
STAT 516: Stochastic Modeling of Scientific Data Autumn 2024

Lecture 9: Hidden Markov Model
Instructor: Yen-Chi Chen

These notes are partially based on those of Mathias Drton.

9.1 Introduction

Hidden Markov Model (HMM) is a powerful tool to model a time series with multiple patterns. For a concrete
example, consider the trace plot of an MCMC for a 2-Gaussian mixture model:

0 5000 10000 15000 20000 25000 30000

−
4

−
2

0
2

4
6

8

MCMC: trajectory, sigma=1

x_
m

cm
c

There seems to be two patterns in the plot–one centered at 0 and the other centered at 6. The trajectory is
oscillating between the two centers. The HMM is a powerful tool to model a data like this.

The HMM consists of two variables, the observed variable Yt and a hidden state variable Xt. The variables
{Y1, · · · , Yn} are what we observed whereas the hidden variables {X1, · · · , Xn} are unobserved states at
each time point. In an HMM, the joint distribution of the observations Y1, . . . , Yn and the hidden states
X1, . . . , Xn factors according to the graph:

Y1

X1

Y2

X2

Y3

X3

Y4

X4

Yn

Xn

Namely, the observations Yt’s are dependent on each other because of the hidden variables. This implies
that conditioned on the hidden states, observed variables Yt’s are independent. Moreover, the hidden states
form a homogeneous Markov chain. Here we will assume that the number of states S = {1, 2, · · · , s} is finite
and we will also assume that the observed variables are categorical/discrete Yt ∈M = {1, · · · ,m}.

The HMM consists of 3 sets of parameters:

• Initial distribution (of hidden state): ν = (ν(1), · · · , ν(s)).

9-1

9-2 Lecture 9: Hidden Markov Model

• Transition probability : P = {pij}, i, j = 1, · · · , s.

• Emission probability : E = {e(k|i)}, i = 1, · · · , s and k = 1, · · · ,m.

The first two parameters are the typical parameters of a Markov chain and the last one, the emission
probability, describes how a hidden state is associated with the observed variables.

Let y−t = (y1, · · · , yt−1, yt+1, · · · , yn) and ya:b = (ya, ya+1, · · · , yb) and y = (y1, · · · , yn). According to the
graphical model, the variables of an HMM is characterizes by the parameters as

P (x1, · · · , xn) = ν(x1)

n∏
t=2

P (xt|xt−1) = ν(x1)

n∏
t=2

pxt−1,xt

P (yt|y−t,x) = P (yt|xt) = e(yt|xt).

Beware, although the hidden variables X1, · · · , Xn are Markov chain, the observed variables Y1, · · · , Yn may
not be.

There are four common goals of an HMM:

• Likelihood Evaluation: we want to rapidly evaluate the likelihood value L(ν,P,E|y) = P (y).

• Parameter Estimation: we want to estimate the underlying parameters ν,P,E.

• Hidden State Inference: given y and parameters ν,P,E, we want to reconstruct the corresponding
hidden states x.

• Forecasting: we want to predict the future outcomes.

9.2 Likelihood Evaluation: Forward and Backward Algorithm

9.2.1 Backward algorithm

Assume that we observed Y = y. The likelihood function is the joint probability of y, so

L(ν,P,E|y) = P (y) =
∑
x

P (y,x)

=
∑
x

P (y|x)P (x)

=
∑
x

n∏
t=1

P (yt|y1:(t−1),x)ν(x1)

n∏
r=2

P (xr|x1:(r−1))

=
∑
x

ν(x1)

n∏
t=1

e(yt|xt)
n∏
r=2

p(xr|xr−1)

=
∑
x

ν(x1)e(y1|x1)

n∏
t=2

e(yt|xt)p(xt|xt−1).

Note that because each xt has s possible states, computing the summation here requires an evaluation of sn

elements, which is very large. Thus, we need to find a smart way to bypass this summation problem.

Lecture 9: Hidden Markov Model 9-3

Here we introduce the backward algorithm, which will drastically reduce the computational cost. To illustrate
the idea, we consider the case n = 3. The likelihood function will be

L(ν,P,E|y) =
∑

x1,x2,x3

ν(x1)e(y1|x1)e(y2|x2)p(x2|x1)e(y3|x3)p(x3|x2)

=
∑
x1

ν(x1)e(y1|x1)


∑
x2

e(y2|x2)p(x2|x1)

{∑
x3

e(y3|x3)p(x3|x2)

}
︸ ︷︷ ︸

b2(x2)

︸ ︷︷ ︸
b1(x1)︸ ︷︷ ︸

b0

What do we gain by doing this? Naively summing over all states requires an O(nsn) operations. But
recursively evaluating bt(1), · · · , bt(s) is a lot cheaper using dynamic programming; the total cost is O(ns2).

Now we take a close look at each bt(xt).

b2(x2) =
∑
x3

e(y3|x3)p(x3|x2) =
∑
x3

P (y3|x3)P (x3|x2) = P (y3|x2).

And

b1(x1) =
∑
x2

e(y2|x2)p(x2|x1)b2(x2)

=
∑
x2

P (y2|x2)P (x2|x1)P (y3|x2)

=
∑
x2

P (y3, y2, x2|x1)

= P (y3, y2|x1).

You can generalize all the above derivation to more variable case. The general form of bt(i) is

bt(i) =

s∑
j=1

p(j|i)e(yt+1|j)bt+1(j). (9.1)

and it represents the backward probability:

bt(i) = P (y(t+1):n|Xt = i) (9.2)

and b0 = P (y) = L(ν,E,P|y) is the likelihood value.

The Backward algorithm works as follows:

1. Let bn(i) = 1 for all i ∈ S.

2. For t = n− 1, · · · , 1, compute

bt(i) =

s∑
j=1

p(j|i)e(yt+1|j)bt+1(j)

for i ∈ S.

9-4 Lecture 9: Hidden Markov Model

3. Finally, compute

b0 =

s∑
j=1

ν(j)e(y1|j)b1(j) = L(ν,E,P|y).

It is called the backward algorithm becomes we are taking a backward sweep from t = n to t = 0.

Here is derivation of the formula in equation (9.1) from equation (9.2). We assume that bt(i) = P (y(t+1):n|Xt =
i). Then

bt(i) = P (y(t+1):n|Xt = i)

=
∑
j

P (yt+1, Xt+1 = j,y(t+2):n|Xt = i)

=
∑
j

P (yt+1|Xt+1 = j,y(t+2):n, Xt = i)P (y(t+2):n|Xt+1 = j,Xt = i)P (Xt+1 = j|Xt = i)

= using the graphical model

=
∑
j

P (yt+1|Xt+1 = j)P (y(t+2):n|Xt+1 = j)P (Xt+1 = j|Xt = i)

=
∑
j

e(yt+1|j)bt+1(j)p(j|i)

= (9.1).

9.2.2 Forward algorithm

The forward algorithm relies on the idea of forward probability. To see how this idea works, we consider
again our n = 3 case but now we rewrite the probability as

L(ν,P,E|y) =
∑

x1,x2,x3

ν(x1)e(y1|x1)e(y2|x2)p(x2|x1)e(y3|x3)p(x3|x2)

=
∑

x1,x2,x3

e(y3|x3)p(x3|x2)e(y2|x2)p(x2|x1)ν(x1)e(y1|x1)

=
∑
x3

e(y3|x3)
∑
x2

p(x3|x2) e(y2|x2)
∑
x1

p(x2|x1) ν(x1)e(y1|x1)︸ ︷︷ ︸
a1(x1)︸ ︷︷ ︸

a2(x2)︸ ︷︷ ︸
a3(x3)

The quantity at(i) is called the forward probability. Using a similar derivation as the backward probability,
you can show that

at(i) = P (y1:t, xt = i). (9.3)

The forward algorithm is a method based on the forward probability to evaluate the likelihood function. It
works as follows:

1. Initialize a1(i) = ν(i)e(y1|i) for i ∈ S.

2. For t = 1, · · · , n− 1, compute

at+1(i) = e(yt+1|i)


s∑
j=1

p(i|j)at(j)

 (9.4)

Lecture 9: Hidden Markov Model 9-5

for i ∈ S.

3. Finally, we compute
s∑
j=1

an(j) =

s∑
j=1

P (y, xn = j) = P (y) = L(ν,E,P|y).

Here, we are sweeping from t = 1 to n so it is called the forward algorithm.

9.3 Parameter Estimation and the Baum-Welch algorithm

To infer θ = (ν,P,E), a simple approach is the MLE. However, there is no closed form solution to the MLE
because we have hidden variables X. Thus, we need to design an algorithm to find the MLE. As is mentioned
in the previous lecture, we will use the EM algorithm in this case.

The EM algorithm for HMM is also called the Baum-Welch algorithm. The complete-data likelihood is

P (x,y; θ) = ν(x1)

n∏
t=2

p(xt|xt−1)

n∏
r=1

e(yr|xr)

and the corresponding log-likelihood is

logP (x,y; θ) = log ν(x1) +

n∑
t=2

log p(xt|xt−1) +

n∑
r=1

log e(yr|xr).

E-step:
To derive the E-step, we first analyze the expected log-likelihood value given a parameter θ(k) = (ν(k),E(k),P(k)):

E
{

logP (x,y; θ)|y; θ(k)
}

=
∑
x

logP (x,y; θ)P (x|y; θ(k))

=
∑
x

log ν(x1)P (x|y; θ(k))︸ ︷︷ ︸
F1(ν;θ(k))

+
∑
x

n∑
t=2

log p(xt|xt−1)P (x|y; θ(k))︸ ︷︷ ︸
F2(P;θ(k))

+
∑
x

n∑
t=1

log e(yt|xt)P (x|y; θ(k))︸ ︷︷ ︸
F3(E;θ(k))

.

The additive form makes the M-step a lot easier–we can separately maximize each term.

M-step:
Updating ν:

F1(ν; θ(k)) =
∑
x

P (x|y; θ(k)) log ν(x1)

=
∑
x1

P (x1|y; θ(k)) log ν(x1)

=
∑
i

γ1(i; θ(k)) log ν(i),

9-6 Lecture 9: Hidden Markov Model

where

γt(i; θ
(k)) = P (xt = i|y; θ(k)) =

at(i; θ
(k))bt(i; θ

(k))∑
j at(j; θ

(k))bt(j; θ(k))
. (9.5)

Note that at(j; θ) and bt(j; θ) are the forward and backward probability assuming θ is the generating prob-
ability.

Using Lagrange multiplier, one can show that the maximizer is

ν(k+1)(i) = γ1(i; θ(k)) = imputed frequency of state i at time 1.

Updating P:

F2(P; θ(k)) =
∑
x

n∑
t=2

log p(xt|xt−1)P (x|y; θ(k))

=

n∑
t=2

∑
xt,xt−1

log p(xt|xt−1)
∑

x1:(t−2),x(t+1):n

P (x|y; θ(k))

=

n∑
t=2

∑
i,j

P (Xt = j,Xt−1 = i|y; θ(k)) log p(j|i)

=
∑
i,j

{
n∑
t=2

P (Xt = j,Xt−1 = i|y; θ(k))

}
log p(j|i)

=
∑
i,j

Nt(i, j; θ
(k)) log p(j|i),

where

N(i, j; θ(k)) =

n∑
t=2

P (Xt = j,Xt−1 = i|y; θ(k)).

The maximization problem is like the maximization of the Markov chain with the number of observed
transitions from state i to state j is N(i, j; θ(k)). Thus, we know that the maximizer will be

p(k+1)(j|i) =
N(i, j; θ(k))∑
j N(i, j; θ(k))

=
expected number of transitions from i→ j

expected number of transitions from i
.

Note that there is an interesting relation between N(i, j; θ) and γt(i; θ):

∑
j

N(i, j; θ(k)) =
∑
j

n∑
t=2

P (Xt = j,Xt−1 = i|y; θ(k))

=

n∑
t=2

∑
j

P (Xt = j,Xt−1 = i|y; θ(k))

=

n∑
t=2

P (Xt−1 = i|y; θ(k))

=

n∑
t=2

γt−1(i; θ(k)).

Lecture 9: Hidden Markov Model 9-7

This observation also gives a hint on how to efficiently compute N(i, j; θ(k)) =
∑n
t=2 P (Xt = j,Xt−1 =

i|y; θ(k)):

P (Xt = j,Xt−1 = i|y; θ(k)) ∝ P (Xt = j,Xt−1 = i,y; θ(k))

= P (y(t+1):n|Xt = j,Xt−1 = i,y1:t; θ
(k))P (y1:t, Xt = j,Xt−1 = i; θ(k))

= P (y(t+1):n|Xt = j; θ(k))P (yt|y1:(t−1), Xt = j,Xt−1 = i; θ(k))

× P (Xt = j|Xt−1 = i,y1:(t−1); θ
(k))P (Xt−1 = i,y1:(t−1); θ

(k))

= P (y(t+1):n|Xt = j; θ(k))e(yt|j; θ(k))P (j|i; θ(k))P (y1:(t−1), Xt−1 = i; θ(k))

= bt(j; θ
(k))e(k)(yt|j)p(k)(j|i)at−1(i; θ(k)).

Thus,

P (Xt = j,Xt−1 = i|y; θ(k)) =
bt(j; θ

(k))e(k)(yt|j)p(k)(j|i)at−1(i; θ(k))∑
i′,j′ bt(j

′; θ(k))e(k)(yt|j′)p(k)(j′|i′)at−1(i′; θ(k))
.

We can compute this probability easily and then sum over t to obtain N(i, j; θ(k)) and update p(k+1)(j|i).

Updating E:

F3(E; θ(k)) =
∑
x

n∑
t=1

log e(yt|xt)P (x|y; θ(k))

=

n∑
t=1

∑
xt

log e(yt|xt)
∑
x−t

P (x|y; θ(k))

=

n∑
t=1

∑
xt

P (xt|y; θ(k)) log e(yt|xt)

=
∑
xt

n∑
t=1

γt(xt; θ
(k)) log e(yt|xt).

Again, using Lagrange multiplier, the maximizer is

e(k+1)(`|i) =

∑n
t=1 γt(i; θ

(k))I(yt = `)∑n
t=1 γt(i; θ

(k))
.

With all the above updating equation, the Baum-Welch algorithm is

1. Start with θ(0) = (ν(0),P(0),E(0)). Repeat the following steps until some convergence criterion is met:

(a) Compute the forward and backward probabilities {at(i|θ(k))} and {bt(i|θ(k))}.

(b) Update HMM parameters

ν(k+1)(i) = γ1(i; θ(k))

p(k+1)(j|i) =
N(i, j; θ(k))∑
j N(i, j; θ(k))

e(k+1)(`|i) =

∑n
t=1 γt(i; θ

(k))I(yt = `)∑n
t=1 γt(i; θ

(k))
.

9-8 Lecture 9: Hidden Markov Model

9.4 Hidden State Reconstruction and Viterbi Algorithm

Note that here we assume that the parameters ν,P,E are given so we can easily evaluate the forward and
the backward probabilities. We can estimate these parameters using the BW algorithm.

The forward and backward probabilities together imply a very interesting result:

P (Xt = i|y) =
P (Xt = i,y)

P (y)

=
P (y1:t,y(t+1):n, Xt = i)

P (y)

=
P (y(t+1):n|y1:t, Xt = i)P (y1:t, Xt = i)

P (y)

= using graphical model

=
P (y(t+1):n|Xt = i)P (y1:t, Xt = i)

P (y)

=
at(i)bt(i)∑s
j=1 at(j)bt(j)

.

Namely,

P (Xt = i|y) ∝ at(i)bt(i)

so this gives us the marginal probability of a hidden state at time t. Thus, a method to reconstruct the
hidden state is

x̂t = argmaxiat(i)bt(i)

and by applying this to every t, we obtain

x̂1, · · · , x̂n.

However, this idea is based on the marginal probability, not the joint probability. So it may give us a path
such that P (x̂t+1|x̂t) = 0!

A better way is to find the states according to the joint distribution function. Namely,

x∗ = argmaxxP (x|y) = argmaxxP (x,y).

In this case, x∗ is the MAP estimator. Note that x∗ involves n elements so there are totally sn possible
elements we need to search to obtain x∗. Ideally, we want to avoid searching all possible configurations.
Here we will use the idea that for a bivariate function f(i, j),

max
i,j

f(i, j) = max
j
{max

i
f(i, j)}.

The joint distribution function up to time point t+ 1 can be factored as

P (x1:(t+1),y1:(t+1)) = P (xt+1, yt+1|x1:t,y1:t)P (x1:t,y1:t)

= P (yt+1|xt+1,x1:t,y1:t)P (xt+1|x1:t,y1:t)P (x1:t,y1:t)

= using graphical model

= P (yt+1|xt+1)P (xt+1|xt)P (x1:t,y1:t)

= e(yt+1|xt+1)P (xt+1|xt)P (x1:t,y1:t).

Lecture 9: Hidden Markov Model 9-9

This implies a very interesting recursive relation. Define

dt(i) = max
x1:(t−1)

P (x1:(t−1), xt = i,y1:t)

for i ∈ S. Then for t = 2, · · · , n and i = 1, · · · , s,

dt(i) = max
x1:(t−1)

P (x1:(t−1), xt = i,y1:t)

= max
x1:(t−1)

e(yt|xt = i)P (xt = i|xt−1)P (x1:(t−1),y1:(t−1))

= e(yt|xt = i) max
x1:(t−1)

P (xt = i|xt−1)P (x1:(t−1),y1:(t−1))

= e(yt|xt = i) max
xt−1

P (xt = i|xt−1) max
x1:(t−2)

P (x1:(t−1),y1:(t−1))︸ ︷︷ ︸
dt−1(xt−1)

= e(yt|xt = i)

{
max
xt−1

P (xt = i|xt−1)dt−1(xt−1)

}
.

Again, we obtain a recursive relation between each dt(i).

This suggests a recursive approach to find the joint maximizer, which is known as the Viterbi algorithm:

1. Compute d1(i) = ν(i)e(y1|i) for each i ∈ S.

2. For t = 2, · · · , n, compute

dt(i) = e(yt|i) ·max
j
dt−1(j)p(i|j) for all i ∈ S

ft(i) = argmaxjdt−1(j)p(i|j) for all i ∈ S.

3. Let p∗ = maxj dn(j) and x∗n = argmaxjdn(j).

4. (backtracking) For t = n− 1, · · · , 1:
x∗t = ft+1(x∗t+1).

5. Return x∗ = (x∗1, · · · , x∗n).

The logic of Viterbi algorithm is that for a function g(i, j)

(i∗, j∗) = argmaxi,jg(i, j)⇒ j∗ = argmax
{

max
i
g(i, j)

}
.

It is clear that x∗n = argmaxjdn(j) is indeed the maximizer at the last time point. To see that x∗t indeed
maximizes the joint probability, we consider the case of n − 1 (and you can generalize it to any t using
induction). Given x∗n, the true maximizer of xn−1 should be

x∗n−1 = argmaxj max
x1:(n−2)

P (x1:n−2, xn−1 = j, xn = x∗n,y)

= argmaxj max
x1:(n−2)

e(yn|xn = x∗n)P (xn = x∗n|xn−1 = j)P (x1:(n−2), xn−1 = j,y1:(n−1))

= argmaxjP (xn = x∗n|xn−1 = j) max
x1:(n−2)

P (x1:(n−2), xn−1 = j,y1:(n−1))

= argmaxjP (xn = x∗n|xn−1 = j)dn−1(j)

= fn(x∗n).

9-10 Lecture 9: Hidden Markov Model

Thus, indeed the Viterbi algorithm finds the path that maximizes the joint probability.

Note that when n is large, the rounding error of computing the probability could be a problem. To avoid
this problem, one can move all calculation to the log scale and use

d̃t(i) = max
x1:(t−1)

logP (x1:(t−1), xt = i,y1:t).

We will obtain another recursive relation:

d̃t(i) = log e(yt|i) + max
j

{
d̃t−1(j) + log p(i|j)

}
.

9.5 Forecasting

The forecasting problem is that case where we have observations up to time point n and we would like
to predict the possible outcomes at time point n + h for h = 1, 2, · · · . Specifically, we want to obtain a
forecast probability of each possible outcome y ∈ M . Using the notion of probability, what we really want
is P (Yn+1 = yn+1|y) for each yn+1 ∈M .

We start with the simple case h = 1.

P (Yn+1 = yn+1|y) =
∑
i

P (Yn+1 = yn+1, Xn = i|y)

=
∑
i

P (Yn+1 = yn+1|Xn = i)P (Xn = i|y)

=
∑
i

∑
j

P (Yn+1 = yn+1, Xn+1 = j|Xn = i)

P (Xn = i|y)

=
∑
i

∑
j

P (Yn+1 = yn+1|Xn+1 = j)p(j|i)

P (Xn = i|y).

Recall that P (Xn = i|y) = bn(i)an(i)∑
k bn(k)an(k)

= an(i)∑
k an(k)

since bn(k) = 1 for all k. Using this fact, we can rewrite

the above as

P (Yn+1 = yn+1|y) =
∑
i

∑
j

P (Yn+1 = yn+1|Xn+1 = j)P (j|i)

P (Xn = i|y)

=

∑
i

{∑
j e(yn+1|j)p(j|i)

}
an(i)∑

k an(k)
.

With an estimate of e and P (j|i) and the corresponding forward probability, we can easily compute the
forecast probability of each state yn+1 ∈M .

Lecture 9: Hidden Markov Model 9-11

For a general h case (forecasting h-time point future), we have

P (Yn+h = yn+h|y) =
∑
i

P (Yn+h = yn+h, Xn = i|y)

=
∑
i

∑
j

P (Yn+h = yn+h, Xn+h = j|Xn = i,y)

P (Xn = i|y)

=
∑
i

∑
j

P (Yn+h = yn+h|Xn+h = j)P (Xn+h = j|Xn = i)

P (Xn = i|y)

=
∑
i

∑
j

e(yn+h|j)p(h)(j|i)

P (Xn = i|y)

=

∑
i

{∑
j e(yn+h|j)p(h)(j|i)

}
an(i)∑

k an(k)
,

where p(h)(j|i) is the h-step transition probability of the Markov chain. Using this equation, we can make
prediction about the likelihood of each outcome in the future.

9.6 Model Selection

In all of the above analysis, we assume that the total number of hidden states s is known. However, in
reality, we often do not know this number so we need to choose it using some smart trick. The study of
selecting the right amount of hidden states is part of a general problem called model selection.

An intuitive way is to consider various s and see which one gives the highest likelihood value. However, this
idea will suffer the problem of overfitting–the more hidden states we fit to the data, the higher likelihood
value we will obtain.

This overfitting problem is something we need to be very cautious about when analyzing the data. A common
approach to model selection is to use a penalized criterion. For the HMM with s hidden states, let `∗n(s) be
the log-likelihood function corresponding to the MLE of this model. We then select s by maximizing

`∗n(s)−Ψ(s),

where Ψ(s) is an increasing function with respect to s. We call Ψ(s) the penalty or regularizer. In many
cases, we frame the problem as the minimizer problem and choose s by minimizing

R(s) = −2`∗n(s) + 2Ψ(s).

While there are many choices of Ψ(s), two most popular ones are the Akaike information criterion (AIC)
and Bayesian information criterion (BIC), which leads to

RAIC(s) = −2`∗n(s) + 2p, RBIC(s) = −2`∗n(s) + p log n,

where p = p(s) is the total number of parameters. In an HMM,

p(s) = (s− 1)︸ ︷︷ ︸
∼ν

+ s(s− 1)︸ ︷︷ ︸
∼P

+ s(m− 1)︸ ︷︷ ︸
∼E

= s2 − 1 + s(m− 1).

9-12 Lecture 9: Hidden Markov Model

AIC has a smaller penalty compared to BIC so it often selects a model with more variables. AIC aims at
selecting the model that is the best for prediction under certain criterion whereas BIC aims at finding the
true model according to Bayesian’s point of view.

9.6.1 Intuition of AIC and BIC

Here we use an informal way of deriving AIC and BIC that gives us some intuition on how they are con-
structed1. Note that the notations in this subsection is independent of the notations in the previous sections.
To illustrate the idea, we assume that we observed X1, · · · , Xn that are IID from an unknown PDF p0(x).
And we consider different models

Mj = {p(x; θj) : θj ∈ Θj}, dim(Θj) = dj

for j = 1, · · · ,m.

Intuition of AIC: Let p̂j(x) = p(x; θ̂j) with θ̂j be the MLE under parameter space Θj . Recall that a
common measure of closeness between a fitted model p̂j ∈Mj and the true model is the KL divergence:

K(p0, p̂j) =

∫
p0(x) log

(
p0(x)

p̂j(x)

)
= −

∫
p0(x) log p̂j(x) +

∫
p0(x) log p0(x)dx.

Since the last term is independent of j, minimizing K(p0, p̂j) across different j is equivalent to maximizing

Kj =

∫
p0(x) log p̂j(x) =

∫
p0(x) log p(x; θ̂j).

AIC aims at choosing j that minimizing the KL divergence so it is equivalent to choosing j maximizing Kj .

However, Kj involves p0 so we have to estimate it. A natural estimate of Kj is to use the data, leading to

K̂j =
1

n

n∑
i=1

log p(Xi; θ̂j).

However, this method is a biased estimator since the data is used both in finding the MLE θ̂j and evaluating

K̂j .

Akaike showed that the bias of K̂j is approximately
dj
n , which motivates us to use

K̂j −
dj
n

as an estimate of Kj . Now, notice that the log-likelihood function `n(θ) =
∑n
i=1 log p(Xi; θ) = nK̂j . So

maximizing K̂j − dj
n is equivalent to minimizing

−2nK̂j + 2dj = −2`n(θ̂j) + 2dj ,

which is the AIC criterion.

Intuition of BIC: The original idea of BIC is from the posterior probability–we want to choose the model
with a highest posterior probability. But it is easier to understand it using the Bayesian evidence (very

1If you are interested in more details, I would recommend reading http://www.stat.cmu.edu/~larry/=stat705/Lecture16.

pdf

http://www.stat.cmu.edu/~larry/=stat705/Lecture16.pdf
http://www.stat.cmu.edu/~larry/=stat705/Lecture16.pdf

Lecture 9: Hidden Markov Model 9-13

similar to the Bayes factor). Let π(Mj) be the posterior probability of j-th model. Recall that in terms of
Bayesian evidence, we want to choose the model that maximizes

p(X1, · · · , Xn|Mj).

Assume that for model j, we have a prior distribution πj on the parameter θj ∈ Θj . Then the evidence can
be written as

p(X1, · · · , Xn|Mj) =

∫
p(X1, · · · , Xn|θj)πj(θj)dθj

=

∫
L(θj |X1, · · · , Xn)πj(θj)dθj

=

∫
e
∑n

i=1 `(θj |Xi)πj(θj)dθj .

When the likelihood model is smooth, the expected log-likelihood function E(`(θj |X1)) is a quadratic function
around its model. So when n is large, Tayler expansion gives us

1

n

n∑
i=1

`(θj |Xi) ≈
1

n

n∑
i=1

`(θ̂j |Xi) +
1

2
(θj − θ̂j)T

(
1

n

n∑
i=1

`′′(θ̂j |Xi)

)
(θj − θ̂j).

Also,
n∑
i=1

`′′(θ̂j |Xi) ≈ nH(θ̂j),

where H(θ) = E(`′′(θ|Xi)). Thus, putting these into exponent, we obtain

e
∑n

i=1 `(θj |Xi) ≈ e
∑n

i=1 `(θ̂j |Xi)+
1
2 (θj−θ̂j)

TnH(θ̂j)(θj−θ̂j).

Therefore, the logarithmic of the Bayesian evidence (taking log will not affect the maximizer) will be

log p(X1, · · · , Xn|Mj) ≈ log

∫
e
∑n

i=1 `(θ̂j |Xi)+
1
2 (θj−θ̂j)

TnH(θ̂j)(θj−θ̂j)πj(θj)dθj

=

n∑
i=1

`(θ̂j |Xi) + log

∫
e

1
2 (θj−θ̂j)

TnH(θ̂j)(θj−θ̂j)πj(θj)dθj

≈
n∑
i=1

`(θ̂j |Xi) + log

(√
(2π/n)pdet(H−1(θ̂j))

)

≈
n∑
i=1

`(θ̂j |Xi)−
p

2
log n

which is what the BIC criterion is about.

	Introduction
	Likelihood Evaluation: Forward and Backward Algorithm
	Backward algorithm
	Forward algorithm

	Parameter Estimation and the Baum-Welch algorithm
	Hidden State Reconstruction and Viterbi Algorithm
	Forecasting
	Model Selection
	Intuition of AIC and BIC

