
STAT 516: Stochastic Modeling of Scientific Data Autumn 2024

Lecture 7: Monte Carlo Methods
Instructor: Yen-Chi Chen

These notes are partially based on those of Mathias Drton.

7.1 Introduction

Monte Carlo methods refer to numerical methodologies based on computer simulation. In many cases, an
estimator or a statistic may not have a closed-form so it is hard to numerically compute its value from a
given dataset. In this case, we need to use some numerical method to evaluate its value. For instance,
in Bayesian analysis, we know that posterior distribution is very important. However, if we are not using
a conjugate prior, the posterior often does not have a closed-form so we cannot write down the posterior
mean or MAP. On the other hand, if we can generate from a posterior distribution, we can use the ‘sample
average’ of these generated points as a proxy to the posterior mean and the ‘sample mode’ of these points
as a proxy to the MAP. This idea–generating points from the desired distribution and use them as a proxy
for the desired quantity–is what Monte Carlo is about.

7.2 Concepts of Monte Carlo

Note: we will not cover much of this section in the lecture – please read it on your own.

7.2.1 Monte Carlo Integration

Assume we want to evaluate the following integration:∫ 1

0

e−x
3

dx.

What can we do? The function e−x
3

does not seem to have a closed form solution so we have to use some
computer experiment to evaluate this number. The traditional approach to evaluate this integration is to use
so-called the Riemann Integration, where we choose points x1, · · · , xK evenly spread out over the interval
[0, 1] and then we evaluate f(x1), · · · , f(xK) and finally use

1

K

K∑
i=1

f(xi)

to evaluate the integration. When the function is smooth and K →∞, this numerical integration converges
to the actual integration.

Now we will introduce an alternative approach to evaluate such an integration. First, we rewrite the inte-
gration as ∫ 1

0

e−x
3

· 1dx = E
(
e−U

3
)
,

7-1



7-2 Lecture 7: Monte Carlo Methods

where U is a uniform random variable over the interval [0, 1]. Thus, the integration is actually an expected

value of a random variable e−U
3

, which implies that evaluating the integration is the same as estimating
the expected value. So we can generate IID random variables U1, · · · , UK ∼ Uni[0, 1] and then compute

W1 = e−U
3
1 , · · · ,WK = e−U

3
K and finally use

W̄K =
1

K

K∑
i=1

Wi =
1

K

K∑
i=1

e−U
3
i

as a numerical evaluation of
∫ 1

0
e−x

3

dx. By the Law of Large Number,

W̄K
P→ E(Wi) = E

(
e−U

3
i

)
=

∫ 1

0

e−x
3

dx,

so this alternative numerical method is statistically consistent.

In the above example, the integration can be written as

I =

∫
f(x)p(x)dx, (7.1)

where f is some function and p is a probability density function. Let X be a random variable with density
p. Then equation (7.1) equals ∫

f(x)p(x)dx = E(f(X)) = I.

Namely, the result of this integration is the same as the expected value of the random variable f(X). The
alternative numerical method to evaluate the above integration is to generate IID X1, · · · , XN ∼ p, N data
points, and then use the sample average

ÎN =
1

N

N∑
i=1

f(Xi).

This method, the method of evaluating the integration via simulating random points, is called the integration
by Monte Carlo Simulation.

An appealing feature of the Monte Carlo Simulation is that the statistical theory is rooted in the theory of
sample average. We are using the sample average as an estimator of the expected value. We have already
seen that the bias and variance of an estimator are key quantities of evaluating the quality of an estimator.
What will be the bias and variance of our Monte Carlo Simulation estimator?

The bias is simple–we are using the sample average as an estimator of it expected value, so the bias(ÎN ) = 0.
The variance will then be

Var(ÎN ) =
1

N
Var(f(X1))

=
1

N

E(f2(X1))− E2(f(X1))︸ ︷︷ ︸
I2


=

1

N

(∫
f2(x)p(x)dx− I2

)
.

(7.2)

Thus, the variance contains two components:
∫
f2(x)p(x)dx and I2.

Given a problem of evaluating an integration, the quantity I is fixed. What we can choose is the number of
random points N and the sampling distribution p! An important fact is that when we change the sampling
distribution p, the function f will also change.



Lecture 7: Monte Carlo Methods 7-3

For instance, in the example of evaluating
∫ 1

0
e−x

3

dx, we have seen an example of using uniform random vari-
ables to evaluate it. We can also generate IID B1, · · · , BK ∼ Beta(2, 2), K points from the beta distribution
Beta(2,2). Note that the PDF of Beta(2,2) is

pBeta(2,2)(x) = 6x(1− x).

We can then rewrite ∫ 1

0

e−x
3

dx =

∫ 1

0

e−x
3

6x(1− x)︸ ︷︷ ︸
f(x)

· 6x(1− x)︸ ︷︷ ︸
p(x)

dx = E

(
e−B

3
1

6B1(1−B1)

)
.

What is the effect of using different sampling distribution p? The expectation is always fixed to be I so the
second part of the variance remains the same. However, the first part of the variance

∫
f2(x)p(x)dx depends

how you choose p and the corresponding f .

Thus, different choices of p leads to a different variance of the estimator. We will talk about how to choose
an optimal p in Chapter 4 when we talk about theory of importance sampling.

7.2.2 Estimating a Probability via Simulation

Here is an example of evaluating the power of a Z-test. Let X1, · · · , X16 be a size 16 random sample. Let
the null hypothesis and the alternative hypothesis be

H0 : Xi ∼ N(0, 1), Ha : Xi ∼ N(µ, 1),

where µ 6= 0. Under the significance level α, the two-tailed Z-test is to reject H0 if
√

16|X̄16| ≥ z1−α/2,
where zt = F−1(t), where F is the CDF of the standard normal distribution. Assume that the true value
of µ is µ = 1. In this case, the null hypothesis is wrong and we should reject the null. However, due to
the randomness of sampling, we may not be able to reject the null every time. So a quantity we will be
interested in is: what is the probability of rejecting the null under such µ? In statistics, this probability (the
probability that we reject H0) is called the power of a test. Ideally, if H0 is incorrect, we want the power to
be as large as possible.

What will the power be when µ = 1? Here is the analytical derivation of the power (generally denoted as
β):

β = P (Reject H0|µ = 1)

= P (
√

16|X̄16| ≥ z1−α/2|µ = 1), X̄16 ∼ N(µ, 1/16)

= P (4 · |N(1, 1/16)| ≥ z1−α/2)

= P (|N(4, 1)| ≥ z1−α/2)

= P (N(4, 1) ≥ z1−α/2) + P (N(4, 1) ≤ −z1−α/2)

= P (N(0, 1) ≥ z1−α/2 − 4) + P (N(0, 1) ≤ −4− z1−α/2).

(7.3)

Well...this number does not seem to be an easy one...

What should we do in practice to compute the power? Here is an alternative approach of computing the
power using the Monte Carlo Simulation. The idea is that we generate N samples, each consists of 16 IID
random variables from N(1, 1) (the distribution under the alternative). For each sample, we compute the
Z-test statistic,

√
16|X̄16|, and check if we can reject H0 or not (i.e., checking if this number is greater than

or equal to z1−α/2). At the end, we use the ratio of total number of H0 being rejected as an estimate of the



7-4 Lecture 7: Monte Carlo Methods

power β. Here is a diagram describing how the steps are carried out:

N(1, 1)
generates−→ 16 observations

compute−→ test statistic
(√

16|X̄16|
)

RejectH0−→ D1 = Yes(1)/No(0)

N(1, 1)
generates−→ 16 observations

compute−→ test statistic
(√

16|X̄16|
)

RejectH0−→ D2 = Yes(1)/No(0)

...

N(1, 1)
generates−→ 16 observations

compute−→ test statistic
(√

16|X̄16|
)

RejectH0−→ DN = Yes(1)/No(0)

Each sample will end up with a number Di such that Di = 1 if we reject H0 and Di = 0 if we do not reject
H0.

Because the Monte Carlo Simulation approach is to use the ratio of total number of H0 being rejected to
estimate β, this ratio is

D̄N =

∑N
j=1Dj

N
.

Is the Monte Carlo Simulation approach a good approach to estimate β? The answer is–yes it is a good
approach of estimating β and moreover, we have already learned the statistical theory of such a procedure!

The estimator D̄N is just a sample average and each Dj turns out to be a Bernoulli random variable with
parameter

p = P (Reject H0|µ = 1) = β

by equation (7.3). Therefore,

bias
(
D̄N

)
= E(D̄N )− β = p− β = 0

Var
(
D̄N

)
=
p(1− p)
N

=
β(1− β)

N

MSE
(
D̄N , β

)
=
β(1− β)

N
.

Thus, the Monte Carlo Simulation method yields a consistent estimator of the power:

D̄N
P→ β.

Although here we study the Monte Carlo Simulation estimator of such a special case, this idea can be easily
to generalize to many other situation as long as we want to evaluate certain numbers. In modern statistical
analysis, most papers with simulation results will use some Monte Carlo Simulations to show the numerical
results of the proposed methods in the paper.

The following two figures present the power β as a function of the value of µ (blue curve) with α = 0.10.
The red curves are the estimated power by Monte Carlo simulations using N = 25 and 100.



Lecture 7: Monte Carlo Methods 7-5

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N=25

µ

P
ow

er

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N=100

µ
P

ow
er

−→ The gray line corresponds to the value of power being 0.10. Think about why the power curve (blue
curve) hits the gray line at µ = 0.

7.2.3 Estimating Distribution via Simulation

Monte Carlo Simulation can also be applied to estimate an unknown distribution as long as we can generate
data from such a distribution. In Bayesian analysis, people are often interested in the so-called posterior
distribution. Very often, we known how to generate points from a posterior distribution but we cannot
write down its closed form. In this situation, what we can do is to simulate many points and estimate the
distribution using these simulated points. So the task becomes:

given X1, · · · , Xn ∼ F (or PDF p), we want to estimate F (or the PDF p).

Estimating the CDF using EDF. To estimate the CDF, a simple but powerful approach is to use the
empirical distribution function:

F̂n(x) =
1

n

n∑
i=1

I(Xi ≤ x).

Estimating the PDF using histogram. If the goal is to estimate the PDF, then this problem is called
density estimation, which is a central topic in statistical research. Here we will focus on the perhaps simplest
approach: histogram.

For simplicity, we assume that Xi ∈ [0, 1] so p(x) is non-zero only within [0, 1]. We also assume that p(x) is
smooth and |p′(x)| ≤ L for all x (i.e. the derivative is bounded). The histogram is to partition the set [0, 1]
(this region, the region with non-zero density, is called the support of a density function) into several bins
and using the count of the bin as a density estimate. When we have M bins, this yields a partition:

B1 =

[
0,

1

M

)
, B2 =

[
1

M
,

2

M

)
, · · · , BM−1 =

[
M − 2

M
,
M − 1

M

)
, BM =

[
M − 1

M
, 1

]
.

In such case, then for a given point x ∈ B`, the density estimator from the histogram will be

p̂n(x) =
number of observations within B`

n
× 1

length of the bin
=
M

n

n∑
i=1

I(Xi ∈ B`).



7-6 Lecture 7: Monte Carlo Methods

The intuition of this density estimator is that the histogram assign equal density value to every points within
the bin. So for B` that contains x, the ratio of observations within this bin is 1

n

∑n
i=1 I(Xi ∈ B`), which

should be equal to the density estimate times the length of the bin.

Now we study the bias of the histogram density estimator.

E (p̂n(x)) = M · P (Xi ∈ B`)

= M

∫ `
M

`−1
M

p(u)du

= M

(
F

(
`

M

)
− F

(
`− 1

M

))
=
F
(
`
M

)
− F

(
`−1
M

)
1/M

=
F
(
`
M

)
− F

(
`−1
M

)
`
M −

`−1
M

= p(x∗), x∗ ∈
[
`− 1

M
,
`

M

]
.

The last equality is done by the mean value theorem with F ′(x) = p(x). By the mean value theorem again,
there exists another point x∗∗ between x∗ and x such that

p(x∗)− p(x)

x∗ − x
= p′(x∗∗).

Thus, the bias
bias(p̂n(x)) = E (p̂n(x))− p(x)

= p(x∗)− p(x)

= p′(x∗∗) · (x∗ − x)

≤ |p′(x∗∗)| · |x∗ − x|

≤ L

M
.

(7.4)

Note that in the last inequality we use the fact that both x∗ and x are within B`, whose total length is 1/M ,
so the |x∗ − x| ≤ 1/M . The analysis of the bias tells us that the more bins we are using, the less bias the
histogram has. This makes sense because when we have many bins, we have a higher resolution so we can
approximate the fine density structure better.

Now we turn to the analysis of variance.

Var(p̂n(x)) = M2 · Var

(
1

n

n∑
i=1

I(Xi ∈ B`)

)

= M2 · P (Xi ∈ B`)(1− P (Xi ∈ B`))
n

.

By the derivation in the bias, we know that P (Xi ∈ B`) = p(x∗)
M , so the variance

Var(p̂n(x)) = M2 ·
p(x∗)
M ×

(
1− p(x∗)

M

)
n

= M · p(x
∗)

n
− p2(x∗)

n
.

(7.5)



Lecture 7: Monte Carlo Methods 7-7

The analysis of the variance has an interesting result: the more bins we are using, the higher variance we
are suffering.

Now if we consider the MSE, the pattern will be more inspiring. The MSE is

MSE(p̂n(x)) = bias2(p̂n(x)) + Var(p̂n(x)) ≤ L2

M2
+M · p(x

∗)

n
− p2(x∗)

n
. (7.6)

An interesting feature of the histogram is that: we can choose M , the number of bins. When M is too large,
the first quantity (bias) will be small while the second quantity (variance) will be large; this case is called
undersmoothing. When M is too small, the first quantity (bias) is large but the second quantity (variance)
is small; this case is called oversmoothing.

To balance the bias and variance, we choose M that minimizes the MSE, which leads to

Mopt =

(
n · L2

p(x∗)

)1/3

. (7.7)

Although in practice the quantity L and p(x∗) are unknown so we cannot chose the optimal Mopt, the rule in
equation (7.7) tells us how we should change the number of bins when we have more and more sample size.
Practical rule of selecting M is related to the problem of bandwidth selection, a research topic in statistics.

7.3 Importance Sampling

Let X be a random variable with PDF p. Consider evaluating the following quantity:

I = E(f(X)) =

∫
f(x)p(x)dx,

where f is a known function. In the example of Lecture 2, we are interested in evaluating∫ 1

0

e−x
3

dx = E(f(X)),

where f(x) = e−x
3

and X is a uniform random variable over [0, 1].

Here is how the importance sampling works. We first pick a proposal density (also called sampling density)
q and generate random numbers Y1, · · · , YN IID from q. Then the importance sampling estimator is

ÎN =
1

N

N∑
i=1

f(Yi) ·
p(Yi)

q(Yi)
.

When p = q, this reduces to the simple estimator that uses sample means of f(Yi) to estimate its expectation.

Does this estimator a good estimator? Let’s study its bias and variance. For the bias,

E(ÎN )− I = E
(
f(Yi) ·

p(Yi)

q(Yi)

)
− I

=

∫
f(y)

p(y)

q(y)
q(y)dy − I

=

∫
f(y)p(y)dy − I = 0.



7-8 Lecture 7: Monte Carlo Methods

Thus, it is an unbiased estimator!

How about the variance?

Var(ÎN ) =
1

N
Var

(
f(Yi) ·

p(Yi)

q(Yi)

)

=
1

N

E
(
f2(Yi) ·

p2(Yi)

q2(Yi)

)
− E2

(
f(Yi) ·

p(Yi)

q(Yi)

)
︸ ︷︷ ︸

I2


=

1

N

(∫
f2(y)p2(y)

q(y)
dy − I2

)
.

So only the first quantity depends on the choice of proposal density q. Thus, if we have multiple proposal

density, say q1, q2, q3, the best proposal will be the one that minimizes the integration
∫ f2(y)p2(y)

q(y) dy.

You may be curious about the optimal proposal density (the q that minimizes the variance). And here is a
striking result about this optimal proposal density. First, we recall the Cauchy-Scharwz inequality–for any
two functions A(y) and B(y),

∫
A2(y)dy

∫
B2(y)dy ≥

(∫
A(y)B(y)dy

)2

and the = holds whenever A(y) ∝ ·B(y) for some constant. One way to think about this is to view them as
vectors–for any two vectors u, v, ‖u‖2‖v‖2 ≥ ‖u · v‖2 and the equality holds whenever u and v are parallel

to each other. Identifying A2(y) = f2(y)p2(y)
q(y) and B2(y) = q(y), we have

∫
f2(y)p2(y)

q(y)
dy

∫
q(y)dy︸ ︷︷ ︸
=1

≥
(∫

f2(y)p2(y)

q(y)
q(y)dy

)2

= I2.

Namely, this tells us that the optimal choice qopt(y) leads to

Var(ÎN,opt) =
1

N

(
I2 − I2

)
= 0,

a zero-variance estimator! Moreover, the optimal q satisfies√
f2(y)p2(y)

qopt(y)
= A(y) ∝ B(y) =

√
qopt(y),

implying

qopt(y) ∝ f(y)p(y) =⇒ qopt(y) =
f(y)p(y)∫
f(y)p(y)dy

. (7.8)

This gives us a good news–the optimal proposal density has 0 variance and it is unbiased. Thus, we only
need to sample it once and we can obtain the actual value of I. However, even if we know the closed form
of qopt(y), how to sample from this density is still unclear. In the next section, we will talk about a method
called Rejection Sampling, which is an approach that can tackle this problem.



Lecture 7: Monte Carlo Methods 7-9

7.4 Rejection Sampling

Given a density function f(x), the rejection sampling is a method that can generate data points from this
density function f .

Here is how one can generate a random variable from f .

1. We first choose a number M ≥ supx
f(x)
p(x) and a proposal density p where we know how to draw sample

from (p can be the density of a standard normal distribution).

2. Generate a random number Y from p and another random number U from Uni[0,1].

3. If U < f(Y )
M ·p(Y ) , we set X = Y . Otherwise go back to the previous step to draw another new pair of Y

and U .

The above procedure is called rejection sampling (or rejection-acceptance sampling). If we want to generate
X1, · · · , Xn from f , we can apply the above procedure multiple times until we accept n points.

Does this approach work? Now we consider the CDF of X.

P (X ≤ x) = P (Y ≤ x|acceptY )

= P

(
Y ≤ x|U <

f(Y )

M · p(Y )

)

=
P
(
Y ≤ x, U < f(Y )

M ·p(Y )

)
P
(
U < f(Y )

M ·p(Y )

) .

(7.9)

Note that in the last equality, we used the definition of conditional probability.

For the numerator, using the feature of conditional probability,

P

(
Y ≤ x, U <

f(Y )

M · p(Y )

)
=

∫
P

(
Y ≤ x, U <

f(Y )

M · p(Y )
|Y = y

)
p(y)dy

=

∫
P

(
y ≤ x, U <

f(y)

M · p(y)

)
p(y)dy

=

∫
I(y ≤ x)P

(
U <

f(y)

M · p(y)

)
p(y)dy

=

∫ x

−∞

f(y)

M · p(y)
p(y)dy

=
1

M

∫ x

−∞
f(y)dy

Note that in the fourth equality, we use the fact that the choice of M : M ≥ supx
f(x)
p(x) ensures

f(y)

M · p(y)
≤ 1 ∀y.



7-10 Lecture 7: Monte Carlo Methods

For the denominator, using the similar trick,

P

(
U <

f(Y )

M · p(Y )

)
=

∫
P

(
U <

f(Y )

M · p(Y )
|Y = y

)
p(y)dy

=

∫
P

(
U <

f(y)

M · p(y)

)
p(y)dy

=

∫
f(y)

M · p(y)
p(y)dy

=
1

M

∫
f(y)dy =

1

M
.

Thus, putting altogether into equation (7.9), we obtain

P (X ≤ x) =
P
(
Y ≤ x, U < f(Y )

M ·p(Y )

)
P
(
U < f(Y )

M ·p(Y )

) =
1
M

∫ x
−∞ f(y)dy

1
M

=

∫ x

−∞
f(y)dy,

which means that the random variable X does have the density f .

Here are some features about the rejection sampling:

• Using the rejection sampling, we can generate sample from any density f as long as we know the closed
form of f .

• If we do not choose M well, we may reject many realizations of Y,U to obtain a single realization of
X.

• There is an upper on M at the first step: M ≥ supx
f(x)
p(x) .

• In practice, we want to choose M as small as possible because a small M leads to a higher chance of

accepting Y . To see this, note that the denominator P
(
U < f(Y )

M ·p(Y )

)
= P (AcceptY ) = 1

M . Thus, a

small M leads to a large accepting probability.

• If you want to learn more about rejection sampling, I would recommend http://www.columbia.edu/

~ks20/4703-Sigman/4703-07-Notes-ARM.pdf.

7.4.1 Application in Bayesian Inference

Here we explain how to use the rejection sampling to sample from a posterior distribution. Let π(θ|X1, · · · , Xn)
be the posterior distribution, L(θ|X1, · · · , Xn) be the likelihood function, and π(θ) be the prior distribution.

Also, let θ̂MLE = argmaxθL(θ|X1, · · · , Xn) be the MLE.

Then we can generate points from the posterior distribution with the followings:

1. Generate θ from prior distribution π and U from Uni(0, 1) independently.

2. Accept θ if U < L(θ|X1,··· ,Xn)
L(θ̂MLE |X1,··· ,Xn)

.

The θ’s that are accepted from the above two steps are IID from the posterior distribution π(θ|X1, · · · , Xn).

http://www.columbia.edu/~ks20/4703-Sigman/4703-07-Notes-ARM.pdf
http://www.columbia.edu/~ks20/4703-Sigman/4703-07-Notes-ARM.pdf


Lecture 7: Monte Carlo Methods 7-11

Why this approach works? Well here is how each quantity corresponds to the ones in rejection sampling
(after rescaling):

π(θ|X1, · · · , Xn) ∼ f(x)

L(θ|X1, · · · , Xn) ∼ f(x)

p(x)

π(θ) ∼ p(x)

L(θ̂MLE |X1, · · · , Xn) ∼M

Note that the acceptance probability is

pa =

∫
L(θ|X1, · · · , Xn)π(θ)dθ

L(θ̂MLE |X1, · · · , Xn)
=

p(X1, · · · , Xn)

L(θ̂MLE |X1, · · · , Xn)
.

So the normalization constant of the posterior distribution p(X1, · · · , Xn) can be estimated using

p̂(X1, · · · , Xn) = p̂a · L(θ̂MLE |X1, · · · , Xn),

where p̂a is the empirical acceptance probability.

In the analysis of rejection sampling, there are two random quantities that are often of great interest. The
first quantity occurs in the case where we are given a fixed amount of target sample, say m, and we are
interested in the number of points we generate to accept m points. Let M be such a value. The behavior of
M is something we would like to analyze because the difference M −m informs us the amount of additional
points we need to generate to obtain m points. Note that in ideal case, M is a random variable following a
negative binomial distribution with parameter (m, pa).

The other quantity occurs in situations where we have a fixed budget n0 to generate points. Let N be the
number of accepted points. This quantity N is also of research interest because we can use the ratio N

n0
as

an estimate of the acceptance probability pa. Note that in the ideal case, the quantity N follows from a
binomial distribution with parameter (n0, pa).

7.5 MCMC: Metropolis-Hastings Algorithm

Although rejection sampling is very powerful, it has a limitation that we need to know the MLE θ̂MLE ,
which is often a challenge problem when the likelihood function is non-convex. Moreover, in many cases
such as Bayesian analysis, we may not know the exact value of the density function f(x) but only know the
value up to a constant. This is because the posterior

π(θ|X1, · · · , Xn) ∝ p(X1, · · · , Xn|θ) · π(θ).

Evaluating the likelihood value and the prior are simple but computing the integral over θ is hard. It is de-
sirable to have a method that allows us to sample from π(θ|X1, · · · , Xn) with only access to p(X1, · · · , Xn|θ)
and π(θ).

The Markov Chain Monte Carlo (MCMC) is a tool that allows us to do this. The idea of MCMC is to generate
an ergodic Markov chain {Xn} from a stationary distribution that is the same as the distribution we want
to generate from. In the Bayesian setting, the stationary distribution will be the posterior distribution.



7-12 Lecture 7: Monte Carlo Methods

7.5.1 Discrete state case

Let π(θ) be the PDF/PMF that we want to generate from with θ ∈ S that is univariate. We start with
considering a simple case where the state space S is discrete The Metropolis-Hastings algorithm is a
simple approach to generate from π(θ) for a univariate θ. It proceeds as follows:

• Input: an initial value x0 ∈ S and a proposal function q(i0|i1) with i0, i1 ∈ S.

• Start with an initial value X0 = x0.

• For n = 0, · · · , N , do the following:

1. Simulate a candidate value Yn ∼ q(y|Xn = i), where i is the value of Xn. Suppose that Yn = j.

2. Compute the Metropolis-Hastings acceptance probability :

aij = min

{
πj × q(i|j)
πi × q(j|i)

, 1

}
3. Generate U ∼ Uni(0, 1).

4. Accept the candidate Y = j if U ≤ aij , otherwise set Xn+1 = Xn. Namely,

Xn+1 =

{
Y if U ≤ aij
Xn if U > aij

Proposition 7.1 Assume that π(i) > 0 for all i ∈ S and that q(i|j) > 0⇔ q(j|i) > 0 for all i, j ∈ S. Then
the Metropolis-Hastings algorithm generates a Markov chain with stationary distribution π.

Proof: It is easy to see that the sequence {Xn} forms a homogeneous Markov chain. Let P = {pij} be the
transition probability matrix of Xn . We will prove this by showing that the detailed balance is statisfied.
For the case of i = j, it is trivial so we assume i 6= j.

For i 6= j,
pij = P (Xn+1 = j|Xn = i) = P (X1 = j|X0 = i) = aijq(j|i).

Therefore,

πipij = πiaijq(j|i) =

{
πiq(j|i)× πjq(i|j)

πiq(j|i) if
πjq(i|j)
πiq(j|i) ≤ 1

πiq(j|i)× 1 otherwise

=

{
πjq(i|j) if πjq(i|j) ≤ πiq(j|i)
πiq(j|i) if πjq(i|j) > πiq(j|i)

Noe we consider πjpji:

πjpji = πjajiq(i|j) =

{
πjq(i|j)× πiq(j|i)

πjq(i|j) if πiq(j|i)
πjq(i|j) ≤ 1

πjq(i|j)× 1 otherwise

=

{
πiq(j|i) if πiq(j|i) ≤ πjq(i|j)
πjq(i|j) if πiq(j|i) > πjq(i|j)

,

which is the same as πipij .

So π satisfies the detailed balance, it is a stationary distribution.

Remark.



Lecture 7: Monte Carlo Methods 7-13

• If we choose q(i|j) such that {Xn} is irreducible, {Xn} will be positive recurrent by the stationary
distribution criterion even on an infinite state-space case. Then we can apply the Ergodic theorem so
the average of {Xn} converges to the average from stationary distribution. In the case of Bayesian
analysis, we can use it to approximate the posterior mean.

• The Markov chain {Xn} from Metropolis-Hastings algorithm is not necessarily aperiodic so the Basic
limit theorem may not work.

There are many different variants of the Metropolis-Hastings algorithm. For instance,

• Symmetry proposal: q(i|j) = q(j|i). This is the original Metropolis algorithm. The acceptance proba-

bility reduces to aij = min
{
πj
πi
, 1
}

.

• Independence proposal: q(j|i) = q(j). Note that the resulting sequence {Xn} are not IID; it is still a
Markov chain.

7.5.2 Continuous state case

Now we consider the case of continuous state space case. Let S be a state space that possibly contains
infinite amount of elements. A sequence of RVs X0, X1, · · · , is called a Markov chain on S if for all n ≥ 0
and for all (Borel) set A ⊂ S,

P (Xn+1 ∈ A | Xn, Xn−1, · · · , X0) = P (Xn+1 ∈ A | Xn).

The Markov chain is homogeneous if

P (Xn+1 ∈ A | Xn) = P (X1 ∈ A | X0).

The function K(x,A) = P (X1 ∈ A | X0 = x) is called the transition kernel. Note that if there exist a
function f(x, y) such that

P (X1 ∈ A | X0 = x) =

∫
A

f(x, y)dy,

then f(x, y) is called the transition kernel density. The transition kernel density is analogue of the
transition probability matrices in the discrete cases.

Many notions from discrete state spaces can be generalized to continuous state spaces such as irreducibility,
periodicity, etc. Note that the Chapman-Kolmogorov equation will become

Km+n(x,A) =

∫
S

Kn(y,A)Km(x, dy),

where Kn(x,A) = P (Xn ∈ A | X0 = x). In this case, a probability distribution Π on S is called a stationary
distribution of {Xn} with transition kernel K(x,A) if for any (Borel) set B ⊂ S,

Π(B) =

∫
S

K(x,B)Π(dx).

Note that the above is the global balance equation. If the transition kernel density exists and Π has a density
π, then the global balance equation can be expressed as

π(y) =

∫
S

π(x)f(x, y)dx.



7-14 Lecture 7: Monte Carlo Methods

Using these new notations, we define the Metropolis-Hastings algorithm for continuous state spaces as follows.
Recall that our goal is to design an algorithm such that π(x) is the density of the stationary distribution.
The proposal probability q(j | i) will now be replaced by the proposal density q(y | x).

• Input: an initial value x0 ∈ S and a proposal function q(x|y) with x, y ∈ S.

• Start with an initial value X0 = x0.

• For n = 0, · · · , N , do the following:

1. Simulate a candidate value Yn ∼ q(·|Xn).

2. Compute the Metropolis-Hastings acceptance probability :

a(x, y) = min

{
π(y)× q(x|y)

π(x)× q(y|x)
, 1

}
3. Accept the candidate Yn with a probability a(Xn, Yn). If we do not accept, we keep Xn+1 = Xn.

Namely,

Xn+1 =

{
Yn with a probability of a(Xn, Yn)

Xn with a probability of 1− a(Xn, Yn)

To make sure that this is a Markov chain with irreducible state space, we choose the proposal density
q(y|x) > 0 for all x, y ∈ S. To simplify the problem, here we assume that S ⊂ R but you can easily
generalize it to higher dimensions. A common example is to use the random walk proposal:

Yn = Xn + εn,

where εn is some perturbation independent of Xn with E(εn) = 0. A concrete example is to choose ε ∼
N(0, σ2) for some pre-specified σ2. In this case,

q(y|x) =
1√

2πσ2
e

1
2σ2
‖x−y‖2 .

When S is a connected set and π(x) > 0 for all x ∈ S, there is no need to choose a proposal that has infinite
support. Instead, we can choose q(y|x) such that there exists δ, ε > 0 so that q(y|x) > ε if |x− y| < δ. This
allows the perturbation εn to have a finite support. For instance, we may choose

εn ∼ Uni(−δ, δ).

Note that often people choose the proposal q to be isotropic, namely,

q(y|x) = q(‖y − x‖).

Both normal perturbation and uniform perturbation are examples leading to an isotropic proposal. Isotropic

proposals have an advantage that the update probability becomes very simple. If the value π(y)
π(x) is greater

than or equal to 1 (i.e., the proposed point has a higher value compared to the current point), we move to
the proposed point. Otherwise with a probability of the density ratio, we move to the proposed point.

The choice of perturbation is often a challenging question. There are two quantities we want to optimize
the MCMC algorithm – the acceptance rate and the exploration rate (speed of exploring the state space S).
We want high acceptance rate as well as a high exploration rate but they are often inversely related to each
other. To see this, consider the following example.



Lecture 7: Monte Carlo Methods 7-15

Example. Support that S = R and our target is a univariate standard normal distribution, i.e.,

π(x) =
1√
2π

exp(−x2/2).

We use the proposal density with a uniform perturbation such that

q(y|x) =
1

2δ
I(|x− y| ≤ δ).

Let U1 ∼ Uni(−δ, δ). Then given a current state x(t), the next state will be

x(t+1) =

{
x(t) + U1 with a probability pt = min{exp

[(
(x(t))2 − (x(t) + U1)2

)
/2
]
, 1}

x(t) with a probability 1− pt

Here, as you can see, if δ is small, the chance that we accept the proposal is generally higher but our
exploration of S will be slow (leading to a Markov chain with a high dependence). On the other hand, if δ
is large, the chance we accept the proposal is low but we can quickly explore state space.

Example: MCMC for a χ2 distribution. In the following, we use the MCMC to generate points from
a χ2

5:

MCMC with 20000 points

D
en

si
ty

0 2 4 6 8 10 12 14

0.
00

0.
05

0.
10

0.
15

0 5000 10000 15000 20000 25000 30000

0
5

10
15

20
25

MCMC: trajectory

x_
m

cm
c

We use q(y|x) ∼ N(x− y, 0.52) and an initial point 0.5 and run the MCMC to generate 30000 points. Note
that generally, the initial point is not important and we will remove the first few points in the MCMC chain
(this is also called a burn out). The left panel shows the histogram of the MCMC points and the black curve
denotes the true density curve. In the right panel, we display the trajectory of the MCMC; this plot is also
called the trace plot. The trace plot will be useful in examining the behavior of the MCMC (we will talk
about it later).

Example: MCMC for a Gaussian mixture. To show that MCMC can be applied a wide class of
problem, we implement it to generate points from a Gaussian mixture model with the density

p(x) = 0.7φ(x; 0, 1) + 0.3φ(x; 5, 1),

where φ(x;µ, σ2) is the PDF of a normal distribution with mean µ and variance σ2. We first consider the
case where the proposal q(y|x) ∼ N(x− y, 1):



7-16 Lecture 7: Monte Carlo Methods

MCMC with 20000 points, sigma=1

D
en

si
ty

−2 0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0 5000 10000 15000 20000 25000 30000

−
4

−
2

0
2

4
6

8

MCMC: trajectory, sigma=1

x_
m

cm
c

The MCMC did a good job in generating points from the Gaussian mixture. Now we consider an interesting
case where we decrease the variance of the proposal q(y|x) to N(x − y, 0.22). Here is the result of MCMC
after running it 30000 times:

MCMC with 20000 points, sigma=0.2

D
en

si
ty

−2 0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0 5000 10000 15000 20000 25000 30000

−
4

−
2

0
2

4
6

8

MCMC: trajectory, sigma=0.2

x_
m

cm
c

We see a biased result in our MCMC! In the left panel, the smaller bump was underestimated. The trajectory
plot in the right panel explains what was happening – at the beginning, the MCMC was moving around the
second mode (small bump centered at 5) and then it switches to the big bump and stuck there. If we compare
this to the trajectory where we have a proposal with a higher variance, we see that when the proposal has
a higher variance, MCMC switches between the two bumps very frequently but when the proposal has a
low variance, it does not switch that frequently. In other word, the variance of the proposal determines the
speed of mixing in the MCMC. When MCMC has a slow speed of mixing (i.e., variance of the proposal is
low), we need to run it a lot longer to obtain a stable result.

So should we always choose a huge variance in our proposal? Not really. Remembered that in the previous
example, we have demonstrated that a high variance proposal may lead to an MCMC with a low acceptance
rate. Here is what will happen if we increase the variance of the proposal to 1000:



Lecture 7: Monte Carlo Methods 7-17

MCMC with 20000 points, sigma=1000

D
en

si
ty

−2 0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0 5000 10000 15000 20000 25000 30000

−
2

0
2

4
6

8

MCMC: trajectory, sigma=1000

x_
m

cm
c

Again, we see a biased result and the trace plot shows several flat line, indicating that the chain was staying
in the same value for a long time, which is what we expect when the acceptance probability is low.

7.6 MCMC: Gibbs Sampling

Gibbs sampling is an alternative approach to sample from a target PDF/PMF based on the idea of MCMC
when the target PDF/PMF is multivariate. The appealing feature of Gibbs sampling is that we only need
to know the conditional PDF/PMF of the target rather than the joint PDF/PMF. But we do need to know
how to sample from the conditional PDF/PMF of each variable given the others.

To illustrate the idea, we start with discrete state space with two variables x1, x2 such that x1 ∈ S1 and

x2 ∈ S2. Our goal is to generate from the target PDF/PMF π(x1, x2) = P (X1 = x1, X2 = x2). Let X1 = x
(0)
1

and X2 = x
(0)
2 be the initial starting point. The Gibbs sampling uses the following iterative updates:

1. P (X1 = x
(t+1)
1 |X2 = x

(t)
2 ) = π(X1 = x

(t+1)
1 |X2 = x

(t)
2 ).

2. P (X2 = x
(t+1)
2 |X1 = x

(t+1)
1 ) = π(X2 = x

(t+1)
2 |X1 = x

(t+1)
1 ).

Thus, the transition probability matrix becomes

P(x
(t+1)
1 , x

(t+1)
2 |x(t)1 , x

(t)
2 ) = π(X2 = x

(t+1)
2 |X1 = x

(t+1)
1 )π(X1 = x

(t+1)
1 |X2 = x

(t)
2 ).

An interesting fact is that the resulting Markov chain does not satisfy the detailed balance (so the chain is
not reversible) but it does satisfy the global balance. To derive the global balance, we need to show that

π(x1, x2) =
∑

y1∈S1,y2∈S2

π(y1, y2)P(x1, x2|y1, y2).



7-18 Lecture 7: Monte Carlo Methods

The right-hand sided (RHS) equals

RHS =
∑

y1∈S1,y2∈S2

π(y1, y2)P(x1, x2|y1, y2)

=
∑

y1∈S1,y2∈S2

π(y1, y2)π(X2 = x2|X1 = x1)π(X1 = x1|X2 = y2)

=
∑

y1∈S1,y2∈S2

π(y1, y2)
π(x1, x2)

π(X1 = x1)

π(x1, y2)

π(X2 = y2)

=
∑
y2∈S2

π(X2 = y2)
π(x1, x2)

π(X1 = x1)

π(x1, y2)

π(X2 = y2)

=
π(x1, x2)

π(X1 = x1)

∑
y2∈S2

π(x1, y2)

= π(x1, x2)

so it satisfies the global balance.

When we have d variables x1, · · · , xd, the Gibbs sampler is often done by using a sequential scan. Let

x1:j = (x1, · · · , xj). Given x(0) = (x
(0)
1 , · · · , x(0)d ), we update using the following way

1. P (X1 = x
(t+1)
1 |X2:d = x

(t)
2:d) = π(X1 = x

(t+1)
1 |X2:d = x

(t)
2:d).

2. P (X2 = x
(t+1)
2 |X1 = x

(t+1)
1 , X3:d = x

(t)
3:d) = π(X2 = x

(t+1)
2 |X1 = x

(t+1)
1 , X3:d = x

(t)
3:d).

3. · · ·

4. P (Xd = x
(t+1)
d |X1:(d−1) = x

(t+1)
1:(d−1)) = π(Xd = x

(t+1)
d |X1:(d−1) = x

(t+1)
1:(d−1)).

Namely, we keep updating from x1, then x2, then all the way to xd and we always use the latest value of
other variables.

In addition to the sequential scan, the random scan is also a popular approach. Let x−i = (x1, · · · , xi−1, xi+1, · · · , xd).
The random scan updates as follows:

1. Randomly select an index i ∈ {1, · · · , d} from a multinomial distribution.

2. For the selected index i, we update it by x
(t+1)
i ∼ π(xi|x(t)−i) and set x

(t+1)
−i = x

(t)
−i.

It is very simple to generalize Gibbs sampler to continuous state space. We just replace the PMF in the
above by a PDF. Then the sequential scan and random scan can be defined easily.

Remark.

• Sometimes, we only know the value of π(X1 = x1|X2 = x2) up to some constant rather than able to
directly sample from it. This occurs in the case of computing the posterior distribution of multiple
parameters. In this case, we can combine the Metropolis-Hastings algorithm and Gibbs sampler – we
use the Metropolis-Hastings algorithm for sampling from π(x1|x2) and π(x2|x1) and use the Gibbs
sampling to obtain the joint result.

• In cases we know how to sample from a conditional PDF/PMF with multiple variables, we do need
to update each variable once at a time but we can just update multiple variable in one shot. This is
called the block Gibbs sampling.



Lecture 7: Monte Carlo Methods 7-19

Gibbs sampling relies on the conditional PDF/PMF π(xi|x−i). This quantity determines the transition
probability. So the property of the corresponding Markov chain relies on π(xi|x−i) for each i. In Markov
chain theory, the irreducibility is an important property and it turns out that if π satisfies the positivity
condition, then the Gibbs sampler creates a Markov chain that is irreducible. For a density π(x1, · · · , xd),
it satisfies positivity condition if every marginal density πi(xi) > 0 implies that π(x1, · · · , xd) > 0.

Proposition 7.2 If a density π(x1, · · · , xd) satisfies the positivity condition, then π(xi|x−i) > 0 for any
xi, x−i such that πi(xi) > 0 and π(x−i) > 0.

The positivity condition implies that the support of the joint density is the Cartesian product of the support
of the marginals. This proposition further shows that if the target density satisfies positivity condition, then
the Gibbs sampler is irreducible. Note that positivity is sufficient for irreducibility but not necessary.

Example: Linear regression. We demonstrate the use of Gibbs sampling in Bayesian inference for a
linear model. Let X = (X1, · · · , Xn) and Y = (Y1, · · · , Yn) be the covariate and the response and Xi ∈ Rd.
We assume that the model

Y|X, β, σ2 ∼ N(Xβ, σ2Id),

where β and σ2 are the parameter of interest (regression coefficient and the errors). We use a Gaussian prior
on β and a Gamma prior on σ−2 (inverse of variance):

β ∼ N(m,V), σ−2 ∼ Γ(α0, β0).

Note that this prior is conjugate with the normal linear model which will simplify our calculation a lot. The
corresponding posterior distribution is

π(β, σ2|Y,X) ∝ Ln(β, σ2) · π(β) · π(σ2)

Ln(β, σ2) =
1

(2πσ2)n/2
exp

{
− 1

2σ2
(Y −Xβ)T (Y −Xβ)

}
π(β) =

1

(2π)d/2det(V)
exp

{
−(β −m)TV−1(β −m)

}
π(σ2) =

βα0
0

Γ(α0)
(σ−2)(α0−1)e−

β0
σ2

Now we are going to demonstrate the power of Gibbs sampler. First given σ2(t), we update β(t+1) according
to the conditional distribution given by the posterior:

π(β|X,Y, σ2(t)) ∝ Ln(β, σ2(t)) · π(β)

∝ exp

{
− 1

2σ2(t)
(Y −Xβ)T (Y −Xβ)

}
· exp

{
−(β −m)TV−1(β −m)

}
∼ N(m∗,V∗),

m∗ = W(XTX)−1XTY + (In −W)m

W = (XTX + V−1σ(t))−1XTX

V∗ = W(XTX)−1σ2(t)

So we just draw a new random vector β(t+1) from the above normal distribution. Then we update the



7-20 Lecture 7: Monte Carlo Methods

variance σ2(t+1) by drawing its inverse from

π(σ−2|X,Y, β(t+1)) ∝ Ln(β(t+1), σ2) · π(σ2)

=
1

(2πσ2)n/2
exp

{
− 1

2σ2
(Y −Xβ(t+1))T (Y −Xβ(t+1))

}
· (σ−2)(α0−1)e−

β0
σ2

∼ Γ

(
α0 +

n

2
, β0 +

1

2
(Y −Xβ(t+1))T (Y −Xβ(t+1))

)
.

Thus, given an initial choice of β(0) and σ2(0), we update β and then update σ2 and iterates this procedure
several times. Then the pairs

{(βt, σ2(t)) : t = τ, τ + 1, · · · }

are points from the posterior distribution π(β, σ2|Y,X). Note that we burn out the points before time point
τ to make sure the chain is stable. We can then use them to find the posterior mean and MAP and construct
credible interval.

7.7 Convergence analysis

Consider the case that we apply an MCMC and obtain a set of points Y1, · · · , Yn from the stationary
distribution π. One can think of π as the posterior distribution that we are generating from. Assume that
we want to infer the quantity h0 = E(h(Y )) when Y ∼ π. One example is the posterior mean – in this case
h(x) = x. Note that marginally each Yi is from the stationary distribution.

From ergodic theory, we can use the average

ĥn =
1

n

n∑
i=1

h(Yi)

as an estimator of h0. We know that E(h(Yi)) = h0 so it is an unbiased estimator and ergodic theory implies

that ĥn
a.s.→ h0. But this does not tell us about how fast ĥn converges to h0.

Since it is an unbiased estimator, the mean square error reduces to variance. So we now explore the variance
of ĥn. Be ware, the variance of ĥn is NOT 1

nVar(h(Yi)) because Y1, · · · , Yn are not IID – they form a Markov
chain. In general, the variance can be written as

Var(ĥn) =
1

n2


n∑
i=1

Var(h(Yi)) + 2
∑
i<j

Cov(h(Yi), h(Yj))

 .

The covariance part is what makes the variance hard to approximate.



Lecture 7: Monte Carlo Methods 7-21

Let hi = h(Yi). The variance has the following decomposition:

Var(ĥn) =
1

n2


n∑
i=1

Var(h(Yi)) + 2
∑
i<j

Cov(h(Yi), h(Yj))


=

1

n2

{
nVar(h1) + 2

n−1∑
i=1

Cov(hi, hi+1) + 2

n−2∑
i=1

Cov(hi, hi+2) + · · ·

}

=
Var(h1)

n

{
1 + 2

n− 1

n
Corr(h1, h2) + 2

n− 2

n
Corr(h1, h3) + · · ·

}
≈ Var(h1)

n
{1 + 2Corr(h1, h2) + 2Corr(h1, h3) + · · · }

=
Var(h1)

n

{
1 + 2

∞∑
i=1

Corr(h1, hi+1)

}

=
Var(h1)

n
κh

as n→∞ and κh = 1 + 2
∑∞
i=1 Corr(h1, hi+1) is the variance inflation factor.

Therefore, Var(ĥn) = Var(h1)
neff

, where neff = n/κh is called the effective sample size. Here, from the construc-
tion of κh, you see that if the dependency of the Markov chain is large, κh will be large and the effective
sample size is small. Note that κh can be estimated using spectral analysis for time series and if we have an

estimate κ̂h, we can obtain a variance estimator V̂ar(ĥn) = 1
n̂eff

V̂ar(h1), where V̂ar(h1) is simply the sample
variance of h1, · · · , hn.

7.8 Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo (HMC) is a new MCMC approach that has been shown to work better than
the usual MH algorithm. It is based on the idea of Hamiltonian dynamics.

The high-level idea of HMC is to generate a proposal from a better proposal distribution’ and modify the
acceptance part so the it has a higher acceptance rate. In the usual MH algorithm, we are directly sample
from a proposal density q(y|x). The HMC modifies this process using two components: a random momentum
(velocity) vector ω and the Hamiltonian dynamics. The momentum is required for every coordinate of the
position x. Thus, if x ∈ Rd, then we also need a vector of d elements for the momentum. As the name
suggests, the momentum vector determines how we move x during the dynamics. The randomness is due to
the random momentum vector (and the later acceptance part).

The rough idea of one-run HMC is as follows. Starting at the location x0:

1. (Proposal step 1) We draw a random momentum vector ω0 ∼ p(ω) ∝ e−V (ω), where V (ω) is called the
kinematic energy. Often p(ω) is taken to be a multivariate Gaussian.

2. (Proposal step 2) Then we apply the Hamiltonian dynamics at location x0 and velocity ω0 with the
Hamiltonian (energy) H(x, ω) = − log π(x) +V (ω) and let the dynamics run for time T . This changes
(x0, ω0) to (xT , ωT ). Note that the pair (x, ω) is called the state.

3. (Acceptance step) We accept the new location xT with a probability of

a(x0, ω0, xT , ωT ) = min

{
1,

exp(−H(xT , ωT ))

exp(−H(x0, ω0))

}
.



7-22 Lecture 7: Monte Carlo Methods

To approximate the distribution of π, we will iterate the HMC several times.

Note that in the second step (Hamiltonian dynamics), the dynamics is deterministic. Namely, if we start
with the same location and the same momentum, we always end up being in the same destination. So for
HMC the proposal density q(xT |x0) is determined by the density p(ω) ∝ e−V (ω) and the initial location x0

To understand what happen in the HMC, we first note that the Hamiltonian contains two parts.

Potential energy. The targeted density π(x) is incorporated into the HMC through the Hamiltonian

H(x, ω) = − log π(x)︸ ︷︷ ︸
=U(x)

+V (ω).

The quantity U(x) = − log π(x) is also known as the potential energy.

Kinematic energy. The momentum is drawn from the Kinematic energy. The density p(ω) ∝ e−V (ω) is
crucial in the performance of an HMC algorithm. The function V has to be coordinatewise symmetric to

ensure the detailed balance equation. In general, we will choose V (ω) =
∑d
j=1

ω2
j

2mj
, where d is the dimension

of x and mj is called the mass of the j-th coordinate. Although this looks fancy, but it implied an extremely
sample distribution of p(ω) :

p(ω) ∝ e− 1
2ω

TM−1ω ∼ N(0,M),

where M = diag(m1, · · · ,md). So in fact, we are generating the momentum from a multivariate Gaussian
(and all coordinates are independent).

Hamiltonian dynamics. The Hamiltonian dynamics governs the usual motion of an object under a
specified potential energy and the kinematic energy. It provides excellent description on many physical
phenomena such as how planets orbiting around a star. When H(x, ω) is given, the Hamiltonian dynamics
is a deterministic equation of motion. Suppose we start with a location x(0) and a momentum ω(0), the
trajectory of the state {x(t), ω(t) : t ∈ [0,∞)} is determined by

dxj(t)

dt
≡ x′j(t) =

∂H(x(t), ω(t))

∂ωj(t)
,

dωj(t)

dt
≡ ω′j(t) = −∂H(x(t), ω(t))

∂xj(t)

for j = 1, · · · , d. A powerful feature of Hamiltonian dynamics is that

Even if we only have access to r(x) ∝ π(x), we can still compute the dynamics since the potential
energy U(x) = − log π(x) = − log r(x) + C0 for some constant C0. We can totally ignore the
constant C0 in practice.

Because kinematic energy is V (ω) =
∑d
j=1

ω2
j

mj
, the change in location (in j-th coordinate) is simply

x′j(t) =
ωj(t)

mj
.

Thus, given an initial state (x(0), ω(0)) = (x0, ω0), after running the Hamiltonian dynamics for time T , we
will move to the state (x(T ), ω(T )) = (xT , ωT ). The new state (xT , ωT ) is the new proposal. Then in the
HMC, we will make a acceptance decision to see if we will accept this proposal.

Here is one caveat in the HMC:

No matter we accept or reject the proposal, we will draw a new momentum in the next iteration.



Lecture 7: Monte Carlo Methods 7-23

Namely, only the location xT will be kept after this iteration. The momentum will be deleted and we
will draw a new momentum (from the kinematic energy) without using any information from the previous
iteration.

Potential informs momentum: better proposal. The Hamiltonian dynamics allow the target density
π(x) changes the momentum vector via the equation

ω′j(t) = −∂H(x(t), ω(t))

∂xj(t)
= ω′j(t) = −∂ log π(x(t))

∂xj(t)
.

Thus, even if the original momentum ω(0) may be pointing toward a bad direction (with least density), the
dynamics will adjust its orientation so that it tends to point toward a higher density area.

7.8.1 Features of the HMC

• (P1): Energy conservation of the Hamiltonian dynamics: high acceptance rate. The
Hamiltonian dynamics has a powerful property called energy conservation, which implies that the
acceptance probability is very high. It is not hard to see that the change of Hamiltonian energy with
respect to time is

dH(x(t), ω(t))

dt
=

d∑
j=1

{
∂H(x(t), ω(t))

∂ωj(t)

dωj(t)

dt
+
∂H(x(t), ω(t))

∂xj(t)

dxj(t)

dt

}
= 0.

Namely, the Hamiltonian energy will always stay the same during the dynamics. This is a powerful
property! Now we examine the acceptance probability:

a(x0, ω0, xT , ωT ) = max

{
1,

exp(−H(xT , ωT ))

exp(−H(x0, ω0))

}
.

The acceptance probability uses the ratio between the initial Hamiltonian energy and the final Hamil-
tonian energy after applying the dynamics. Because the Hamiltonian energy is conserved during the
dynamics, this ratio will always be 1! Namely, the acceptance probability is 1 if we apply a real Hamil-
tonian dynamics. In fact, we need this acceptance step because in practice, we are using a numerical
approximation to the Hamiltonian dynamics so there could be some energy loss due to the approxima-
tion. So the final acceptance step is to account for this numerical error.

• (P2): Unique trajectory. Given initial conditions x(0) = x0, ω(0) = ω0, the Hamiltonian dynamics
creates a unique trajectory (x(t), ω(t)). So the only randomness in the HMC is the initial velocity ω0.

• (P3): Time-reversal. Suppose the Hamiltonian dynamics starts at x(0) = a, ω(0) = u and at time
T we obtain x(T ) = b, ω(T ) = w. Then we have a reversed-time result that if we start the dynamics
at x(0) = b, ω(0) = −w, we will obtain x(T ) = a, ω(T ) = u.

7.8.2 HMC and detailed balance.

Here we have seen that the HMC tends to give a better proposal and have a high acceptance rate. But
to make sure we are indeed sampling from the desired density, we need to show that the generated points
converge to a stationary distribution that is the desired density π. First, it is easy to see that the generated
points form a Markov chain since in each iteration, we only use the information from the previous location.
So we only need to show that π satisfies the detailed balance equation of the transition under HMC. In the



7-24 Lecture 7: Monte Carlo Methods

HMC (that we indeed perform the Hamiltonian dynamics), since the dynamics is deterministic (property
(P2)), given the time T being fixed, the mapping

(x0, ω0)→ (xT , ωT )

is deterministic. Namely, there exists φ1, φ2 such that xT = φ1(x0, ω0) and ωT = φ2(x0, ω0). An interesting
fact about Hamiltonian dynamics is that if we reverse the time, the trajectory will remain the same (property
(P3)). Namely, if we start the dynamics with initial location xT and momentum −ωT , after time T we
will come back to x0 and ω0. Namely, x0 = φ1(xT ,−ωT ), ω0 = φ2(xT ,−ωT ). Thus, there is a one-one
correspondence between (x0, ω0)↔ (xT ,−ωT ).

To show the detail balanced, we need to show that

π(x)p(x→ y) = π(y)p(x→ x),

where p(x→ y) is the transition density.

Here is an intuitive explanation about the detailed balanced. Suppose that there is only one ω such that
φ1(x, ω) = y and let ω̃ = φ2(x, ω) be the corresponding velocity. Then we also have φ1(y,−ω̃) = x and
φ2(y,−ω̃) = ω. Thus, there is also only one η such that the dynamics moves (y, η) to (x, ω) and the choice
is η = −ω̃.

In this case, p(x → y) = p(ω) because ω is the only choice that moves x into y. Similarly, we have
p(y → x) = p(−ω̃) . Then

π(x)p(x→ y) = π(x)p(ω)

=
1

Z0
exp{−U(x)− V (ω)}

=
1

Z0
exp{−H(x, ω)}

=
1

Z0
exp{−H(y, ω̃)} (Energy conservation)

=
1

Z0
exp{−U(y)− V (ω̃)}

= π(y)p(ω̃)

= π(y)p(−ω̃) (ω is coordinatewise symmetric)

= π(y)p(y → x)

so the detailed balance is satisfied. Actually, this idea can be generalized to the case where we have more
than one momentum leading to y; there is always a one-one correspondence between ω and ω̃ and the detailed
balance is always satisfied.

7.8.3 The HMC algorithm and the leapfrog method

The practical usage of the HMC involves a discretized step of the dynamics. This discretization is called
the leapfrog method. Suppose that x0 is the input location and we are only able to evaluate r(x) ∝ π(x).
Also, let ε be the step size in the discretization and L is the number of updates in the dynamics. Namely,
ε · L = T is the time that we apply the dynamics.

1. Generate the initial momentum ω0 ∼ N(0,M−1).

2. Set x(0) = x0.



Lecture 7: Monte Carlo Methods 7-25

3. For the momentum, make a half-step update:

ω(0) = ω0 −
ε

2
∇ log r(x(0)).

4. For ` = 1, · · · , L− 1, do the followings:

(a) Update position: x(`) = x(`−1) + ε · ω(`−1).

(b) Update momentum: ω(`) = ω(`−) − ε · ∇ log r(x(`)).

5. Make one last update on the position: x(L) = x(L−1) + ε · ω(L−1).

6. Make another half-step update of the momentum:

ω(L) = ω(L−1) − ε

2
∇ log r(x(L)).

7. Compute the acceptance probability:

a(x0, ω0, x
(L), ω(L)) = min

{
1,

exp(−H(x(L), ω(L)))

exp(−H(x0, ω0))

}
.

8. Accept xnew = x(L) with a probability of a(x0, ω0, x
(L), ω(L)). If we reject, then xnew = x0.

9. Return xnew.

A practical challenge is how do we numerically approximate the dynamics part in the HMC algorithm. In
the dynamics, the momentum and the location are updated simultaneously. But in practice, we have to
make a choice on which one to update first. This leads to a problem that the algorithm is non-symmetric
with respect to time. To see this, suppose that we start at x1 with a momentum ω1 and move to x2 with a
momentum ω2. The actual Hamiltonian dynamics is time-reversible, meaning that if we apply the algorithm
to (x2,−ω2), we will get back (x1, ω1). However, if we only use the leapfrog procedure (step 4), we will not
move (x2,−ω2) back to (x1, ω1). So the half step update (step 3) before and after the for loop (step 6)
is to resolve this problem and make the algorithm symmetric with respect to time.

Here is an R code for the HMC from https://arxiv.org/pdf/1206.1901.pdf, and excellent introduction
to the HMC.

HMC = function (U, grad_U, epsilon, L, current_q)

{

q = current_q

p = rnorm(length(q),0,1) # independent standard normal variates

current_p = p

# Make a half step for momentum at the beginning

p = p - epsilon * grad_U(q) / 2

# Alternate full steps for position and momentum

for (i in 1:L)

{

# Make a full step for the position

q = q + epsilon * p

# Make a full step for the momentum, except at end of trajectory

if (i!=L) p = p - epsilon * grad_U(q)

}

https://arxiv.org/pdf/1206.1901.pdf


7-26 Lecture 7: Monte Carlo Methods

# Make a half step for momentum at the end.

p = p - epsilon * grad_U(q) / 2

# Negate momentum at end of trajectory to make the proposal symmetric

p = -p

# Evaluate potential and kinetic energies at start and end of trajectory

current_U = U(current_q)

current_K = sum(current_p^2) / 2

proposed_U = U(q)

proposed_K = sum(p^2) / 2

# Accept or reject the state at end of trajectory, returning either

# the position at the end of the trajectory or the initial position

if (runif(1) < exp(current_U-proposed_U+current_K-proposed_K))

{

return (q) # accept

}

else {

return (current_q) # reject

}

}

Although the HMC works well theory, it requires tuning a couple of parameters for practical use. The choice
of step size ε and the number of updates L and the mass M will all affect the final performance. Detailed
discussion about the tuning can be found in Section 5.4 of https://arxiv.org/pdf/1206.1901.pdf.

https://arxiv.org/pdf/1206.1901.pdf

	Introduction
	Concepts of Monte Carlo
	Monte Carlo Integration
	Estimating a Probability via Simulation
	Estimating Distribution via Simulation

	Importance Sampling
	Rejection Sampling
	Application in Bayesian Inference

	MCMC: Metropolis-Hastings Algorithm
	Discrete state case
	Continuous state case

	MCMC: Gibbs Sampling
	Convergence analysis
	Hamiltonian Monte Carlo
	Features of the HMC
	HMC and detailed balance.
	The HMC algorithm and the leapfrog method


