
STAT 535: Statistical Machine Learning Autumn 2024

Lecture 12: The Bootstrap
Instructor: Yen-Chi Chen

Please read section 12.1-12.4 on your own. They are from undergraduate course (STAT 425 and STAT 403)
so I will assume that you can read it on your own. We will not cover them during our lecture but will assume
that you know these facts.

12.1 Introduction

Question 1: error of sample median? We start with a simple example: what is the error of sample
median? Like sample mean is an estimate of the mean of population, the sample median is an estimate of
the median of population. Because it is an estimator, we can define the bias, variance, and mean square
error (MSE) of sample median. But what are these quantities?

Question 2: confidence interval of sample median? Moreover, how can we construct a confidence
interval for the population median? We know that given a random sample X1, · · · , Xn ∼ F , a 1−α confidence
interval of population mean is

X̄n ± z1−α/2 ·
σ̂n√
n
,

where X̄n and σ̂n are the sample mean and sample standard deviation. Can we do the same thing (construct
a confidence interval) for the median?

In this lecture, we will address these problems for median and many other statistics using the well-known
approach: the bootstrap.

12.2 Empirical Distribution Function

Before introducing the bootstrap method, we first introduce the empirical distribution function (EDF), an
estimator of the cumulative distribution function (CDF).

Let first look at the CDF F (x) more closely. Given a value x0,

F (x0) = P (Xi ≤ x0)

for every i = 1, · · · , n. Namely, F (x0) is the probability of the event {Xi ≤ x0}.

A natural estimator of a probability of an event is the ratio of such an event in our sample. Thus, we use

F̂n(x0) =
number of Xi ≤ x0

total number of observations
=

∑n
i=1 I(Xi ≤ x0)

n
=

1

n

n∑
i=1

I(Xi ≤ x0) (12.1)

as the estimator of F (x0).

For every x0, we can use such a quantity as an estimator, so the estimator of the CDF, F (x), is F̂n(x). This

estimator, F̂n(x), is called the empirical distribution function (EDF).

12-1
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Example. Here is an example of the EDF of 5 observations of 1, 1.2, 1.5, 2, 2.5:
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There are 5 jumps, each located at the position of an observation. Moreover, the height of each jump is the
same: 1

5 .

Example. While the previous example might not be look like an idealized CDF, the following provides a
case of EDF versus CDF where we generate n = 100, 1000 random points from the standard normal N(0, 1):
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The red curve indicates the true CDF of the standard normal. Here you can see that when the sample size
is large, the EDF is pretty close to the true CDF.
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12.2.1 Property of EDF

Because EDF is the average of I(Xi ≤ x), we now study the property of I(Xi ≤ x) first. For simplicity, let
Yi = I(Xi ≤ x). What is the random variable Yi?

Here is the breakdown of Yi:

Yi =

{
1, if Xi ≤ x
0, if Xi > x

.

So Yi only takes value 0 and 1–so it is actually a Bernoulli random variable! We know that a Bernoulli
random variable has a parameter p that determines the probability of outputing 1. What is the parameter
p for Yi?

p = P (Yi = 1) = P (Xi ≤ x) = F (x).

Therefore, for a given x,
Yi ∼ Ber(F (x)).

This implies

E(I(Xi ≤ x)) = E(Yi) = F (x)

Var(I(Xi ≤ x)) = Var(Yi) = F (x)(1− F (x))

for a given x.

Now what about F̂n(x)? Recall that F̂n(x) = 1
n

∑n
i=1 I(Xi ≤ x) = 1

n

∑n
i=1 Yi. Then

E
(
F̂n(x)

)
= E(I(X1 ≤ x)) = F (x)

Var
(
F̂n(x)

)
=

∑n
i=1 Var(Yi)

n2
=
F (x)(1− F (x))

n
.

What does this tell us about using F̂n(x) as an estimator of F (x)?

First, at each x, F̂n(x) is an unbiased estimator of F (x):

bias
(
F̂n(x)

)
= E

(
F̂n(x)

)
− F (x) = 0.

Second, the variance converges to 0 when n→∞. By Lemma 0.3, this implies that for a given x,

F̂n(x)
P→ F (x).

i.e., F̂n(x) is a consistent estimator of F (x).

In addition to the above properties, the EDF also have the following interesting feature: for a given x,

√
n
(
F̂n(x)− F (x)

)
D→ N(0, F (x)(1− F (x))).

Namely, F̂n(x) is asymptotically normally distributed around F (x) with variance F (x)(1− F (x)).

In fact, the asymptotic behavior is much stronger than the simply pointwise asymptotic normality. The
scaled difference converges (weakly) to a Brownian bridge, i.e.,

√
n
(
F̂n − F

)
D→ B,

where B is a Brownian bridge and
D→ here stands for weak convergence of a stochastic process.



12-4 Lecture 12: The Bootstrap

12.3 Empirical Bootstrap

Here is how we can estimate the error of sample median and construct the corresponding confidence interval.
Assume we are given the data points X1, · · · , Xn. Let Mn = median{X1, · · · , Xn}. First, we sample with

replacement from these n points, leading to a set of new observations denoted as X
∗(1)
1 , · · · , X∗(1)n . Again,

we repeat the sample procedure again, generating a new sample from the original dataset X1, · · · , Xn by

sampling with replacement, leading to another new sets of observations X
∗(2)
1 , · · · , X∗(2)n . Now we keep

repeating the same process of generating new sets of observations, after B rounds, we will obtain

X
∗(1)
1 , · · · , X∗(1)n

X
∗(2)
1 , · · · , X∗(2)n

...
...

...

X
∗(B)
1 , · · · , X∗(B)

n .

So totally, we will have B sets of data points. Each set of the data points, say X
∗(1)
1 , · · · , X∗(1)n , is called a

bootstrap sample. This sampling approach–sample with replacement from the original dataset–is called the
empirical bootstrap, invented by Bradley Efron (sometimes this approach is also called Efron’s bootstrap or
nonparametric bootstrap)1.

Now for each set of data, we then compute their sample median. This leads to B sample medians, called
bootstrap medians:

M∗(1)n = median{X∗(1)1 , · · · , X∗(1)n }

M∗(2)n = median{X∗(2)1 , · · · , X∗(2)n }
...

M∗(B)
n = median{X∗(B)

1 , · · · , X∗(B)
n }.

Now here are some real cool things.

• Bootstrap estimate of the variance. We will use the sample variance of M
∗(1)
n , · · · ,M∗(B)

n as an
estimate of the variance of sample median Mn. Namely, we will use

V̂arB(Mn) =
1

B − 1

B∑
`=1

(
M∗(`)n − M̄∗B

)2
, M̄∗B =

1

B

B∑
`=1

M∗(`)n ,

as an estimate of Var(Mn).

• Bootstrap estimate of the MSE. Moreover, we can estimate the MSE by

̂MSE(Mn) =
1

B

B∑
`=1

(
M∗(`)n −Mn

)2
.

• Bootstrap confidence interval. In addition, we can construct a 1 − α confidence interval of the
population median via

Mn ± z1−α/2 ·
√
V̂arB(Mn).

1For more details, check the wikipedia: https://en.wikipedia.org/wiki/Bootstrapping_(statistics)

https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
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Well... this sounds a bit weird–we generate new data points by sampling from the existing data points.
However, under some conditions, this approach does work! And here is a brief explanation on why this
approach works.

Let X1, · · · , Xn ∼ F . Recall from Lecture 1, a statistic S(X1, · · · , Xn) is a function of random variables so
its distribution will depend on the CDF F and the sample size n. Thus, the distribution of median Mn,
denoted as FMn , will also be determined by the CDF F and sample size n. Namely, we may write the CDF
of median as

FMn(x) = Ψ(x;F, n), (12.2)

where Ψ is some complicated function that depends on CDF of each observation F and the sample size n.

When we sample with replace from X1, · · · , Xn, what is the distribution we are sampling from? Let F̂n(x) =
1
n

∑n
i=1 I(Xi ≤ x) be the EDF of these data points. The EDF is a step functions that jumps at each data

point. We know that for a discrete random variable, each jump point in its CDF corresponds to the possible
value of this random variable and the size of the jump is the probability of selecting that value.

Therefore, if we generate a random variable Z from F̂n, then Z has the following probability distribution:

P (Z = Xi) =
1

n
, for each i = 1, 2, · · · , n.

If we generated IID Z1, · · · , Zn ∼ F̂n, then the distribution of each Z` is

P (Z` = Xi) =
1

n
, for each i = 1, 2, · · · , n, and for all ` = 1, · · · , n.

What is this sample Z1, · · · , Zn? This sample is a sample generated by sampling with replacement from
X1, · · · , Xn.

Recall that each set of the bootstrap sample, say X
∗(1)
1 , · · · , X∗(1)n , is obtained via sampling with replacement

from X1, · · · , Xn. Thus, each set of the bootstrap sample is an IID sample from F̂n. Namely,

X
∗(1)
1 , · · · , X∗(1)n ∼ F̂n

X
∗(2)
1 , · · · , X∗(2)n ∼ F̂n

...

X
∗(B)
1 , · · · , X∗(B)

n ∼ F̂n.

Because a bootstrap median, say M
∗(1)
n , is the sample median of X

∗(1)
1 , · · · , X∗(1)n . Its CDF, by equation

(12.2), is

F
M

∗(1)
n

(x) = Ψ(x; F̂n, n).

And because each of the bootstrap sample are all from the distribution F̂n, we will have

Ψ(x; F̂n, n) = F
M

∗(1)
n

(x) = F
M

∗(2)
n

(x) = · · · = F
M

∗(B)
n

(x).

We know that F̂n is very similar to F when the sample size is large. Thus, as long as Ψ is smooth (smoothly

changing) with respect to F , Ψ(x; F̂n, n) will also be very similar to Ψ(x;F, n), i.e.,

F̂n ≈ F =⇒ F
M

∗(`)
n

(x) = Ψ(x; F̂n, n) ≈ Ψ(x;F, n) = FMn
(x).

This means:
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The CDF of a bootstrap median, F
M

∗(`)
n

(x), is approximating the CDF of the true median, FMn
(x).

This has many implications. For an example, when two CDFs are similar, their variances will be similar as
well, i.e.,

Var
(
M∗(`)n |X1, · · · , Xn

)
≈ Var(Mn).2

Now the bootstrap variance estimate V̂arB(Mn) is just a sample variance of M∗(`). When B is large, the
sample variance is about the same as the population variance, implying

V̂arB(Mn) =
1

B − 1

B∑
`=1

(
M∗(`)n − M̄∗B

)2
≈ Var

(
M∗(`)n |X1, · · · , Xn

)
.

Therefore,

V̂arB(Mn) ≈ Var
(
M∗(`)n |X1, · · · , Xn

)
≈ Var(Mn),

which explains why the bootstrap variance is a good estimate of the true variance of the median.

Generalization to other statistics. The bootstrap can be applied to many other statistics such as sample
quantiles, interquartile range, skewness (related to E(X3)), kurtosis (related to E(X4)), ...etc. The theory
basically follows from the same idea.

Failure of the bootstrap. However, the bootstrap may fail for some statistics. One example is the
minimum value of a distribution. Here is an illustration why the bootstrap fails. Let X1, · · · , Xn ∼ Uni[0, 1]
and Mn = min{X1, · · · , Xn} be the minimum value of the sample. Then it is known that

n ·Mn
D→ Exp(1).

♠ : Think about why it converges to exponential distribution.

Thus, Mn has a continuous distribution. Assume we generate a bootstrap sample X∗1 , · · · , X∗n from the
original observations. Now let M∗n = min{X∗1 , · · · , X∗n} be the minimum value of a bootstrap sample.
Because each X∗` has an equal probability ( 1

n ) of selecting each of X1, · · · , Xn, this implies

P (X∗` = Mn) =
1

n
.

Namely, for each observation in the bootstrap sample, we have a probability of 1/n selecting the minimum
value of the original sample. Thus, the probability that we do not select Mn in the bootstrap sample is

P (none of X∗1 , · · · , X∗n select Mn) =

(
1− 1

n

)n
≈ e−1.

This implies that with a probability 1− e−1, one of the observation in the bootstrap sample will select the
minimum value of the original sample Mn. Namely,

P (M∗n = Mn) = 1− e−1.

Thus, M∗n has a huge probability mass at the value Mn, meaning that the distribution of M∗n will not be
close to an exponential distribution.

2 The reason why in the left-hand-side, the variance is conditioned on X1, · · · , Xn is because when we compute the bootstrap
estimate, the original observations X1, · · · , Xn are fixed.
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12.4 Statistical Functionals

To study how the bootstrap works, we first introduce the concept of statistical functionals.

What is a functional? A functional is just a function of a function. Namely, it is a ‘function’ such that
the input is another function and the output is a number. Formally speaking, a functional is a mapping
T : F 7→ R, where F is a collection of functions. A statistical functional is a mapping T such that you input
a distribution (CDF) and it returns a number.

This sounds very complicated but actually, we have encountered numerous statistical functionals. Here are
some examples.

• Mean of a distribution. The mean of a distribution is a statistical functional

µ = Tmean(F ) =

∫
xdF (x).

When F has a PDF p(x), dF (x) = p(x)dx so the mean functional reduces to the form that we are
familiar with:

µ = Tmean(F ) =

∫
xdF (x) =

∫
xp(x)dx.

When F is a distribution of discrete random variables, we define∫
xdF (x) =

∑
x

xP (x) =⇒ µ = Tmean(F ) =
∑
x

xP (x),

where P (x) is the PMF of the distribution F .

You may have noticed that if a random variable X has a CDF F , then

E(X) =

∫
xdF (x) = Tmean(F ).

Therefore, for any function g,

E(g(X)) =

∫
g(x)dF (x).

Using the function g, we introduce another functional Tω such that

Tω(F ) =

∫
ω(x)dF (x).

Such a functional, Tω, is called a linear functional.

• Variance of a distribution. The variance of a distribution is also a statistical functional. Let X be
a random variable with CDF F . Then

σ2 = Tvar(F ) = Var(X) = E(X2)− E2(X) =

∫
x2dF (x)−

(∫
xdF (x)

)2

.

• Median of a distribution. Using the concept of a statistical functional, median and any quantile
can be easily defined. The median of a distribution F is a point θmed such that F (θmed) = 0.5. Thus,

Tmed(F ) = F−1 (0.5) .
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Note that when F is a CDF of a discrete random variable, F−1 may have multiple values. In this case,
we define

F−1(q) = inf{x : F (x) ≥ q}.

Any quantile of a distribution can be represented in a similar way. For instance, the q-quantile (0 <
q < 1) will be

Tq(F ) = F−1 (q) .

As a result, the interquartile range (IQR) is

TIQR(F ) = F−1(0.75)− F−1(0.25).

Why do we want to use the form of statistical functionals? One answer is: it elegantly describes a population
quantity that we may be interested in. Recall that the statistical model about how the data is generated is
that we observe a random sample X1, · · · , Xn IID from an unknown distribution F . Thus, the distribution
F is our model for the population. Because the statistical functionals map F into some real numbers, they
can be viewed as quantities describing the features of the population. The mean, variance, median, quantiles
of F are numbers characterizing the population. Thus, using statistical functionals, we have a more rigorous
way to define the concepts of population parameters.

In addition to the above advantage, there is a very powerful features of statistical functionals–they provide
a simple estimator to these population quantities. Recall that the EDF F̂n(x) = 1

n

∑n
i=1 I(Xi ≤ x) is a good

estimator of F . Thus, if we want to estimate a population quantity θ = Ttarget(F ), we can use Ttarget(F̂n) = θ̂n
as our estimator. Actually, many estimators do follow this form. For instance, in the case of estimating the
mean µ = Tmean(F ), we often use the sample mean X̄n as our estimator. However, if you plug-in F̂n into the
statistical functional:

Tmean(F̂n) =

∫
xdF̂n(x) =

n∑
i=1

Xi
1

n
=

n∑
i=1

Xi

n
= X̄n.

This implies that the estimator from the statistical functional is the same as sample mean! Note that we in
the above calculation, we use the fact that F̂n(x) is a distribution with whose PMF puts equal probability

(1/n) at X1, · · · , Xn. The estimator formed via replacing F by F̂n is called a plug-in estimator.

Similarly, we may estimate the variance σ2 = Tvar(F ) via

Tvar(F̂n) =

∫
x2dF̂n(x)−

(∫
xdF̂n(x)

)2

=
1

n

n∑
i=1

X2
i − X̄2

n =
1

n

n∑
i=1

(Xi − X̄n)2 =
n− 1

n
S2
n.

This estimator is very similar to the sample variance S2
n (they are asymptotically the same).

Using how we define the inverse of a CDF of a discrete random variable, we can define the estimator of
median

Tmed(F̂n) = F̂−1n (0.5)

and other quantiles of a distribution. And it turns out that this estimator is the sample median (and the
corresponding sample quantiles)!

Therefore, the statistical functional provides an elegant way to define a population quantities as well as an
estimator. And the plug-in estimator will be a good estimator if the statistical functional T (·) is ‘smooth’

with respect to the input function because we know that F̂n → F in various ways so that the smoothness of
T with respect the input will implies T (F̂n)→ T (F )3.

3 Note that here we ignore lots of technical details. The smoothness of a ‘functional’ is an advanced topic in mathematics
called functional analysis: https://en.wikipedia.org/wiki/Functional_analysis. There are formal ways of defining continu-
ity of functionals and even ‘differentiation’ of functionals; see, e.g., https://en.wikipedia.org/wiki/G%C3%A2teaux_derivative.

https://en.wikipedia.org/wiki/Functional_analysis
https://en.wikipedia.org/wiki/G%C3%A2teaux_derivative
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12.5 Bootstrap and Statistical Functionals

So far, we have not yet talked about the bootstrap. However, we have learned that the (empirical) bootstrap

sample is a new random sample from the EDF F̂n. The bootstrap sample forms another EDF called the
bootstrap EDF, denoted as F̂ ∗n . Namely, let X∗1 , · · · , X∗n be a bootstrap sample. Then the bootstrap EDF is

F̂ ∗n(x) =
1

n

n∑
i=1

I(X∗i ≤ x).

Here is how the statistical functionals and the bootstrap is connected. In estimating the parameter θ =
Ttarget(F ), we often use a plug-in estimate from the EDF θ̂n = Ttarget(F̂n) (just think of how we estimate the
sample mean). In this case, the bootstrap estimator, the estimator using the bootstrap sample, will be

θ̂∗n = Ttarget(F̂
∗
n),

another plug-in estimator but now we are plugging in the bootstrap EDF F̂ ∗n .

Consistency of bootstrap variance estimator. How do we use the bootstrap to estimate the variance
and construct a confidence interval? We keep generating bootstrap samples from the EDF F̂n and obtain
several realizations of θ̂∗n’s. Namely, we generate

θ̂∗(1)n , · · · , θ̂∗(B)
n

and use their sample variance, V̂arB(θ̂∗n), as an estimator of Var(θ̂n). Note that V̂arB(θ̂∗n) is

V̂arB(θ̂∗n) =
1

B − 1

N∑
`=1

(
θ̂∗(`)n − ¯̂

θ
∗
n,B

)
,

¯̂
θ
∗
n,B =

1

B

B∑
`=1

θ̂∗(`)n .

When B is large, the sample variance of the bootstrap estimators

V̂arB(θ̂∗n) ≈ Var(θ̂∗n|F̂n). (12.3)

Note that ·|F̂n means conditioned on F̂n being fixed. The reason why here it converges to this conditioned

variance is because when we generate bootstrap samples, the original EDF F̂n is fixed (and we are generating

from it). Thus, the variance is conditioned on F̂n being fixed.

To argue that the bootstrap variance V̂arB(θ̂∗n) is a good estimate of the original variance, we need to argue

V̂arB(θ̂∗n) ≈ Var(θ̂∗n|F̂n) ≈ Var(θ̂n).

However, because of equation (12.3) and we can select B as large as we wish, so what really matters is

Var(θ̂∗n|F̂n) ≈ Var(θ̂n).

Or more formally,

Var(θ̂∗n|F̂n)

Var(θ̂n)
≈ 1 (12.4)

(people generally use the ratio expression because both quantities often converge to 0 when the sample size
n→∞).

Therefore, we conclude that
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as long as we can show that equation (12.4) holds, the bootstrap variance is a good estimate of

the variance of the estimator θ̂n.

Because θ̂n = Ttarget(F̂n) is a statistic (a function of our random sample X1, · · · , Xn), its distribution is
completely determined by the distribution X1, · · · , Xn are sampling from, which is F , and the sample size
n. This implies that the variance of θ̂n is determined by F and n as well. Therefore, we can write

Var(θ̂n) = Var(Ttarget(F̂n)) = Vn,target(F ).

And it turns out that we often have

Vn,target(F ) ≈ 1

n
V1,target(F ) ≡ 1

n
Vtarget(F ).

Note that here Vn,target(·),Vtarge(·) are both again statistical functionals!

Because the bootstrap estimator θ̂∗n = Ttarget(F̂
∗
n), its conditional variance will be

Var(θ̂∗n|F̂n) = Var(Ttarget(F̂
∗
n)|F̂n) = Vn,target(F̂n) ≈ 1

n
Vtarget(F̂n).

Thus, as long as
Vtarget(F̂n) ≈ Vtarget(F ), (12.5)

equation (12.4) holds. Namely, the bootstrap variance estimate will be a good estimator of the variance of
the true estimator4.

Validity of bootstrap confidence interval. How about the validity of the bootstrap confidence interval?
Here is a derivation showing that the consistency of bootstrap variance estimator implies the validity of
bootstrap confidence interval.

For the bootstrap confidence interval, a simple way is first show that

√
n(θ̂n − θ) =

√
n
(
Ttarget(F̂n)− Ttarget(F )

)
≈ N(0,Vtarget(F )) (12.6)

which implies
√
n(θ̂∗n − θ̂n) =

√
n
(
Ttarget(F̂ ∗n)− Ttarget(F̂n)

)
≈ N(0,Vtarget(F̂n)).

Thus, as long as the bootstrap variance converges, we also have the convergence of the entire distribution,
implying the validity of a bootstrap confidence interval. Note that to formally prove this, we need to show the
convergence in terms of CDF of the difference. In more details, let Zn =

√
n(θ̂n− θ) and Z∗n =

√
n(θ̂∗n− θ̂n).

We need to prove

sup
t

∣∣∣P (Z∗n ≤ t|F̂n)− P (Zn ≤ t)
∣∣∣ P→ 0.

Later we will show examples about this using the sample mean as a starting point.

Example: mean. We now consider a simple example: the mean of a distribution Ttarget = Tmean. The mean
of a distribution has the form

µ = Tmean(F ) =

∫
xdF (x).

The plug-in estimator is

µ̂n = Tmean(F̂n) =

∫
xdF̂n(x) = X̄n

4A more formal way is to show that it converges in probability.
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and the bootstrap estimator is

µ̂∗n = Tmean(F̂
∗
n) =

∫
xdF̂ ∗n(x) = X̄∗n.

It is clear from the Central Limit Theorem that
√
n(µ̂n − µ) ≈ N(0, nVar(Tmean(F̂n)))

so equation (12.6) holds and
√
n(µ̂∗n − µ̂n) ≈ N(0, nVar(Tmean(F̂

∗
n)|F̂n)).

In this case, we know that

Var(Tmean(F̂n)) = Var(X̄n) =
1

n
Var(Xi) =⇒ Vmean(F ) = Var(Xi) = E(X2

i )−E2(Xi) =

∫
x2dF (x)−

(∫
xdF (x)

)2

.

Therefore, the bootstrap variance is

Var(Tmean(F̂
∗
n)|F̂n) =

1

n
Vmean(F̂n) =

∫
x2dF̂n(x)−

(∫
xdF̂n(x)

)2

.

Because of the Law of Large Number,∫
x2dF̂n(x) =

1

n

n∑
i=1

X2
i
P→ E(X2

i ) =

∫
x2dP (x)

∫
xdF̂n(x) =

1

n

n∑
i=1

Xi
P→ E(Xi) =

∫
xdP (x).

Thus, 5

Vmean(F̂n)
P→ Vmean(F ),

which shows that equation (12.5) holds and so is equation (12.4). Thus, the bootstrap variance estimator
converges to the true variance estimator and we conclude that

Var(Tmean(F̂
∗
n)|F̂n)

Var(Tmean(F̂n))

P→ 1.

As a result, the bootstrap variance estimator is consistent and the bootstrap confidence interval is also valid.

12.6 Berry-Esseen Bound

Let Zn =
√
n(θ̂n − θ) and Z∗n =

√
n(θ̂∗n − θ̂n). To formally prove the validity bootstrap, we need to prove

that
sup
t

∣∣∣P (Z∗n ≤ t|F̂n)− P (Zn ≤ t)
∣∣∣ P→ 0. (12.7)

The above bound is also known as the Kolomogrov distance between two random variables. Although this
seems to be hard to prove, there are route analysis to derive convergence in the above form. One famous
result is the Berry-Esseen bound of the sample mean.

Consider a simple scenario that we observe univariate X1, · · · , Xn and we are interested in estimating the
population mean, i.e., µ = E(X1).

5Note that here we use the continuous mapping theorem: if f is a continuous function and random variable An
P→ a0, then

f(An)
P→ f(a0). Setting f(x) = x2, we obtain the convergence of the second quantity.
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Theorem 12.1 (Berry-Esseen bound) Assume that E(|X1|3) < ∞. Let Z ∼ N(0, 1). Then for any n,
we have

sup
t

∣∣∣∣P (√n(X̄n − µ
σ

)
< t

)
− P (Z < t)

∣∣∣∣ ≤ CE|X1|3

σ3
√
n
,

for a constant C ≥
√
10+3

6
√
2π

.

The Berry-Esseen bound quantifies how fast the limiting distribution converges to a Gaussian and the result
is uniform across different quantiles.

Finite Sample bound and the bootstrap. It is important to note that the Berry-Esseen bound is a
finite sample bound, meaning that its result holds for any n (some finite sample bound holds when n is
larger than some constant). So it is a much stronger result than the conventional central limit theorem. The
finite sample bound is important in deriving the validity of the bootstrap (see the proof below).

The Berry-Esseen bound can be used to derive bounds like equation (12.7). Now consider very simple
scenario that we are interested in estimating the population mean θ = E(X1) and we use the sample mean

as the estimator θ̂n.

Theorem 12.2 Suppose that we are considering the sample mean problem, i.e., θ = E(X1) and θ̂n = X̄n.
Assume that E(|X1|3) <∞. Then

sup
t

∣∣∣P (Z∗n ≤ t|F̂n)− P (Zn ≤ t)
∣∣∣ = OP

(
1√
n

)
.

Proof:

Let Ψσ(t) be the CDF of N(0, σ2) and σ̂2 = 1
n

∑n
i=1(Xi − X̄n)2. We bound the difference using

sup
t

∣∣∣P (Z∗n ≤ t|F̂n)− P (Zn ≤ t)
∣∣∣ ≤ sup

t

∣∣∣P (Z∗n ≤ t|F̂n)−Ψσ̂(t)
∣∣∣+ sup

t
|Ψσ̂(t))−Ψσ(t)|+ sup

t
|P (Zn ≤ t)−Ψσ(t)| .

The Berry Esseen theorem implies that

sup
t
|P (Zn ≤ t)−Ψσ(t)| = OP

(
1√
n

)
so the third quantity is bounded. Similarly, we can apply the Berry-Esseen bound to the first quantity by
replacing E(·) with the empirical version of it (sample average operation), which implies

sup
t

∣∣∣P (Z∗n ≤ t|F̂n)− P (Zn ≤ t)
∣∣∣ ≤ C 1

n

∑n
i=1X

3
i

σ3
√
n

.

Note that we can apply the Berry-Esseen theory to the bootstrap because this theory holds in finite sample!
In the bootstrap world, the EDF is the population distribution generating our data, and that is why we
replace the expectation E by the empirical version of it.

By strong law of large number, the probability that the right hand side is less than 2C E|X1|3
σ3
√
n

is 1. Thus, we

conclude that

sup
t

∣∣∣P (Z∗n ≤ t|F̂n)− P (Zn ≤ t)
∣∣∣ = OP

(
1√
n

)
.

For the second term, supt |Ψσ̂(t))−Ψσ(t)|, because |σ̂ − σ| = OP

(
1√
n

)
so differentiating the CDF with

respect to σ and take a uniform bound leads to

sup
t
|Ψσ̂(t))−Ψσ(t)| = OP

(
1√
n

)
,
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which completes the proof.

12.7 Delta Method

In this section, we will talk about a very useful technique in handling the convergence–the delta method. We
start with an example of proving consistency theorem of some bootstrap estimates.

Example: inverse of mean. Assume we are interested in the inverse of the population mean. Namely,
the statistical functional we will be using is

Tinv(F ) =
1∫

xdF (x)
= λ.

This statistical functional was implicitly used when we the MLE of the rate parameter of an exponential
distribution. The plug-in estimator (as well as the MLE of estimating an exponential model) is

λ̂n = Tinv(F̂n) =
1∫

xdF̂n(x)
=

1

X̄n
.

The bootstrap estimator is

λ̂∗n = Tinv(F̂
∗
n) =

1∫
xdF̂ ∗n(x)

=
1

X̄∗n
.

In the lab session, we have shown that this estimator follows asymptotically a normal distribution. But how
do we show this? and how do we compute the variance of the estimator λ̂n? Here is how the delta method
will help us.

The Delta Method

Assume that we have a sequence of random variables Y1, · · · , Yn · · · such that

√
n(Yn − y0)

D→ N(0, σ2
Y ) (12.8)

for some constants y0 and σ2
Y . Note that this implies that Var(Yn) = σ2

Y . If a function f is
differentiable at y0, then using the Taylor expansion,

√
n (f(Yn)− f(y0)) ≈

√
nf ′(y0) · (Yn − y0) = f ′(y0)

√
n (Yn − y0) .

Notice that f ′(y0) is just a constant. Thus, this implies

√
n (f(Yn)− f(y0))

d→ N(0, |f ′(y0)|2σ2
Y ), Var(f(Yn)) =

1

n
|f ′(y0)|2σ2

Y + o(n−1). (12.9)

Now using equation (12.9) and identifying Yn as X̄n and f(x) as 1
x , we obtain

√
n(λ̂n − λ) =

√
n

(
1

X̄n
− 1

E(Xi)

)
≈ − 1

E2(Xi)

√
n
(
X̄n − E(Xi)

)
≈ N

0,
1

E4(Xi)
Var(Xi)︸ ︷︷ ︸

=Vinv(F )

 .
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Using the fact that E(Xi) =
∫
xdF (x) and Var(Xi) =

∫
x2dF (x)−

(∫
xdF (x)

)2
, we obtain

√
n(λ̂n − λ) ≈ N(0,Vinv(F )),

where

Vinv(F ) =

∫
x2dF (x)−

(∫
xdF (x)

)2(∫
xdF (x)

)4 .

So equation (12.6) holds and √
n(λ̂∗n − λ̂n) ≈ N(0,Vinv(F̂n)),

where

Vinv(F̂n) =

∫
x2dF̂n(x)−

(∫
xdF̂n(x)

)2
(∫

xdF̂n(x)
)4

is the corresponding bootstrap variance component.

As long as
∫
xdF (x) 6= 0, each component in Vinv(F̂n) is a natural estimator of the corresponding component

in Vinv(F ). Therefore, we conclude

Vinv(F̂n)
P→ Vinv(F ),

which shows that equation (12.5) holds, implying that the bootstrap variance estimator is consistent:

Var(Tinv(F̂
∗
n)|F̂n)

Var(Tinv(F̂n))

P→ 1

and moreover, the bootstrap confidence interval is also valid.

12.8 Influence Function

12.8.1 Linear Functional

In the above derivations, we see many examples of statistical functionals that are of the form

Tω(F ) =

∫
ω(x)dF (x),

where g is a function. As we have mentioned, this type of statistical functionals are called linear functionals.

Linear functionals has a feature that the estimators

Tω(F̂n) =

∫
ω(x)dF̂n(x) =

1

n

n∑
i=1

g(Xi),

Tω(F̂ ∗n) =

∫
ω(x)dF̂ ∗n(x) =

1

n

n∑
i=1

g(X∗i ).

Moreover, a powerful feature of the linear functional is that for another CDF G, we always have

Tω(G)− Tω(F ) =

∫
ω(x)dG(x)− Tω(F )

=

∫
ω(x)dG(x)−

∫
Tω(F )dG(x)

=

∫
LF (x)dG(x),
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where
LF (x) = ω(x)− Tω(F ) (12.10)

is called the influence function of the functional Tω.

Theorem 12.3 Suppose that Tω is a linear functional with an influence function LF (x) define in equation
(12.10) and

∫
ω2(x)dF (x) <∞ . Then

√
n
(
Tω(F̂n)− Tω(F )

)
D→ N

(
0,Vω(F ) =

∫
L2
F (x)dF (x)

)
and a consistent estimator of Vω(F ) is Vω(F̂n) = 1

n

∑n
i=1 L

2
F (Xi).

As a result, the bootstrap always works for the linear functional whenever Tω2(F ) <∞.

Proof:

It is easy to see that

Tω(F̂n)− Tω(F ) =

∫
LF (x)dF̂n(x) =

1

n

n∑
i=1

LF (Xi).

Moreover,

E(LF (Xi)) =

∫
LF (x)dF (x) =

∫
(ω(x)− Tω(F )) dF (x) = Tω(F )− Tω(F ) = 0.

Thus, by central limit theorem,

√
n
(
Tω(F̂n)− Tω(F )

)
D→ N

(
0,Vω(F ) =

∫
L2
F (x)dF (x)

)
Note that for a linear functional Tω, equation (12.6) always holds with

Vω(F ) =

∫
L2
F (x)dF (x) =

∫ (
ω2(x)− 2ω(x)Tω(F )− T 2

ω(F )
)
dF (x) =

∫
ω2(x)dF (x) = Tω2(F ). (12.11)

Moreover,

Vω(F̂n) =

∫
L2
F̂n

(x)dF̂n(x) =

∫ (
ω2(x)− 2ω(x)Tω(F̂n) + T 2

ω(F̂n)
)
dF̂n(x)

=

∫
ω2(x)dF̂n(x)− T 2

ω(F̂n).

(12.12)

By Law of Large Number (and continuous mapping theorem),

T 2
ω(F̂n)

P→ T 2
ω(F )

if E(|ω(Xi)|) = T|ω| <∞. And ∫
ω2(x)dF̂n(x) = Tω2(F̂n)

P→ Tω2(F )

if E(ω(Xi)
2) = Tω2(F ) <∞. Therefore, we conclude that when Tω2(F ) <∞,

Vω(F̂n) =

∫
ω2(x)dF̂n(x)− T 2

ω(F̂n)
P→ Vω(F ) = Vω(F ),

implying that the equation (12.5) holds.
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12.8.2 Non-linear Functional

Although the linear functional has so many beautiful properties, many statistical functionals are not linear.
For instance, the median

Tmed(F ) = F−1(0.5)

is not a linear functional. Therefore, our results of linear functional cannot be directly applied to analyze
the median.

Then how can we analyze the properties of non-linear statistical functionals? One way to proceed is to
generalize the notion of influence function. And here is the formal definition of the influence function.

Let δx be a point mass at location x. The influence function of a (general) statistical function Ttarget is

LF (x) = lim
ε→0

Ttarget((1− ε)F + εδx)− Ttarget(F )

ε
. (12.13)

Some of you may find equation (12.13) very familiar; it seems to be taking a derivative. And yes – it is a
derivative of a functional with respect to a function. This type of derivative is called Gâteaux derivative6,
a type of derivative of functionals. You can check that applying equation(12.13) to a linear functional leads
to an influence function as we defined previously.

A powerful feature of this generalized version of influence function is that when the statistical functional
Ttarget is ‘smooth7’, equation (12.11) and (12.12) hold in the sense that

Vtarget(F ) =

∫
L2
F (x)dF (x), Vtarget(F̂n) =

∫
L2
F̂n

(x)dF̂n(x) (12.14)

and, moreover, equation (12.6) holds. Note that LF̂n
(x) is defined via replacing F by F̂n in equation (12.13).

That is, when the statistical functional Ttarget is smooth, we only need to verify∫
L2
F̂n

(x)dF̂n(x) ≈
∫
L2
F (x)dF (x) (12.15)

to argue the validity of bootstrap consistency.

Example: median. Why median follows a normal distribution? Here we will show this using the influence
function. The influence function of the functional Tmed is

LF (x) =
1

2p(F−1(0.5))
,

where p is the PDF of F (you can verify it). Thus, equation (12.6) implies

√
n

 Tmed(F̂n)︸ ︷︷ ︸
sample median

− Tmed(F )︸ ︷︷ ︸
population median

 ≈ N (0,
1

4p2(F−1(0.5))

)
.

Note that F−1(0.5) = Tmed(F ) is the median of F . So this shows not only the asymptotic normality of
sample median but also its limiting variance, which is inversely related to the PDF at the median.

The influence function is also related to the robustness of an estimator8 and plays a key role in the semi-
parametric statistics9. You would encounter it several times if you want to pursue a career in statistics.

6https://en.wikipedia.org/wiki/G%C3%A2teaux_derivative.
7More precisely, we need it to be Hadamard differentiable with respect to the L∞ metric d(F,G) = supx |F (x)−G(x)|; see

https://en.wikipedia.org/wiki/Hadamard_derivative
8https://en.wikipedia.org/wiki/Robust_statistics#Influence_function_and_sensitivity_curve
9https://en.wikipedia.org/wiki/Semiparametric_model

https://en.wikipedia.org/wiki/G%C3%A2teaux_derivative
https://en.wikipedia.org/wiki/Hadamard_derivative
https://en.wikipedia.org/wiki/Robust_statistics#Influence_function_and_sensitivity_curve
https://en.wikipedia.org/wiki/Semiparametric_model
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12.9 Functional Delta Method

The Berry-Esseen theory shows that we can use the bootstrap to a sample mean problem and the delta
method further implies that the bootstrap is applicable to any statistical functional that can be written as
a smoothed function of a sample mean.

However, in many scenarios such as the sample median, the regular delta method does not work but the
analysis using influence function shows that the bootstrap is still applicable. This motivates us to generalize
the regular delta method. It turns out that there is a much wider classes of statistical functionals that
the bootstrap method works. Here we will introduce a new technique called functional delta method that
generalizes the regular delta method to a much wider class of statistical functionals.

Before we formally explain the functional delta method, we first introduce the concept of Hadamard differen-
tiation. Let D,F be two normed spaces (you can think of function spaces) and let φ : D 7→ F be a mapping.
φ is said to be Hadamard differentiable at ω ∈ D with a differentiation φ̇ω if for any sequence ηt → η when
t→ 0,

lim
t→0

∥∥∥∥φ(ω + t · ηt)− φ(ω)

t
− φ̇ω(η)

∥∥∥∥
F

= 0,

where ‖ · ‖F is the norm of the space F.

The followings are two informal statements about the functional delta method, which are simplified from

• Kosorok, M. R. (2008). Introduction to empirical processes and semiparametric inference. New York:
Springer.

• Vaart, A. W., & Wellner, J. A. (1996). Weak convergence and empirical processes: with applications
to statistics. Springer.

Theorem 12.4 (Functional delta method) Let X1, · · · , Xn ∼ F0 and F̂n be the EDF and θ(F0) be the
parameter of interest. If θ is Hadamard differentiable at F0 with respect to the L∞ norm, then

√
n(θ(F̂n)− θ(F0))

D→ θ̇F0(B),

where B is a Gaussian process defined over Rd with Cov(B(x),B(y)) =
√
nCov(F̂n(x), F̂n(y)).

Theorem 12.4 shows that after rescaling, the difference between the estimator and the parameter of interest
converges to a stable distribution (often is also a normal distribution). A formal statement of the above
result can be found in Theorem 2.8 of Kosorok (2008). Moreover, we have the following result about the
bootstrap.

Theorem 12.5 (Bootstrap Functional delta method) Under the assumption of Theorem 12.4, then

√
n(θ(F̂ ∗n)− θ(F̂n)) ≈ θ̇F0(B),

where θ̇F0
(B) is the same as the one in Theorem 12.4.

Theorem 12.5 shows that as long as the functional delta method works, the bootstrap method also works.
The formal statement of Theorem 12.5 can be found in Theorem 2.9 of Kosorok (2008). Formally, we say that

the bootstrap method is consistent if the random variable
√
n(θ(F̂ ∗n)− θ(F̂n)) converges in the Kolmogorov

distance to θ̇F0(B), i.e.,

sup
t

∣∣∣P (√n(θ(F̂ ∗n)− θ(F̂n)) < t|X1, · · · , Xn

)
− P

(
θ̇F0

(B) < t
)∣∣∣ = oP (1). (12.16)
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The Berry-Esseen bound is a common approach to establish the consistency of a bootstrap method. In
addition to the above two books, I would recommend the Chapter 23 of the following book:

• Van der Vaart, A. W. (2000). Asymptotic statistics (Vol. 3). Cambridge university press.

Remark (higher-order accuracy). There are many ways of constructing a bootstrap confidence interval.
So one may be wondering which method give the best confidence interval. Here is a common way of measuring
how good a bootstrap confidence interval is using the idea of accuracy. In a bound like the one in equation
(12.16), the oP (1) can often be explicitly written as OP (n−k). The Berry-Esseen bound gives an accuracy
at rate k = 1/2 and the percentile method also give the same rate. However, the bootstrap t-percentile
method may lead to k = 1. When the limit is a Gaussian distribution, a common approach of finding k is
via the Edgeworth expansion: we try to expand the CDF of

√
n(θ(F̂ ∗n)− θ(F̂n)) around a normal CDF using

a Taylor expansion-like method. See Chapter 23.3 of Van der Vaart (2000) for more details.

12.9.1 Bootstrap and empirical process

In density estimator and regression analysis, we have seen that our estimator may be a function. So it will
be of great interest to study if the bootstrap can be applied to a function estimator.

In this case, we need to introduce the concept of empirical processes. Let F = {ft : t ∈ T} be a collection of
functions such that ft : X 7→ R, where X is the support of the observations and T is the index set. Consider
the sample mean type estimator:

P̂n(ft) =
1

n

n∑
i=1

ft(Xi).

It is easy to see that this is an unbiased estimator of

P(ft) = E(ft(X1)).

The scaled difference is called the empirical process:

Gn(ft) =
√
n(P̂n(ft)− P(ft)).

When we vary this quantity over t ∈ T, you can see that Gn(ft) = G(t) is a random function of the argument
t ∈ T. Although this seems to be abstract, here are some examples of empirical processes.

Example: EDF. Consider T = X and
ft(x) = I(x ≤ t).

In this case,

P̂n(ft) =
1

n

n∑
i=1

I(Xi ≤ t) = F̂n(t)

is the EDF.

Example: KDE. Consider T = X and

ft(x) =
1

hd
K

(
x− t
h

)
.

Then it is easy to see that

P̂n(ft) =
1

nhd

n∑
i=1

K

(
Xi − t
h

)
= p̂h(t),
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which is the KDE.

Example: log-likelihood function. Consider T = Θ and

fθ(x) = `(θ|x),

where `(θ|x) = log pθ(x) is a log-likelihood function. Then

P̂n(fθ) =
1

n

n∑
i=1

`(θ|Xi)

is the joint log-likelihood function.

Example: empirical risk. Consider a prediction problem where we want to predict Y based on X and
we assume that our predictor mθ : X → Y is a parametric model with parameter θ. Let L : Y × Y → R be
the loss function. Then the empirical risk

Rn(θ) =
1

n

n∑
i=1

L(mθ(Xi), Yi) = P̂n(fθ),

where fθ(x, y) = L(mθ(x), y).

When the estimator is a vector, we have central limit theorem showing that the estimator converges to
a Gaussian vector after rescaling. A similar pattern occurs for the empirical process as well. We call
F = {ft : t ∈ T} a Donsker class if

Gn(ft)
D→ B(ft),

where B(ft) is a Gaussian process and the notation
D→ stands for convergence in distribution (weak con-

vergence) of a stochastic process under L∞ norm. Informally, we have the following result, known as the
uniform central limit theorem.

Theorem 12.6 (Uniform central limit theorem) Let G∗n(ft) =
√
n(P̂∗n(ft) − P̂n(ft)) be the bootstrap

process. When F is a Donsker class,
G∗n(ft) ≈ Gn(ft).

In the formal statement, the approximation sign ≈ will be replaced by weak convergence of a stochastic
process (notice that G∗n(ft) is a process indexed by t) conditioned on the sample X1, · · · , Xn. The take away
message is that when the function class is Donsker, the bootstrap method works.

Roughly speaking, most common parametric models is a Donsker class as described in the following propo-
sition.

Proposition 12.7 (Exaempl 19.7 in van der Vaart (2000)) Let F = {fθ : θ ∈ Θ} be a collection of
functions such that Θ is bounded subset of Rd. Suppose that there exists a function m such that

|fθ1(x)− fθ2(x)| ≤ m(x)‖θ1 − θ2‖

for any θ1, θ2 ∈ Θ and E(|m(X)|2) <∞. Then F is Donsker.

There are several ways to argue that a function class F is Donsker. Common approaches are based on
bounding the uniform covering number or the bracketing number. The two textbooks mentioned in the
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above (Kosorok 2008 and van der Vaart & Wellner 1996) are good references. You will learn more about
this in STAT 580 sequence.

The Donsker theory can be combined with the functional delta method. Roughly speaking, if the parameter
of interest is a statistical functional such that θ(P(F)), where P(F) = {P(ft) : t ∈ T} is a stochastic process,
then √

n(θ(P̂∗n(F))− θ(P̂n(F))) ≈
√
n(θ(P̂n(F))− θ(P(F))),

when θ is Hadamard differentiable at P(F).

12.10 Beyond Functional Delta Method and Donsker Class

The functional delta method along with the Donsker theory makes the bootstrap a widely applicable ap-
proach. However, there are cases where these methodologies cannot be applied. Here are two examples that
the regular Donsker theory does not work.

High-dimensional models. Let X1, · · · , Xn ∈ Rd be IID. Suppose that we are interested in estimating
the mean vector µ = E(X1). It is easy to see that the sample mean X̄n has asymptotic normality when d is
fixed and the covariance matrix Σ = E(X1X

T
1 ) is finite. However, when d = dn →∞, we may not have the

same asymptotic normality10. In particular, when log d � n (regular high-dimensional model), there is no
asymptotic normality of the sample mean so it is unclear how to use the bootstrap to construct a confidence
set of µ.

KDE with decreasing h. In the case of KDE, if h is fixed, then the function class{
K

(
· − x
h

)
: x ∈ X

}
is a Donsker class. However, if h = hn → 0, then the function class being considered{

K

(
· − x
h

)
: x ∈ X , 1 > h > 0

}
is no longer a Donsker class. Note that we use 1 as the upper bound of h since asymptotically the bandwidth
will be less than 1. It can be replaced by any finite upper bound.

12.10.1 Bootstrap and High-Dimensional Models

Let X1, · · · , Xn ∈ Rd be IID with E(Xi) = µ and Σ = E(X1X
T
1 ). In the recent work of Chernozhukov and

his collaborator, they showed that under good conditions (allowing d = o(en
1/8

)),√
n

log d
‖X̄n − µ‖max ≈

√
n

log d
‖Z̄n − µ‖max,

where Z̄n = 1
n

∑n
i=1 Zi is the mean of standard normal vector. The ≈ here is actually under the Kolomogrov

distance.

One famous paper is

10We may still have CLT with d→∞, d2/n→ 0, see Portnoy, S. (1984). Asymptotic behavior of M-estimators of p regression
parameters when p 2/n is large. I. Consistency. The Annals of Statistics, 1298-1309.
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Chernozhukov, V., Chetverikov, D., & Kato, K. (2017). Central limit theorems and bootstrap in
high dimensions. The Annals of Probability, 45(4), 2309-2352.

Moreover, the above result can be applied to the bootstrap sample mean X̄∗n, which leads to the following
“rectangle confidence set”. Let

t̂α = Ĝ−1(1− α/2), Ĝ(s) = P (‖X̄∗n − X̄n‖max ≤ s|X1, · · · , Xn).

Namely, t̂α is the 1− α quantile of the the bootstrap maximum ‖X̄∗n − X̄n‖max. Define a confidence set as

Cn = {µ ∈ Rd : ‖X̄n − µ‖max ≤ t̂α}.

Note that Cn looks like a rectangle in the parameter space.

Theorem 12.8 Assume conditions in Chernozhukov, Chetverikov, and Kato (2017), which allowed d =

o(en
1/8

). Then

P (µ ∈ Cn) ≥ 1− α− c0 log d

n1/8
,

where c0 is a constant.

Covariance matrix. Using the delta method, this result applies to other smoothed functionals of sample
mean or higher moments as well. One notable result is the use of this idea to constructing confidence sets of
the population covariance matrix in high dimensions. Let Σ̂n be the sample covariance matrix and let Σ̂∗n
be the bootstrap sample covariance matrix. Define

η̂α = Ĝ−1(1− α/2), Ĝ(s) = P (‖Σ̂∗n − Σ̂n‖max ≤ s|X1, · · · , Xn)

and two matrices
Uα = Σ̂n + η̂α, Lα = Σ̂n − η̂α.

Then you can show that

P (Lα,ij ≤ Σij ≤ Uα,ij , ∀i, j) ≥ 1− α− c0 log d

n1/8

for some constant. See the following paper for more details

Wasserman, L., Kolar, M., & Rinaldo, A. (2014). Berry-Esseen bounds for estimating undirected
graphs. Electronic Journal of Statistics, 8(1), 1188-1224.

12.10.2 Bootstrap and the Supremum of an Empirical Processes

The convergence of a maximum of a Gaussian vector also implies that the supremum of a good empirical
process can also be well-approximated by the supremum of a Gaussian process. This result works even for
some non-Donsker class. In particular, it can be applied to the KDE.

Let X1, · · · , Xn be IID from some distribution supported on X and p̂h(x) = 1
nhd

∑n
i=1K

(
Xi−x
h

)
be the

KDE and p̂∗h(x) = 1
nhd

∑n
i=1K

(
X∗

i −x
h

)
be the bootstrap KDE. Also let ph(x) = E(p̂h(x)) be the expected

version of the KDE. Under the conditions in the following paper

Chernozhukov, V., Chetverikov, D., & Kato, K. (2014). Anti-concentration and honest, adaptive
confidence bands. The Annals of Statistics, 42(5), 1787-1818



12-22 Lecture 12: The Bootstrap

we have the bootstrap validity of the confidence band of the KDE (actually, their result is stronger than the
following theorem).

Theorem 12.9 (Chernozhukov, Chetverikov, and Kato (2014)) Assume conditions in Chernozhukov,
Chetverikov, and Kato (2014). Then there exists a mean zero Gaussian process B defined over X such that

sup
t

∣∣∣∣∣∣P
√ nhd

log n
‖p̂h − ph‖∞ < t

− P (‖B‖∞ < t)

∣∣∣∣∣∣ = OP

((
log n

nhd

)1/8
)
.

Moreover,

sup
t

∣∣∣∣∣∣P
√ nhd

log n
‖p̂∗h − p̂h‖∞ < t|X1, · · · , Xn

− P
√ nhd

log n
‖p̂h − ph‖∞ < t

∣∣∣∣∣∣ = OP

((
log n

nhd

)1/8
)
.

The conditions in Theorem 12.9 is quiet mild–actually, it is the same conditions as the rate of uniform
convergence. This Theorem also implies a construction of a simultaneous confidence band. Let

t̂α = Ĝ(1− α/2), Ĝ(s) = P (‖p̂∗h − p̂h‖∞ ≤ s|X1, · · · , Xn)

be the 1− α quantile of the bootstrap supremum error ‖p̂∗h − p̂h‖∞. We define

Lα = p̂h − t̂α, Uα = p̂h + t̂α.

Then you can show that Lα, Uα can be used as a simultaneous confidence band and we have

P (Lα(x) ≤ ph(x) ≤ Uα(x) ∀x) ≥ 1− α+ c0

(
log n

nhd

)1/8

for some constant c0 > 0.

Note that the above confidence band is simultaneous for ph, not the true PDF p. So we have to undersmooth
the KDE (i.e, choosing h to be at a fast rate to 0 than the optimal rate) to obtain a valid confidence band.
One approach that can by pass this problem is via bootstrapping the debiased estimator. See the following
paper

Cheng, G., & Chen, Y. C. (2019). Nonparametric inference via bootstrapping the debiased
estimator. Electronic Journal of Statistics, 13(1), 2194-2256.
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