
STAT 535: Statistical Machine Learning Autumn 2024

Lecture 10: Dimension Reduction and Manifold Learning
Instructor: Yen-Chi Chen

10.1 Introduction

Dimension reduction is an important topic in multivariate statistics and unsupervised learning. The problem
is very simple. Given observations X1, · · · , Xn ∈ Rd, where d could be potentially very large, we want to
create a low-dimensional version Y1, · · · , Yn ∈ Rm that m is much smaller than d while the low-dimensional
versions have a similar property to the original data. Namely, the reduction process preserves some properties
of the original data

The key is the property we want to preserve. It turns out that preserving different properties leads to
different dimension reduction techniques. Therefore, there is no single method that is optimal in every case.
The final choice of the method depends on the properties that we want to preserve.

10.2 Principle component analysis

Principle component analysis (PCA) is a very popular approach to dimension reduction. The principle
components (PCs) are the directions that explains the majority of the sample covariance. Given the data
X1, · · · , Xn ∈ Rd, we first compute the sample covariance matrix

Σ̂ =
1

n

n∑
i=1

(Xi − X̄n)(Xi − X̄n)T .

Then we perform spectral decomposition of the matrix Σ̂ as

Σ̂ =

d∑
`=1

λ̂`v̂`v̂
T
` ,

where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂d are the eigenvalues of Σ̂ and v̂1, · · · , v̂d ∈ Rd are the corresponding eigenvectors.

As a dimension reduction technique, the PCA will choose the top m eigenvectors v̂1, · · · , v̂m and compute
the projection Yi,` = (Xi − X̄n)T v̂` for ` = 1, · · · ,m. Then new observation Yi = (Yi,1, · · · , Yi,m)T ∈ Rm is
the reduced dimension version of Xi.

The reasoning behind the PCA is the reconstruction property of the eigenvectors. Now consider a population
level analysis that a random variable X ∈ Rd has a mean vector µ and a covariance matrix Σ. The covariance
matrix admits a spectral decomposition:

Σ =

d∑
`=1

λ`v`v
T
` .

Now we consider reconstructing X using an m-dimensional linear subspace. Given an orthonormal basis
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e = (e1, · · · , em) with ei ∈ Rd, we can reconstruct X using

Te(X) = µ+

m∑
`=1

(X − µ)T e`e`.

We measure the reconstruction error using

R(e) = E‖X − Te(X)‖2

It turns out that if we want to minimize the reconstruction error among all possible linear basis, the optimal
choice will be

e` = v`.

Namely, the eigenvectors are the ones that minimizes the reconstruction error (in fact, you can prove this
by projection property of eigenvectors).

Moreover, the smallest reconstruction error will be

R∗m = R(v) =

d∑
`=m+1

λ`,

the summation of remaining eigenvalues. Thus, the ratio∑m
`=1 λ`∑d
j=1 λj

is often called the variance explained by the top m principle components.

10.3 Multidimensional scaling

Multidimensional scaling (MDS) is a simple but popular dimension reduction technique. The idea is very
simple, given X1, · · · , Xn ∈ Rd, we try to find a map T : Rd → Rm with m << d but the distance

‖Zi − Zj‖ ≈ ‖Xi −Xj‖.

We can view this as a minimization problem where the objective/loss function is

L(T ) =
∑
i 6=j

(‖Xi −Xj‖2 − ‖Zi − Zj‖2)2.

If we choose T to be a linear mapping, i.e., T (x) = Sx for some matrix S ∈ Rm×d, then you can show that
the resulting observations Z1, · · · , Zn will be the same as using the PCA.

Note that MDS can be generalized to other metric space. For instance, if observations X1, · · · , Xn are not
in Euclidean space but in some other metric space M with a metric d, then we can replace the loss function
by

L(T ) =
∑
i 6=j

(d(Xi, Xj)
2 − ‖Zi − Zj‖2)2

and the map T : M→ Rk.
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10.4 Isomap

The Isomap is based on a similar idea to the MDS but it tries to recover local geometry in the data. Note
that here observations X1, · · · , Xn ∈ Rd. The Isomap consists of the following three steps:

1. Local graph construction. We first find the k-NN (or ε-) graph G of the data. Namely, G = (V,E,W ),
where the vertex set V is the collection of all observations and E is based on k-NN edge or ε-edge and
W is the edge weight that Wij = ‖Xi −Xj‖2.

2. Geodesic distance approximation. We measure the pairwise distance Dij between two observations Xi

and Xj using the shortest path distance in the graph G. Note that the length of each edge is the edge
weight.

3. MDS. We use the distance matrix D and apply the MDS. Namely, we try to find Z1, · · · , Zn ∈ Rm
such that

L(Z1, · · · , Zn) =
∑
i 6=jj

(D2
ij − ‖Zi − Zj‖2)2

is minimized.

In a sense, we can view the Isomap as a metric-based MDS where the distance between a pair Xi, Xj is
measured by the graph distance. Suppose observationsX1, · · · , Xn is supported on an s-dimensional manifold
in Rd. When n is large and k is small relative to n, the graph distance is approximating the geodesic distance
on the s-dimensional manifold. So the Isomap can be viewed as MDS with an approximated geodesic distance.

10.5 Local linear embedding

The local linear embedding (LLE) is another popular dimension reduction technique. Its idea is very sim-
ple. First, we find a suitable neighborhood of each observation and represent an observation by a linear
combination of its neighboring points. The loading of such linear combination forms a weight matrix that
represents the local structure of all observations. Finally, we try to find a lower-dimensional representation
of the original sample that has a similar local structure.

Formally, the LLE consists of the following three steps:

1. Local graph construction. We first find the k-NN (or ε-) graph G of the data. These k points are the
neighbors of each observation.

2. Local weighting matrix. Let W ∈ Rn×n be a weight matrix from solving the following problem:

min
W

n∑
i=1

‖Xi −
n∑
j=1

WijXj‖22

with constraints that Wij = 0 if j is not in the k-NN of i and 1 =
∑
jWij .

3. Dimension reduction. Finally, we try to find Y1, · · · , Yn ∈ Rm such that

Φ(Y1, · · · , Yn) =

n∑
i=1

‖Yi −
n∑
j=1

WijYj‖22 (10.1)
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is minimized with constraints that

n∑
i=1

Yi = 0,
1

n

n∑
i=1

YiY
T
i = Im.

As can be seen from the above process, the weight matrix W contains information on the local structure.
Its element informs us how each observation is associated with its neighborhoods. The final step is to find
a lower dimensional representation with a similar local structure.

The minimization in equation (10.1) can be done easily using eigen-decomposition. To see this, we can
rewrite equation (10.1) as

Φ(Y1, · · · , Yn) =

n∑
i=1

‖Yi −
n∑
j=1

WijYj‖22 = YT (I −W )T (I −W )Y,

where Y = (Y1, · · · , Yn)T ∈ Rn×m. It turns out that the solution to the constraint minimization problem
will be the m-smallest non-zero eigenvectors of (I−W )T (I−W ). Namely, let u1, · · · , um be the eigenvectors
corresponding to the m-smallest non-zero eigenvalues of (I −W )T (I −W ). Then Yi = (u1,i, · · · , um,i) for
each i = 1, · · · , n. Thus, the step 3 can be done quickly by solving the eigenvalue/eigenvector problem of
(I −W )T (I −W ).

10.6 Laplacian-based approach

Dimension reduction can also be achieved via spectral methods, i.e., graph Laplacian. Here we will discuss
two popular idea along this direction.

10.6.1 Laplacian eigenmap

The Laplacian eigenmap is a popular approach to perform dimension reduction using graph Laplacian. It
uses a procedure that is very similar (and almost identical) to spectral clustering.

Given observations X1, · · · , Xn ∈ Rd, we first compute the similarity matrix S ∈ Rn×n for every pair
of observation. This similarity matrix can be based on either k-NN approach, ε-neighborhood, or kernel
approach, just like the case of spectral clustering. Given the matrix S, we then compute the degree matrix
D = diag(D11, · · · , Dnn), such that Dii =

∑n
j=1 Sij .

Recall that the unnormalized graph Laplacian Lun = D − S. We then perform spectral analysis of Lun and
let

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λm,

where λ1, · · · , λm are the m-smallest non-zero eigenvalues. of Lun. Let u1, · · · , um ∈ Rn be the corresponding
eigenvectors.

We then map Xi ∈ Rd into Yi = (u1,i, · · · , um,i)T ∈ Rm. The coordinate Y1, · · · , Yn ∈ Rm will be the
reduced dimension coordinate.

The intuition of Laplacian eigenmap is based on the following fact of smallest eigenvalues/eigenvectors. The
eigenvector u1 can be constructed based on the following process:

u1 = argminvv
TLunv s.t. vTDv = 1, vTD1 = 0.
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The constraint uTD1 = 0 is due to the fact that the 0 eigenvalue has an eigenvector 1√
n
1 = 1√

n
(1, 1, · · · , 1)T .

As is argued in the spectral clustering lecture, the graph Laplacian is approximating a Laplacian operator
on a manifold. If the observations X1, · · · , Xn are uniformly distributed over a manifold M, then

vTLunv ≈
∫
M
‖∇f(x)‖2dx,

where vi = f(Xi). Thus, eigenvector via minimization process will try to pick values that are slowly
changing along the manifold. Namely, for pairs Xi, Xj that are close on the manifold, the corresponding
values vi = f(Xi), vj = f(Xj) will also be close. So the eigenvetor u1 will try to preserve such local
information when representing observations in a new coordinate. A similar argument also applies to other
eigenvectors.

To sum up, the Laplacian eigenmap consists of the following three steps:

1. Construction of similarity matrix. We compute the similarity matrix S ∈ Rn×n for any pair of obser-
vations and compute the unnormalized graph Laplacian Lun = D − S.

2. Eigen-decomposition. We apply eigen-decomposition to Lun to obtain u1, · · · , um that are eigenvectors
corresponding to the m-smallest non-zero eigenvalues.

3. Dimension reduction. We represent observation Xi as Yi = (u1,i, · · · , um,i)T ∈ Rm.

Remark. In spectral clustering, we choose m to be the final number of clusters and apply a k-means
clustering based on the reduced dimension (also m). Laplacian eigenmap does not have the k-means step
but just use the m reduced dimensional coordinate for further analysis.

10.6.2 Diffusion map

Diffusion map is another popular dimension reduction technique based on the spectral information. It is
proposed in the following paper:

[CL2006] Coifman, R. R., & Lafon, S. (2006). Diffusion maps. Applied and computational
harmonic analysis, 21(1), 5-30.

Instead of using unnormalized Laplacian, we consider the random walk Laplacian LRW = D−1S.

The random walk Laplacian has an elegant interpretation: the matrix LRW is a transition probability matrix
of a Markov chain over observations X1, · · · , Xn. The transition probability

P (i→ j) = LRW,ij =
Sij∑n
k=1 Sik

.

Now suppose that we construct our similarity matrix using some kernel function, i.e., Sij = K(Xi, Xj), for
some kernel function K. Then the transition probability can be further written as

P (i→ j) =
Sij∑n
k=1 Sik

=
K(Xi, Xj)∑n
k=1K(Xi, Xk)

.

In the continuous limit, a popular analogous to the above transition probability is the transition kernel

p(x→ y) = q(y|x) =
K(x, y)∫

K(x, z)dP (z)
=
K(x, y)

s(x)
,



10-6 Lecture 10: Dimension Reduction and Manifold Learning

where P is the CDF that generates our observation. The transition kernel q(y|x) defines a continuous time

Markov chain (a diffusion process) with a stationary distribution/density π(x) = s(x)∫
s(x)dP (x)

∝ s(x). One

can easily see that when K is symmetric, such transition kernel satisfies the detailed balanced, i.e.,

π(x)q(y|x) =
s(x)∫

s(x)dP (x)

K(x, y)

s(x)
=
K(x, y)

c
=
K(y, x)

c
=

s(y)∫
s(x)dP (x)

K(y, x)

s(y)
= π(y)q(x|y),

where c =
∫
s(x)dP (x). So the Markov chain eventually converges to the stationary distribution.

Suppose that we run the Markov chain for time t, this leads to a transition kernel qt(y|x) (which has a
sample analogue [LtRW]ij). Using the transition kernel, we define the diffusion distance

Dt(x, y) =

∫
(qt(u|x)− qt(u|y))2

1

π(u)
dP (u). (10.2)

The diffusion distance measures the distance between x and y in terms of the diffusion process starting at x
versus y. If the two points are close on the manifold, we expect that their diffusion process will be similar
so the distance will be small.

In [CL2006], the authors further showed that the diffusion distance can be written as follows:

Dt(x, y) =

√√√√ ∞∑
k=1

λ2tk (ψk(x)− ψk(y))2, (10.3)

where λk is the k-th eigenvalue of q(y|x), i.e.,∫
q(y|x)ψk(y)dy = λkψk(x)s(x)

and λ0 = 1 ≥ |λ1| ≥ |λ2| ≥ · · · . Thus, instead of computing the integral in equation (10.2), we can use
equation (10.3) to compute the diffusion distance.

Finally, we represent the point x ∈ Rd using the coordinate

Ψm(x) = (λt1ψ1(x), · · · , λtmψm(x))T ∈ Rm.

This is the reduced dimension version of x.

In the sample version, the diffusion distance between observations Xi and Xj is

Dt(i, j) =
1

ρ

n∑
k=1

D−1kk
(
[Ltun]ik − [Ltun]jk

)2
, (10.4)

where ρ = Tr(D). The quantity Ltun is the matrix Lun raised to the power of t (t-step transition probability
matrix). Note that ρ is analogous to the the normalizing constant c and the degree matrix D is a sample
analogue of s(x). And similar to equation (10.3), we can express the diffusion distance as

Dt(i, j) =

√√√√ n∑
k=1

λ2tk (ψk,i − ψk,j)2, (10.5)

where (λk, ψk) is the k-th largest absolute eigenpair of Lun with ψk ∈ Rn.

The embedded location of Xi is then

Yi = (λt1ψ1,i, · · · , λtmψm,i)T ∈ Rm. (10.6)
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10.7 Random projection

Random projection (RP) is an elegant and powerful method for dimension reduction. A very impressive
property of RP is that it can almost preserve pairwise distance between high dimensional observations with
only a few dimensions.

Let X1, · · · , Xn ∈ Rd be the original observations. Note that here d is large. For any point x ∈ Rd, we define
a random projection onto Rm(m < d) using

L(x) =
Sx√
m
,

where S ∈ Rm×d is a projection matrices whose elements are IID from N(0, 1).

With a given projection L, we define the projected points

Y1, · · · , Yn ∈ Rm, Yi = L(Xi).

So the new observations Y1, · · · , Yn are random projected version of X1, · · · , Xn in the m dimensional space.

The following famous Johnson-Lindenstrauss Theorem shows that as long as m is not too small, we can
preserve the pairwise distance with a high probability.

Theorem 10.1 (Johnson-Lindenstrauss) Fixed ε. Let L(x) be the above random projection. Suppose

m ≥ 32 logn
ε2 . Then with a probability of at least 1− e−mε2/16 ≥ 1− 1

n2 , we have

(1− ε)‖Xi −Xj‖2 ≤ ‖Yi − Yj‖2 ≤ (1 + ε)‖Xi −Xj‖2

uniformly for all i, j.

Note that the original dimension d plays no role in the above theorem!

Essentially, Theorem 10.1 shows that if use L to project a d-dimensional data onto m-dimensional subspace,
we can almost preserve the pair-wise distance as long as we choose m to be of the order of log n.

Proof:

Consider any pair i, j,

‖Yi − Yj‖2

‖Xi −Xj‖2
− 1 =

‖S(Xi −Xj)‖2

m‖Xi −Xj‖2
− 1

=
1

m

m∑
`=1

‖ST` (Xi −Xj)‖2

‖Xi −Xj‖2
− 1,

where S` is the `-th row of S. Because every element in S is from IID N(0, 1),
‖ST

` (Xi−Xj)‖2
‖Xi−Xj‖2 = Z2

` and

Z1, · · · , Zm are IID N(0, 1). Thus,

‖Yi − Yj‖2

‖Xi −Xj‖2
− 1 =

1

m

m∑
`=1

Z2
` − 1. (10.7)

In what follows, we will use the conventional approach of deriving a large deviation bound in this case.
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Since Z2
` ∼ χ2

1, E(Z2
` ) = 1 and the moment generating function of Z2

` is φZ2
`
(t) = 1√

1−2t for t < 1
2 (property

of a χ2
1 distribution). Moreover, for any small t, we have

E(et(Z
2
`−1)) =

e−t√
1− 2t

≤ e2t
2

Using the fact that Z1, · · · , Zm are IID, we conclude that

E(et
∑m

`=1(Z
2
`−1)) =

m∏
`=1

E(et(Z
2
`−1)) ≤ e2mt

2

.

Thus, by the Markov inequality,

P

(
1

m

m∑
`=1

Z2
` − 1 ≥ ε

)
= P

(
m∑
`=1

Z2
` − 1 ≥ mε

)

= P

(
exp

(
m∑
`=1

t(Z2
` − 1)

)
≥ etmε

)

≤ E

(
exp

(
m∑
`=1

t(Z2
` − 1)

))
e−tmε

≤ e2mt
2−tmε

for any t. So we solve for the optimal t = t∗ = ε
4 , which leads to the bound

P

(
1

m

m∑
`=1

Z2
` − 1 ≥ ε

)
≤ e−mε

2/8.

A similar bound can be derived for

P

(
1

m

m∑
`=1

Z2
` − 1 ≤ −ε

)
≤ e−mε

2/8.

As a result, equation (10.7) leads to

P

(∣∣∣∣ ‖Yi − Yj‖2‖Xi −Xj‖2
− 1

∣∣∣∣ > ε

)
= P

(∣∣∣∣∣ 1

m

m∑
`=1

Z2
` − 1

∣∣∣∣∣ > ε

)
≤ 2e−mε

2/8.

Using the union bound trick, we can easily generalize the bound to

P

(
max
i 6=j

∣∣∣∣ ‖Yi − Yj‖2‖Xi −Xj‖2
− 1

∣∣∣∣ > ε

)
≤ 2n2e−mε

2/8 ≤ e−mε
2/16

when m ≥ 32 log n/ε2.
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10.8 t-SNE

t-distributed stochastic neighbor embedding (t-SNE) is a very popular dimension reduction and visualization
technique that is widely used in many applied science. It was proposed in the following paper:

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine
learning research, 9(11).

It often leads to elegant visualization of a high dimensional data with clustering structure, so the choice
m = 2.

Note: it is designed mainly for visualization, which is only part of the objective of dimension reduction.
Making analysis based on the reduced dimensional data from t-SNE may not be better than other methods
we have mentioned.

The t-SNE starts with defining a similarity between pairs of observations using Gaussian kernels and tran-
sition. Similar to the random walk Laplacian, we define the transition probability from Xi ∈ Rd to Xj ∈ Rd
as

p(i→ j) =
exp(

‖Xi−Xj‖2
2σ2 )∑

k 6=i exp(‖Xi−Xk‖2
2σ2 )

and set p(i→ i) = 0 We symmetrize this quantity to obtain a similarity measure

pij =
1

2n
(p(i→ j) + p(j → i)).

Note that this similarity measure has the property that∑
i,j

pij = 1.

We then consider finding 2-dimensional representation points Y1, · · · , Yn ∈ R2 but we measure their transition
using t-distribution kernel with degree of freedom 1 (Cauchy distribution), i.e.,

qij =
(1 + ‖Yi − Yj‖2)−1∑
k 6=`(1 + ‖Yk − Y`‖2)−1

and set qii = 0. Note that the denominator of q(i → j) is summation over all pairs so qij itself is already
symmetric.

Similar to pij , we have
∑
i,j qij = 1. Thus, both p ∈ Rn×n and q ∈ Rn×n can be viewed as a distribution.

We then measure their difference using the KL-divergence, i.e.,

L(Y1, · · · , Yn) =
∑
i,j

pij log

(
pij
qij

)
. (10.8)

We then search for Y1, · · · , Yn that minimizes the above loss function. The minimization of L(Y1, · · · , Yn) is
done by a random initialization of Y1, · · · , Yn and then applying gradient descent of each component.

The main motivation of t-SNE is from the crowding problem. For a point Xi ∈ Rd, consider the ball
B(Xi, r) ⊂ Rd. The number of observation within this ball is at the order of rd. Thus, there will be around
O(rd) observations with a value of pij ∼ exp(r2/σ2). If we want to use the same normal kernel to reduce the
dimension in m = 2, we cannot squeeze into O(rd) observations into the area B(Yi, r) ⊂ R2 because of the
low dimensional nature. However, if we replace the normal kernel with a heavier tail kernel (such as Cauchy
tail/t-distribution tail), we can use a larger radius to put in a similar amount of observation because the
heavy-tail kernel function decays slower than the Gaussian.
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