can see, equation (14.8) is essentially a classifier. The difference is that here we do not have a label so
the loss is measured by a ‘random loss −Y1’ (Y1 is called the reward in the reinforcement learning literature).

With equations (14.8) and (14.7), we obtain the optimal treatment regime a∗1(X) and a∗2(Y1, a
∗
1(X), X). You

can easily generalize this idea to more time points using a similar derivation.
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Note that during our derivation, we start with solving the last time points. This idea is called dynamic
programming in computer science, which is how the term ‘dynamic’ appears in the dynamic treatment
regime problem.

This approach is popular in precision medicine because the optimal treatment incorporates both the indi-
vidual’s background information (X) and the information available along the study (Y1). The traditional
medicine is the case where the treatment only uses the clinical information of a disease without considering X
(and may not include Y1 in the future treatment). The dynamic treatment regime provides a new approach
to better treat each individual.

In practice, we will replace every ‘expectation’ by an estimated quantity. The estimator often relies on a
study where individuals have been assigned to different treatments at different time points. In a sense, these
individuals who contribute to the estimation procedure may not receive the optimal treatment. Sadly, this
is unavoidable to obtain an estimator.

Modeling strategies. The construction of an optimal treatment regime becomes estimating the conditional
expectations. This would be challenging when X is large (or when the number of treatment is large). One
common model people used in practice is to assume a parametric model on the conditional expectation. In
the case of using a linear model, we often assume that

E(Y2|A1 = a1, A2 = a2, X, Y1) = ωa1,a2 + γY1 + (A1δ1 +A2δ2 + β)TX,

where ωa1,a2 , γ ∈ R and δ1, δ2, β,X ∈ Rd. γ is the factor that determines how the outcome from the previous
time point is correlated with the current outcome. The two vectors δ1, δ2 are the change of slope due to the
treatments; they measure the interaction effect between the treatments and the background information.
Note that we allow the slope to change with respect to A1, A2. The fact that the slope can change implies
that the optimal decision will use information from X (you can show that if δ1 = δ2 = 0, the optimal decision
rule a∗2 will not involve X). For the conditional density of Y1 given A1 and X, a common model is to assume
a normal distribution with the mean changing with respect to A1 and X.

Many time points. When there are many time points, say T , time points, we have many random variables:

X,A1, Y1, A2, Y2, A3, Y3, · · · , AT , YT .

There will be a total of d + 2T variables (d is the number of variables in X). Even if d is small, the final
treatment A2 = a2(X,A1, Y1, · · · , YT−1) still relies on many variables. Estimating the optimal treatment
will be a challenging task. A possible remedy to this problem is to introduce some conditional independence
such that only the outcomes (and treatments) in the recent time points will affect the outcome at a specific
time point. Namely, Yt only depends on X and {(At−k, Yt−k) : k = 1, 2, · · · , s} for some s.

Here are some useful references about the dynamic treatment regime:

1. Murphy, S. A. (2003). Optimal dynamic treatment regimes. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 65(2), 331-355.
2. Moodie, E. E., Richardson, T. S., & Stephens, D. A. (2007). Demystifying optimal dynamic
treatment regimes. Biometrics, 63(2), 447-455.
3. Chakraborty, B., & Murphy, S. A. (2014). Dynamic treatment regimes. Annual review of
statistics and its application, 1, 447-464.

Interestingly, the dynamic treatment regime is closely related to two important topics in machine learning:
the bandit problem and the reinforcement learning. They both share similar theoretical techniques as the
dynamic treatment regime problems but the constraints and contexts are different.
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14.2 Conditional average treatment effect (CATE)

The conditional average treatment effect (CATE) is a very popular topic due to its application in precision
medicine (also known as personalized medicine). This concept is sometimes called heterogenous treatment
effect. We will use the potential outcome model with a binary treatment A for the CATE.

In a conventional setup, the CATE is

τ(x) = E(Y (1)− Y (0)|X = x).

We will make the standard ignorability assumption in the binary treatment that

(Y (1), Y (0)) ⊥ A|X. (14.9)

There are many ways for estimating the CATE. They rely on the following ‘nuisances’

ma(x) = E(Y |A = a,X = x)

πa(x) = P (A = a|X = x).

Here we describe some popular approaches.

14.2.1 S-Learner and T-Learner

S-Learner. The S-learner approach is the most straight foward approach. Under the ignorability assump-
tion,

τ(x) = E(Y (1)− Y (0)|X = x)

= E(Y (1)|X = x)− E(Y (0)|X = x)

= E(Y |A = 1, X = x)− E(Y |A = 0, X = x)

= m1(x)−m0(x).

Thus, S-learner’s idea is to estimate the regression function

ma(x) = E(Y |A = a,X = x)

by regressing Y on both X and A to obtain m̂a(x) and then use the difference m̂1(x)−m̂0(x) as the estimator.

T-Learner. The idea of T-learner is similar to S-learner. However, it is based on the fact that ma(x) is
essentially the regression model of Y on X under the sample with A = a. Thus, we first split the data
into D1,D0 where Da is those observation with A = a. For D1, we regress Y on X and obtain m̂1(x) and
similarly we obtain m̂0(x) by fitting another regression model on D0. The difference is then the estimator
of CATE.

As you can see, the S-learner and T-learner are very similar. The only difference is that S-learner fit a single
model jointly for both X and A while T-learner fit two separate models.

14.2.2 X-Learner

The X-learner is a modified version of the T-learner from the following paper:
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[KSBY2019] Künzel, S. R., Sekhon, J. S., Bickel, P. J., & Yu, B. (2019). Metalearners for
estimating heterogeneous treatment effects using machine learning. Proceedings of the national
academy of sciences, 116(10), 4156-4165.

It is based on a localized version of the CATE:

τa(x) = E(Y −ma(X)|X = x).

With the above quantity, you can show that the CATE can be written as

τ(x) = π0(x)τ1(x) + π1(x)τ0(x).

The nuisance τa(x) can be obtained by regression Y − ma(X) versus X. The estimation procedure is
summarized as follows.

1. Split the data into D1,D0 based on the treatment A = a.

2. Similar to T-learner, we obtain m̂a(x) by regressing Y to X under sample Da.

3. For observations in D1, we compute a pseudo-response Ỹ (1) = Y − µ̂0(X). Similarly, we obtain
Ỹ (0) = µ̂1(X)− Y for D0. This avoids using the data twice.

4. We estimate τ̂1(x) by regressing Ỹ (1) on X in the sample D1 and similarly for τ̂0(x)

5. Estimate CATE by τ̂(x) = π̂0(x)τ̂1(x) + π̂1(x)τ̂0(x).

14.2.3 R-Learner and U-Learner

The R- and U-learners are built on a slightly different generative model. We start with a regression model
on the potential outcomes:

Y (1) = m1(X) + ε1(X), Y (0) = m0(X) + ε0(X).

Also, using the fact that Y = AY (1) + (1−A)Y (0), we have

m(x) = E(Y |X = x) = π1(x)m1(x) + (1− π1(x))m0(x).

As a result, we obtain

Y −m(X) = AY (1) + (1−A)Y (0)− π1(X)m1(X)− (1− π1(X))m0(X)

= Y (0)−m0(X) +A(Y (1)− Y (0))− π1(X)(m1(X)−m0(X))

= ε0(X) + (A− π1(X))τ(X) +A(ε1(X) + ε0(X))

= (A− π1(X))τ(X) + ε(X,A),

where ε(X,A) = ε0(X) +A(ε1(X) + ε0(X)) is a conditional mean 0 quantity.

The equation
Y −m(X) = (A− π1(X))τ(X) + ε(X,A) (14.10)

is the key to the R- and U-learners. Both learners will first use the whole data to estimate m̂(x) and π̂1(x),
which can be done by any conventional approaches. Equation (14.10) is first appeared in

Robinson, P. M. (1988). Root-N-consistent semiparametric regression. Econometrica: Journal
of the Econometric Society, 931-954.
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R-learner. Because both Y −m(X) and A − π1(X) can be estimated from the data. The R-learner tries
to find τ(X) by minimizing the following R-learning loss function:

Ln(f) =
1

n

n∑
i=1

[(Yi − m̂(Xi))− (Ai − π̂1(Xi))f(Xi)]
2
.

We can also add a penalization to the above loss function to regularize the estimator as well. See the following
paper for more details:

Nie, X., & Wager, S. (2021). Quasi-oracle estimation of heterogeneous treatment effects. Biometrika,
108(2), 299-319.

As a concrete example, we may model f as a linear function and use L1 penalty, which leads to

β̂λ = argminβ
1

n

n∑
i=1

[
(Yi − m̂(Xi))− (Ai − π̂1(Xi))β

TXi

]2
+ λ‖β‖1.

The CATE estimator is β̂Tλ x. Note that here we include the constant 1 in the covariate (intercept term of
the linear model).

U-learner. U-learner is a method proposed in [KSBY2019]. Instead of viewing the problem as a minimiza-
tion problem, the U-learner further define

U =
Y −m(X)

A− π1(X)

and use the fact that E(U |X) = τ(X). Thus, based on the nuisance estimators m̂(x) and π̂1(x), we then
compute

Ûi =
Yi − m̂(Xi)

Ai − π̂1(Xi)

and then regress Ûi with Xi to obtain τ̂(x).

14.3 Graphical models

Some useful references:

• http://mlg.eng.cam.ac.uk/zoubin/tut06/cambridge_causality.pdf

• https://stat.ethz.ch/~mmarloes/meetings/slides3a.pdf

Now we discuss another framework for causal inference: the graphical model approach. The graphical model
approach is particularly useful when the treatment variable is non-binary and even continuous. In the
graphical model, the causal effect is defined through the do operator.

Suppose that we have several variables V1, · · · , Vd of interest and we use the DAG to specify the underlying
generating model (Bayesian network). To simplify the problem, suppose that we are interested in estimating
the causal effect V1 on the variable V2. We often relabel the variables as V1 = X, V2 = Y , and make the
rest of them as Z1, · · · , Zm, where m = d − 2. With this notation, the parameter of interest is the causal
effect from X on Y . Let p(x, y, z1, · · · , zm) be the joint PDF (it can be generalized to PMF as well) and

http://mlg.eng.cam.ac.uk/zoubin/tut06/cambridge_causality.pdf
https://stat.ethz.ch/~mmarloes/meetings/slides3a.pdf
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Figure 14.1: Left: original DAG G. Right: the DAG after the do(x) operation.

G = (V,E) where V = (V1, · · · , Vd) = (X,Y, Z1, · · · , Zm) and Eij = 1 if there is a directed arrow from node
i to node j. The DAG implies

p(x, y, z1, · · · , zm) = p(x|PAx)p(y|PAy)

m∏
j=1

p(zj |PAzj ), (14.11)

where PAv denotes the set of parent nodes of variable v.

Defining the causal effect from X on Y is not easy because they may be interacting with variables Z1, · · · , Zm.
The do operator provides a solution to this. The do operator defines the causal effect using the conditional
PDF

p(y|do(x)) ≡ p(y|do(X = x)). (14.12)

We often define τ(x) = ∂
∂xE(Y |do(X) = x) = ∂

∂x

∫
yp(y|do(x))dy as the causal effect on Y from X. Note

that in general,
p(y|do(x)) 6= p(y|x)

except for the simple case where there is only an arrow X → Y and no other arrows toward Y .

The conditional PDF p(y|do(X = x)) is interpreted as: we change system in a way that the variable X is
set to x, this leads to a density function of Y and this density function is p(y|do(x)).

Given a DAG G = (V,E) where V = (X,Y, Z1, · · · , Zm), the do operation defines a new DAG G′ = (V,E) =
G(do(x)) = (V,E(do(x))) such that all directed arrows to X is removed. This leads to a new factorization
of the joint PDF:

p(do(x), y, z1, · · · , zm) = p(do(x))p(y|PAy)

m∏
j=1

p(zj |PAzj ) (14.13)

or the corresponding conditional density

p(y, z1, · · · , zm|do(x)) = p(y|PAy)

m∏
j=1

p(zj |PAzj ). (14.14)

Equation (14.14) is known as g-formula (by J. Robins), or truncated factorization formula (by J. Pearl).

If we use the DAG to interpret the result, the new DAG G′ preserves all causal effects except for the ones
that are affecting X. This is exactly how we (commonly) think about the causal effect due to X–we keep
the entire system as is except we add an intervention at variable X that sets it to be x.

The power of equation (14.14) is that the left-hand-side p(y, z1, · · · , zm|do(x)) is the conditional density due
to the do operation do(x), which is a theoretical entity, and the right-hand-side is what we can identify using
the original DAG. With equation (14.14), we can identify equation (14.12) using

p(y|do(x)) =

∫
p(y, z1, · · · , zm|do(x))dz1 · · · dzm =

∫
p(y|PAy)

m∏
j=1

p(zj |PAzj )dz1 · · · dzm



14-12 Lecture 14: Causal inference

X Y

Z1 Z2

Z3 Z4

X Y

Z1 Z2

Z3 Z4

Figure 14.2: A more complicated DAG. Left: original DAG G. Right: the DAG after the do(x) operation.

and τ(x) accordingly.

Note that in this case, we often assume that the DAG is known so we can estimate all the conditional
densities p(zj |PAzj ) (and p(y|PAy)) using the data. Equation (14.14) shows that we can identify the causal
effect from the data.

Example 1. In the example of Figure 14.1, we have an original DAG in the left and a new DAG due to
do(x). The original DAG implies a factorization of the joint PDF

p(x, y, z) = p(x|z)p(y|x, z)p(z).

All the three conditionals can be estimated/identified from the data if we know this DAG in advance. Using
the g-formula (equation (14.14)), the do(x) operation leads to a conditional density

p(y, z|do(x)) = p(y|x, z)p(z),

which is still identifiable from the three conditionals provided in the original DAG.

Example 2. In Figure 14.2, we provide a more complicated example where there are 6 variables. The left
panel displays the original DAG and the right panel displays the DAG after a do(x) operation. The original
DAG implies the following factorization

p(x, y, z1, z2, z3, z4) = p(z1)p(z2|z1)p(x|z1, z2)p(z3|x)p(z4|z1, z3)p(y|x, z2, z3).

All these conditionals are identifiable from the data. After the do(x) operation, the conditional density is

p(y, z1, z2, z3, z4|do(x)) = p(z1)p(z2|z1)p(z3|x)p(z4|z1, z3)p(y|x, z2, z3).

Each element in the right-hand-sided is identifiable so we can identify the entire conditional density. Note
that if we are only interested in p(y|do(x)), we can write it as

p(y|do(x)) =

∫
p(y, z1, z2, z3, z4|do(x))dz1dz2dz3dz4

=

∫
p(y|x, z2, z3)p(z1)p(z2|z1)p(z3|x)

(∫
p(z4|z1, z3)dz4

)
dz1dz2dz3

=

∫
p(y|x, z2, z3)p(z1)p(z2|z1)p(z3|x)dz1dz2dz3.

So we only need to estimate these 4 conditionals. In a sense, we do not need to consider estimating any
effect of Z4 (since it does not have a causal effect onto Y ). Using the DAG induced by the do operator, we
have

Z3 ⊥ Z1, Z2|X, Y ⊥ X,Z1|Z2, Z3, Z2 ⊥ X|Z1,
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we can further write the above equality as

p(y|do(x)) =

∫
p(y|x, z2, z3)p(z1)p(z2|z1) p(z3|x)︸ ︷︷ ︸

=p(z3|z2,x)

dz1dz2dz3

=

∫
p(y, z3|x, z2)p(z1)p(z2|z1)dz1dz2dz3

=

∫
p(y|x, z2)︸ ︷︷ ︸

=p(y|x,z1,z2)

p(z1) p(z2|z1)︸ ︷︷ ︸
=p(z2|z1,x)

dz1dz2

=

∫
p(y, z2|x, z1)p(z1)dz2dz1

=

∫
p(y|x, z1)p(z1)dz1.

The conditional density due to the do operator is essentially the conditional density after adjusting p(z1) so
variable Z1 is called adjustment set ; see Definition 3.6 of the following paper:

Maathuis, M. H., & Colombo, D. (2015). A generalized back-door criterion. The Annals of
Statistics, 43(3), 1060-1088.

The adjustment set has offers an elegant way to further simplify the g-formula–the conditional density of Y
given the do operator do(x) is the same as we adjust the conditional density of Y given X and the variables
in the adjustment sets. In a sense, the adjustment set represents the possible sources of interaction from
other variables onto the causal effect from X onto Y . So we have to adjust for these variables to obtain the
desired causal effect.

Formally, speaking the collection of random variables W ⊂ {Z1, · · · , Zn} is called an adjustment set relative
to (X,Y ) in the DAG if

p(y|do(x)) =

{
p(y|x), if W = ∅∫
p(y|x,w)p(w)dw, if W 6= ∅

In a sense, the adjustment set behaves like confounders when we are investigating the causal effect from X
to Y .

Note that all the above analysis is relied on the fact that we know the DAG in advance. This is possible if
we have additional scientific knowledge about each variable. However, in a general observational study, all
we can estimate (using the data) is the conditional independence, which is an undirected graph. We may
have some partial knowledge about each edge, leading to a mixed graph (a graph with some directed and
some undirected edges). Here are some papers related to finding the adjustment sets for different types of
graphs (different types of graphs representing situations where we have different prior knowledge about the
relations among variables):

1. Perković, E., Textor, J., Kalisch, M., & Maathuis, M. H. (2018). Complete graphical charac-
terization and construction of adjustment sets in Markov equivalence classes of ancestral graphs.
The Journal of Machine Learning Research, 18(1), 8132-8193.
2. Perković, E., Textor, J., Kalisch, M., & Maathuis, M. H. (2015). A complete generalized
adjustment criterion. In Uncertainty in Artificial Intelligence (pp. 682-691). AUAI Press.

Remark: linear structural equation modeling (Linear SEM). A popular method that uses the DAG
to make inference is the structural equation modeling (SEM). In the simplest form, the SEM assumes a
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linear effect for every arrow in the DAG. Suppose X → Y and U → X and U → Y , then an SEM will be

Y = αY + βX + γU + εY , X = αX + ηU + εX

and εX , εY ∼ N(0, σ2) with U ∼ p(u). If we are interested in the causal effect from X onto Y , β will be the
parameter of interest. So the question is: how do we properly apply the regression to obtain a consistent
estimate of β. In general, we need to observe X,Y, U to properly estimate β (using multiple linear regression).
Note that U is called the confounder for the causal effect from X to Y .

Remark: instrumental variables and linear SEM. Under the setup of the previous remark, if U is
unobserved (unobserved confounder problem), then we cannot identify the causal effect β. However, IV
(instrumental variable; Section 14.1.2) offers a solution to this problem. In the DAG, the IV is written in a
different form. Suppose that we do not observe U (so we cannot identify the causal effect β) but we observe
another variable Z such that

there is an arrow Z → X and no other arrows related to Z.

This variable Z is called a valid IV. The above condition on the graphical structure of Z can be viewed as a
generalization of the IV conditions in Section 14.1.2 to a graphical model framework. Under the linear SEM,

X = αX + ηU + ξZ + εX .

Putting this into Y , we obtain

Y = αY + β(αX + ηU + ξZ + εX) + γU + εY

= α′ + η′U + βξZ + ε′.

Thus, regressing Y with Z leads to a slope βξ (note that Z ⊥ U since there are no mutual arrows). Regressing
X with Z yields the slope ξ (again using the fact that Z ⊥ U). So we can estimate β by the ratio of the two
regression coefficient even if we do not observe the confounder U .

14.4 Continuous treatment

When the treatment variable A is continuous or contains infinite amount of possible values, the causal
inference becomes very challenging. In particular, the potential outcomes Y (a) will be hard to characterize
since there could be many of them,

Let Y ∈ R be the outcome of interest, A ∈ R be the treatment variable, and X ∈ Rd be the confounders.
Similar to the conventional setup, our data is the collection of

(Y1, A1, X1), · · · , (Yn, An, Xn).

In the continuous treatment problem, the parameter of interest is the dose-response curve

m(a) = E(Y (a))

and we often work with the following conditions:

• (C1: consistency) Conditioned on A = a, Y = Y (a).

• (C2: ignorability) Y (a) ⊥ A|X for all a.
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These two conditions are essentially the same conditions as in the binary treatment case.

Under (C1-2), we can rewrite the dose-response curve as the following form:

m(a) = E(E(Y |A = a,X))

= E(µ(a,X)),
(14.15)

where

µ(a, x) = E(Y |A = a,X = x)

is the regression function. To estimate the dose-response curve, there are three popular approaches.

14.4.1 Direct nonparametric estimation

Regression adjustment. Equation (14.15) suggests a plug-in approach to estimate m(a):

m̂(a) =
1

n

n∑
i=1

µ̂(a,Xi),

where µ̂(a, x) is a regression estimator, which is the nuisance parameter in this case. This is essentially a
regression adjustment method.

Inverse probability weighting. While it is not easy to think about the IPW approach for continuous
treatment because the conventional IPW uses the indicator function I(A = a), which will almost always be
0, it is possible to use a kernelized method to construct an IPW estimator. The IPW (kernel smoothing)
method is

m̂h(a) =
1

n

n∑
i=1

1

h
K

(
Ai − a
h

)
Yi

p̂(a|Xi)
,

where p̂(a|x) is the estimated conditional PDF of A = a given X = x and K is a smoothing kernel and h > 0
is a smoothing bandwidth. Essentially, we replace the indicator function I(A = a) by its kernelized version
1
hK

(
Ai−a
h

)
. The probability weighting (propensity score) is replaced by the conditional PDF p(a|x). More

details about this idea can be found in

Huber, M., Hsu, Y. C., Lee, Y. Y.,& Lettry, L. (2020). Direct and indirect effects of continuous
treatments based on generalized propensity score weighting. Journal of Applied Econometrics,
35(7), 814-840

You can also combine both estimators to form a double-robust estimator as well.

Positivity conditions. In both regression adjustment and IPW, the positivity conditions become very
crucial. The two nuisance µ̂(a, x) and p̂(a|x) will be evaluated at every Xi with A = a. Thus, both
estimators rely heavily on the uniform consistency of the two nuisances on the region {a} × supp(X). It is
possible to bypass the positivity condition using a method called the integral estimator, see the following
paper:

Zhang, Y., Chen, Y. C., & Giessing, A. (2024). Nonparametric Inference on Dose-Response
Curves Without the Positivity Condition. arXiv preprint arXiv:2405.09003.
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14.4.2 Pseudo-outcome approach

Another approach to estimate the dose-response curve is the pseudo-outcome approach introduced in the
following paper:

Kennedy, E. H., Ma, Z., McHugh, M. D., & Small, D. S. (2017). Non-parametric methods for
doubly robust estimation of continuous treatment effects. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 79(4), 1229-1245.

A challenge of estimating the dose-response curve is that the parameter of interest m(a) is not pathwise
differentiable, making the analysis on its efficient influence function very challenging. However, it is still
possible to construct an estimator with doubly-robustness property by the use of pseudo-outcomes.

Let µ̂(a, x), p̂(a|x) be the estimated regression and conditional PDF as in the previous sections. The pseudo-
outcome of (Y,A,X) is

Ŷ =
Y − µ̂(A,X)

p̂(A|X)
· 1

n

n∑
j=1

p̂(A|Xj) +
1

n

n∑
j=1

µ̂(A,Xj).

Applying this to every observations, we obtain

Ŷ1, · · · , Ŷn.

Then we estimate m(a) by applying a nonparametric regression of Ŷ versus A.

The pseudo-outcome approach enjoys the doubly-robust property–we just need either µ̂ or p̂ to be correctly
specified to obtain consistency. However, this method still heavily relies on the positivity condition.

14.4.3 Marginal structural modeling

The marginal structural modeling is a popular approach to deal with problems involving multiple or even
infinite potential outcomes. The idea is very simple: we put a parametric model on the dose-response curve,
i.e.,

m(a) ≡ θ(a; γ),

where γ is the underlying parameter.

Examples:

1. Linear Model. E(Y (a)) = θ(a; γ) = γ0 + γT1 a.

2. Log-linear model. logE(Y (a)) = γ0 + γT1 a or equivalently,

θ(a; γ) = exp(γ0 + γT1 a).

3. Logistic model. For Y ∈ [0, 1], or a binary Y , we may use log
{

E(Y (a))
1−E(Y (a))

}
= γ0 + γT1 a or equivalently,

θ(a; γ) =
exp(γ0 + γT1 a)

1− exp(γ0 + γT1 a)
.

To estimate the underlying parameter γ, there are two possible approaches–inverse probability weighting
and regression adjustment.

Inverse probability weighting. The IPW approach estimates γ̂ via the following procedure:
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1. Estimate p̂(a), p̂(a|x) from (A1, X1), · · · , (An, Xn).

2. Construct the estimating equation

Ψ̂(γ;Y,A,X) =
p̂(A)

p̂(A|X)
(Y − θ(A; γ))s(A; γ), s(a; γ) =

∂

∂γ
θ(a; γ). (14.16)

3. Find γ̂n by solving

0 =
1

n

n∑
i=1

Ψ̂(γ̂n;Yi, Ai, Xi).

4. Obtain the estimator θ̂(a) = θ(a; γ̂n).

Essentially, the IPW is derived from the usual M-estimator when we assume a parametric model with inverse
probability weighting. If we ignore p̂(A) in equation (14.16), the whole estimating equation behaves just like
the score equation. The multiplier p̂(A) is to stabilize the estimation procedure, see the following note for
more discussion: https://faculty.washington.edu/yenchic/short_note/note_msmc.pdf.

Regression adjustment (g-computation). Alternatively, we may put a parametric model of m(a) indi-
rectly from a model on µ(a, x) and estimate it accordingly. Specifically, we place a model µ(a, x;β) and the

estimate β by a least square approach, leading to β̂. We can then obtain an estimator of m(a) accordingly.

Here is what we will do in practice. We first compute the estimator

β̂n = argminβ
1

n

n∑
i=1

(Yi − µ(Ai, Xi;β))2.

Then we construct the estimator of the MSM via

θ̂(a) =
1

n

n∑
i=1

µ(a,Xi; β̂n).

https://faculty.washington.edu/yenchic/short_note/note_msmc.pdf
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