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Lecture 5: Review on Statistical Inference
Instructor: Yen-Chi Chen

These notes are partially based on those of Mathias Drton.

5.1 Introduction

In this lecture, we will review the basic concept of statistical inference. In particular, we will focus on
the so-called parametric model. We will assume that the data is from certain parametric family (e.g., a
Gaussian) and the goal is to make inference about the underlying parameter (e.g., the mean and variance of
a Gaussian) using the data.

Statistical inference is about drawing conclusions from the data. This process often involves with estimating
some parameters of interest. In a parametric model, the parameter of interest are often the parameters of
the corresponding parametric family. For a parametric model, there are three common tasks in statisti-
cal inference – estimating the underlying parameter, providing an interval inference about the underlying
parameter, and testing if the underlying parameter satisfy certain conditions.

In statistics, there are two major paradigm for making inference – the frequentist paradigm and the Bayesian
paradigm1. We will talk about their principles of estimation, interval inference, and testing.

Note that there is no right or wrong about each paradigm – they are just different ways of making argu-
ments. Each paradigm is a self-consistent way to making logical arguments and has its own advantages and
limitations.

5.2 Frequentist Approach

The Frequentist approach is the paradigm we learn from Statistics 101. It interprets probability as the long
term frequency. In Frequentist approach, the parameter of interest is a fixed and unknown number.

5.2.1 Estimation

In a parametric model, we often estimate the parameter of interest using the so-called maximum likelihood
estimator (MLE). The idea is very simple. Suppose we observe only one observation X from a PDF/PMF
p(x). The parametric model assumes that such a PDF/PMF can be written as p(x) = p(x; θ), where θ is
the parameter of the model (θ is often the parameter of interest) inside a parameter space Θ (θ ∈ Θ). The
idea of MLE is to ask the following question: given the observation X, which θ is the most likely parameter
that generates X? To answer this question, we can vary θ and examine the value of p(X; θ).

Because we are treating X as fixed and θ being something that we want to optimize, we can view the problem
as finding the best θ such that the likelihood function L(θ|X) = p(X; θ) is maximized. The MLE uses

1There are also other paradigms such as the fiducial inference (https://en.wikipedia.org/wiki/Fiducial_inference) but
the Frequentists and Bayesian are the two major paradigm.
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the θ that maximizes the likelihood value. Namely,

θ̂MLE = argmaxθL(θ|X).

When we have multiple observations X1, · · · , Xn, the likelihood function can be defined in a similar way –
we use the joint PDF/PMF to define the likelihood function. Let p(x1, · · · , xn; θ) be the joinr PDF/PMF.
Then the likelihood function is

Ln(θ) = L(θ|X1, · · · , Xn) = p(X1, · · · , Xn; θ).

Note that when we assume IID observations,

Ln(θ) =

n∏
i=1

L(θ|Xi) =

n∏
i=1

p(Xi; θ).

In many cases, instead of using the likelihood function, we often work with the log-likelihood function

`n(θ) = logLn(θ).

Because taking the logarithmic does not change the maximizer of a function, the maximizer of the log-
likelihood function is the same as the maximizer of the likelihood function. There are both computational
and mathematical advantages of using a log-likelihood function over likelihood function. To see this, we
consider the case of IID sample. Computationally, the likelihood function often has a very small value due to
the product form of PDF/PMFs. So it is very likely that the number if too small, making the computation
very challenging. Mathematically, when we take log of the likelihood function, the product of PDF/PMFs
becomes an additive form

`n(θ) = logLn(θ) =

n∑
i=1

log p(Xi; θ).

Under IID assumption, each log p(Xi; θ) is an IID random variable so the central limit theorem and the law
of large number can be applied to the average, making it possible to analyze it asymptotic behavior.

Since under the IID assumptions, we have many advantages, we will assume IID from now on. Because
MLE finds the maximum of `n(θ), a common trick to find MLE is to study the gradient of the log-likelihood
function, which is also known as the score function:

Sn(θ) =
∂

∂θ
`n(θ) =

n∑
i=1

s(θ|Xi),

where s(θ|Xi) = ∂
∂θ `(θ|Xi) = ∂

∂θ log p(Xi; θ). Under suitable conditions, the MLE satisfies the score equation:

Sn(θ̂MLE) = 0.

Note that if there are more than one parameter, say θ ∈ Rp, the score equation will be a system of p
equations.

Because the MLE is at the maximal point of the likelihood function, the curvature of the likelihood function
around the maximal will determine its stability. To measure the curvature, we use the Fisher’s information
matrix:

In(θ) = −E
[

∂2

∂θ∂θT
`n(θ)

]
= n · I1(θ) = n · −E

[
∂2

∂θ∂θT
p(X1; θ)

]
.

If the data is generated from a PDF/PMF p(x; θ0) and some regularity conditions are satisfied,

E(Sn(θ0)) = 0, I1(θ0) = E(S1(θ0)ST1 (θ0)).
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Moreover,
√
n
(
θ̂MLE − θ0

)
D→ N(0, I−1

1 (θ)).

Namely, the MLE is asymptotically normally distributed around the true parameter θ0 and the covariance
is determined by the Fisher’s information matrix. Note that the asymptotic normality also implies that

θ̂MLE − θ0
P→ 0.

Example 1: Binomial Distribution. Assume that we obtain a single observation Y ∼ Bin(n, p), and we
assume that n is known. The goal is to estimate p. The log-likelihood function is

`(p) = Y log p+ (n− Y ) log(1− p) + Cn(Y ),

where Cn(Y ) = log
(
n
Y

)
is independent of p. The score function is

S(p) =
Y

p
− n− Y

1− p

so solving the score equation gives us p̂MLE = Y
n . Moreover, the Fisher’s information is

I(p) = E
{
∂

∂p
S(p)

}
= −E(Y )

p2
− n− E(Y )

(1− p)2
=

n

p(1− p)
.

Example 2: Multinomial Distribution. Let X1, · · · , Xn be IID from a multinomial distribution such
that P (X1 = j) = pj for j = 1, · · · , s and

∑s
j=1 pj = 1. Note that the parameter space is Θ = {(p1, · · · , ps) :

0 ≤ pj ,
∑s
j=1 pj = 1}. By setting Nj =

∑n
i=1 I(Xi = j) for each j = 1, · · · , s, we obtain the random vector

(N1, · · · , Ns) ∼ Multinomial(n, p), where p = (p1, · · · , ps). The parameters of interest are p1, · · · , ps. In this
case, the likelihood function is

Ln(p1, · · · , ps) =
n!

N1! · · ·Ns!
pN1

1 · · · pNss

and the log-likelihood function is

`n(p1, · · · , ps) =

s∑
j=1

Nj log pj + Cn,

where Cn is independent of p. Note that naively computing the score function and set it to be 0 will not grant
us a solution (think about why) because we do not use the constraint of the parameter space – the parameters
are summed to 1. To use this constraint in our analysis, we consider adding the Lagrange multipliers and
optimize it:

F(p, λ) =

s∑
j=1

Nj log pj + λ

1−
s∑
j=1

pj

 .

Differentiating this function with respect to p1, · · · , ps, and λ and set it to be 0 gives

∂F

∂pj
=
Nj
pj
− λ0⇒ Nj = λp̂MLE,j

and 1−
∑s
j=1 pj = 0. Thus, n =

∑s
j=1Nj = λ

∑p
j=1 = λ so p̂MLE,j =

Nj
n .
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5.2.2 Confidence Intervals

In some analysis, we not only want to have just a point estimate of the parameter of interest, but also want
to use an interval to infer the parameter of interest. And we also want to assign a level to this interval to
describe how ‘accurate’ this interval is. Note that here the concept of accuracy is not well-defined – we will
talk about it later. Ideally, given an accuracy level, we want an interval as small as possible.

The Frequentist and the Bayesian defines the accuracy differently so their construction of intervals are
also different. In short, the Frequentists defines the accuracy as the long term frequency coverage of the
underlying true parameter of interest whereas the Bayesian defines the accuracy in terms of covering the
posterior probability. In this section, we will talk about the Frequentist approach and the interval is known
as the confidence interval. The accuracy that Frequentists are using is called the confidence level.

Formally, given a confidence level 1 − α, a confidence interval of θ0 is a random interval Cn,α that can be
constructed solely from the data (i.e., can be constructed using X1, · · · , Xn) such that

P (θ ∈ Cn,α) ≥ 1− α+ o(1).

Beware, what is random is not θ but the interval Cn,α. The quantity P (θ ∈ Cn,α) is also called the
(Frequentist) coverage. Note that we allow the coverage to be asymptotically 1 − α; when there is no o(1)
term, we will say that the confidence interval has a finite sample coverage. A confidence interval with the
above property is also called a (asymptotically) valid confidence interval.

Normal confidence interval. A traditional approach to constructing a confidence interval of θ0 is based
on the asymptotic normality of the MLE:

√
n(θ̂MLE − θ0)

D→ N(0, I−1
1 (θ0)).

When the dimension of the parameter is 1, a simple confidence interval is

θ̂MLE ± z1−α/2 · σθ0 ,

where σ2
θ0

= 1
nI
−1
1 (θ0) Such interval is not a confidence interval because θ0 is unknown. We can modify it

using a plug-in estimate of the Fisher’s information:

Cn,α = [θ̂MLE − z1−α/2 · σθ̂MLE , θ̂MLE + z1−α/2 · σθ̂MLE ],

where zβ the β-percentile of the standard normal distribution. Using the slutsky’s theorem, you can easily
show that this confidence interval has the asymptotic coverage.

When the dimension of the parameter is greater than 1, there are multiple ways we can construct a confidence
interval. Note that in this case, the set Cn,α is no longer an interval but a region/set so it is often called a
confidence region/set. A simple approach of constructing a confidence set is via an ellipse. Note that the
asymptotic normality also implies that (using continuous mapping theorem)

n(θ̂MLE − θ0)T I1(θ̂MLE)(θ̂MLE − θ0)
D→ χ2

p,

where χ2
p denotes the χ2 distribution with a degree of freedom p. So we construct the confidence set using

Cn,α =
{
θ : n(θ̂MLE − θ)T I1(θ̂MLE)(θ̂MLE − θ) ≤ χ2

p,1−α

}
,

where χ2
p,β is the β-percentile of the χ2 distribution with a degree of freedom p.

Bootstrap confidence interval. Bootstrap approach is an Monte Carlo method for assessing the uncer-
tainty of an estimator. It can be used to compute the variance of an estimator (not necessarily the MLE) and
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construct a confidence interval. In the case of likelihood inference, the bootstrap approach has an advantage
that we do not need to know the closed-form of I1(θ) to construct the confidence interval or to approximate
the variance of the MLE.

While there are many variant of bootstrap methods, we introduce the simplest one – the empirical bootstrap.
For simplicity, we assume that the dimension of θ is 1 (the bootstrap works for higher dimensions as well).
Let X1, · · · , Xn be the original sample. We then sample with replacement from the original sample to obtain
a new sample of each size X∗1 , · · · , X∗n. This new sample is called a bootstrap sample. We find the MLE

using the bootstrap sample and let θ̂∗MLE denote the bootstrap MLE. Now we repeat the bootstrap process
B times, leading to B bootstrap MLEs

θ̂
∗(1)
MLE , · · · , θ̂

∗(B)
MLE .

Let tβ denotes the β-percentile of these B values, i.e.,

t̂β = Ĝ−1(β), Ĝ(t) =
1

B

B∑
b=1

I(θ̂
∗(b)
MLE ≤ t).

Then the bootstrap confidence interval of θ0 is

Cn,α = [t̂α/2, t̂1−α/2].

One can prove that under very mild conditions, the bootstrap confidence interval has asymptotic coverage.

The power of the bootstrap method is that we do not use anything about the Fisher’s information! As long as
we can compute the estimator, we can construct an asymptotically valid confidence interval. Note that if we
do know the Fisher’s information, the bootstrap method can be modified using the bootstrap t-distribution
method, which provides a better asymptotic coverage (namely, the o(1) decays faster to 0 than the above
method and the normal confidence interval)2.

5.2.3 Test of Significance

Statistical test is about how to design a procedure that allows us to make scientific discovery. Such a
procedure has to be able to handle the uncertain nature of our data. In statistics, we model the data as
random variables so the testing procedure needs to account for the randomness.

Let Dn = {X1, · · · , Xn} denotes our data. The testing procedure involves two competing hypotheses:

• Null hypothesis H0: the hypothesis that we want to challenge. It is often related to the current scientific
knowledge.

• Alternative hypothesis Ha: the hypothesis that complements to the null hypothesis. It is the hypothesis
we would like to prove to be plausible using our data.

The goal is to see if we have strong enough evidence (from Dn) that we can argue the alternative hypothesis
is more reasonable than the null hypothesis. If we do have enough evidence, then we will reject the null
hypothesis. When the null hypothesis reflects the scenarios that can be explained by the current scientific
knowledge, rejecting the null hypothesis means that we have discovered something new.

To design a testing procedure, we need to quantify the notion of evidence. The Frequentists and the Bayesian
use different ways to measure the evidence. The Frequentist approach is the p-value whereas the Bayesian
approach is the Bayes factor. We will talk about Bayes factor later so here we focus on the p-value.

2see, e.g., Chapter 2 of All of nonparametric statistics by Larry Wasserman and Chapter 3.5 of The bootstrap and Edgeworth
expansion by Peter Hall.
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Here is a summary on Frequentist approach of hypothesis test.

1. Based on the model and null hypothesis, design a test statistic.

2. Compute the distribution of the test statistics under the null hypothesis.

3. Plug-in the data into the test statistic, compute the probability of observing a more extreme data
against the null hypothesis. Such a probability is the p-value.

4. Compare p-value to the significance level. If p-value is less than the significance level, we reject the
null hypothesis.

The central idea of hypothesis test is to control the type-1 error, the probability of falsely rejecting H0

when H0 is correct. Essentially, the p-value can be interpreted as if we reject the null hypothesis (under
this p-value), then our type-1 error is the same as the p-value. The significance level reflects the amount of
type-1 error we can tolerate so when p-value is less than the significance level, we can reject H0. Due to the
construction of p-value, a small p-value means that the null hypothesis does not fit to the data very well (so
we are seeing an extreme event if H0 is true). Thus, small p-value or rejecting H0 under a small significance
level means that we have more evidence against H0.

Note that there is another quantity called type-2 error, the probability of not rejecting H0 when H0 is false.
Namely, type-2 error is concerned with the case that we fail to reject H0 when we should.

In statistics, we often control type-1 error first and the hope that the type-2 error is also small. When do
we put more emphasis on type-1 error? This has something to do with the philosophy of scientific research.
The scientific approach is a systematic way to acquire reliable knowledge. Thus, every discovery we made
should be accompanied with sufficient evidences. In Frequentist approach, the measure of evidence against
H0 is the p-value – the smaller p-value, the more evidence. Thus, controlling type-1 error means that we
put requirements on the amount of evidence we need to claim a scientific discovery.

While there are many possible ways to construct a test statistic, here we consider two common approaches:
Wald test and the likelihood ratio test.

Wald test. Assume in a simple case where we model the data as IID from a parametric model p(x; θ) with
a 1D parameter. Suppose that we are comparing two hypotheses

H0 : θ = θ1, Ha : θ 6= θ1.

Since the MLE is a good estimate of θ, we can design our test statistic using the MLE. Because we know
that the MLE has asymptotic normality,

√
nI1(θ)−1/2(θ̂n − θ)

D→ N(0, 1),

we can then use

Tn(θ) =
√
nI1(θ)−1/2(θ̂n − θ)

as our test statistic. If H0 is true, Tn(θ1) should behaves like a standard normal distribution. When we
observe the actual data, we can then compare the observed value of Tn(θ1) against 0 (since Tn(θ1) = 0 means
a perfect match with H0). We reject H0 if Tn(θ1) is either too large or too small. The p-value is then

p(Dn) = 1− 2 · Φ−1(|Tn(θ1)|),

where Φ(t) = P (Z ≤ t) is the CDF of a standard normal distribution. Note that the above method is also
known as the Wald test.
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likelihood ratio test (LRT). LRT is another popular way to conduct hypothesis test under a parametric
model. It can be easily applied to multivariate parameters so now we assume that there are p parameters,
i.e., θ ∈ Θ ⊂ Rp. The null hypothesis and the alternative hypothesis are

H0 : θ ∈ Θ0, Ha : θ ∈ Θ\Θ0.

Let `n(θ) be the log-likelihood function and let

θ̂MLE = argmaxθ∈Θ`n(θ), θ̂MLE,0 = argmaxθ∈Θ0
`n(θ)

be the global MLE and the constrained MLE (in the null hypothesis space). The LRT starts with a test
statistic

LRT =
supθ∈Θ0

Ln(θ)

supθ∈Θ Ln(θ)
=
Ln(θ̂MLE,0)

Ln(θ̂MLE)

and reject H0 if LRT is too small. To get the p-value of the LRT, we often use the following fact:

−2 log LRT = 2
(
`n(θ̂MLE)− `n(θ̂MLE,0)

)
D→ χ2

r,

where r = dim(Θ)−dim(Θ0) is the difference of the dimensions/degree-of-freedoms between the full parameter
space and constrained parameter space. The above result is also known as the likelihood ratio approximation

or Wilk’s theorem. The LRT proposes to use the Tn = 2
(
`n(θ̂MLE)− `n(θ̂MLE,0)

)
as our test statistic and

compared it with the CDF of χ2
r to obtain the p-value.

Remarks.

• Why r degrees of freedom? Some of you may be wondering why we are getting a χ2 distribution with a
degree of freedom r. Here is a simple explanation using geometry. Recall that the MLE behaves like a
normal distribution around the true parameter θ0. If H0 is true, θ0 ∈ Θ0 so θ̂MLE will be asymptotically
normally distributed around θ0 . Since θ̂MLE is the maximizer over Θ so it has p degrees of freedom
(it can moves in each of the p dimensions). The constrained MLE θ̂MLE,0 is the maximizer under Θ0,
which has r constraints. Thus, Θ0 has p − r degrees of freedom, which implies that its maximizer
θ̂MLE,0 uses p − r degree of freedom. The remaining degrees of freedom is p − (p − r) = r so this is
why we are obtaining a χ2 distribution with r degrees of freedom. Note that one can replace the r
constraints to be saying that Θ0 is a p− r dimensional manifold.

• Equivalence between likelihood ratio test and Wald test. Asymptotically, one can show that the likeli-
hood ratio test and the Wald test are the same under classical assumptions on the MLE. Also, there
is another test that is closely related to them called the score test, which is based on the value of score
function as a test statistic. Again, asymptotically the score test and other two tests are equivalent.
However, when the likelihood function is more complex, such as having multiple local maxima. These
three tests may not be the same (they can be quiet different)3.

• Relation to confidence interval. Hypothesis test can be used to construct a confidence interval. Consider
testing the null hypothesis: H0 : θ = θ1 for a specific value θ1 under a significance level α. For each
θ1 ∈ Θ, we can do a hypothesis test. Some parameters will be rejected whereas the others will not.
Let Ân,α be the collection of parameters that the null hypothesis will not be rejected. Then you can

show that Ân,α is a confidence interval of θ. This approach is also known as the confidence interval
from inverting a hypothesis test. Note that if we are given a 1−α confidence interval of the parameter
of interest θ, we can use it to test the null hypothesis H0 : θ ∈ Θ0. If the confidence interval intersects
with Θ0, we cannot reject H0. If they are disjoint, then we can reject H0 under a significance level

3see https://arxiv.org/abs/1807.04431

https://arxiv.org/abs/1807.04431
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α. Thus, hypothesis test problem and confidence intervals are highly related to each other. However,
testing a given hypothesis is often an easier problem than constructing a confidence interval because
confidence interval requires a procedure that is valid regardless of the null hypothesis being correct or
not. On the other hand, hypothesis test problem only requires a procedure that works when H0 is
true.

There are many misconceptions about p-values. To clarify what p-value stands for and what it does NOT
stand for, I obtain the following 6 principles from American Statistical Association’s website4:

1. P-values can indicate how incompatible the data are with a specified statistical model.

2. P-values do not measure the probability that the studied hypothesis is true, or the probability that
the data were produced by random chance alone.

3. Scientific conclusions and business or policy decisions should not be based only on whether a p-value
passes a specific threshold.

4. Proper inference requires full reporting and transparency.

5. A p-value, or statistical significance, does not measure the size of an effect or the importance of a
result.

6. By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.

5.2.4 Model Mis-specification

Many theory about the MLE assumes that the population distribution function belongs to our parametric
family. However, this is a very strong assumption in reality. It is very likely that the population distribution
function does not belong to our parametric family (e.g., the population PDF is not Gaussian but we fit a
Gaussian to it). What will happen in this case for our MLE? Will it still converge to something? If so, what
will be the quantity that it is converging?

Model mis-specification studies the situation like this – we assume a wrong model for the population distri-
bution function. Let p0(x) be the population PDF and we assume that the population PDF can be written

as p(x; θ). However, p0 6= p(x; θ) for every θ ∈ Θ. It turns out that the MLE θ̂MLE still converges under
mild assumptions to a quantity θ∗ in probability. Moreover, the corresponding PDF/PMF p(x; θ∗) has an
interesting relation with p0(x). Assume that the RV X has a PDF/PMF p0. Then

E
{

log

(
p0(X)

p(X; θ∗)

)}
= inf
θ∈Θ

E
{

log

(
p0(X)

p(X; θ)

)}
= inf
θ∈Θ

KL(p0, pθ),

where KL is also known as the Kullback-Liebler (KL) divergence and pθ(x) = p(x; θ). Namely, the MLE
corresponds to the parametric distribution in the specified family that minimizes the KL divergence to the
population distribution.

In model mis-specification case, the MLE still satisfies the score equation (under appropriate assumption)
but the Fisher’s information may not reflect the actual curvature of the likelihood function around θ∗. The
asymptotic covariance (related to the curvature) of θ̂MLE will be Σ = I−1

1 (θ∗)E(S1(θ∗)ST1 (θ∗))I−1
1 (θ∗) and

we still have √
n(θ̂MLE − θ∗)

D→ N(0,Σ).

4https://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf

https://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf
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5.3 Bayesian Approach

The Bayesian inference is an alternative statistical paradigm to the Frequentist approach. The Bayesian
approach interprets the probability in a broader sense that include subjective probability, which allows us
to assign probability to almost every quantity in our model (including the parameter of interest and even a
statistical model). The Bayesian inference relies on a simple decision theoretic rule – if we are competing
two or more choices, we always choose the one with higher probability. This simple rule allows us to design
an estimator, construct an interval, and perform hypothesis test.

In the Bayesian analysis, we assign a probability to every parameter in our model. For a parametric model
p(x; θ), the parameter of interest θ is given a prior distribution π(θ) that reflects our belief about the
value of θ. In a sense, the prior distribution quantifies our subjective belief about the parameter θ. The
higher value of π(θ) indicates that we believe that θ is a more likely value of it.

How do we interpret this prior distribution? Here is a decision theoretic way of viewing it. To simplify the
problem we assume that Θ = {0, 1, 2}. Even without any data at hand, we can ask ourselves about our
belief about each parameter value. Some people may think that 1 is the most likely one; some may think
that 2 is the most likely one. To make our belief more precise, we use probability to work on it. Let π(j)
be the number that reflects our belief about θ = j. We interpret the numerical value of π(j) as follows. We
are forced to guess the answer of θ = j versus θ 6= j. If the answer is θ = j and we indeed guess it correctly,
we will be rewarded δ dollar. If the answer is θ 6= j and we get it correct, we will be rewarded 1 dollar. If
we get it wrong, we do not lose anything. Our principle is to maximize our expected reward. Now assume
that the true value of θ has equal probability of being j or not j. Then what should we choose? θ = j or
θ 6= j? Now we think about this problem by varying δ from 0 to infinity. When δ is small, unless we have
very strong belief on θ = j, we will not bid on it. When increasing δ, at certain threshold we will switch our
decision from bidding on θ 6= j to θ = j. Let this threshold be ηj . ηj is a number that reflects our belief
about θ = j and we associate it with our prior

π(j) =
1

1 + ηj
⇔ ηj =

1− π(j)

π(j)
(odds of θ = j).

Here, you see that we only use one simple decision rule – bidding on the one with a higher expected outcome.
This allows us to quantify our belief.

Using the prior distribution, the Bayesian probability model can be written as follows:

X1, · · · , Xn|θ
IID∼ p(x|θ)

θ ∼ π.

The Bayesian inference focuses on the distribution of θ after observing X1, · · · , Xn:

π(θ|X1, · · · , Xn) =
p(X1, · · · , Xn, θ)

p(X1, · · · , Xn)
∝ p(X1, · · · , Xn|θ)︸ ︷︷ ︸

likelihood

×π(θ)︸︷︷︸
prior

.

This distribution is also known as the posterior distribution.

The posterior distribution informs us about how our prior belief is updated after seeing the data. It is
the central quantity in Bayesian inference – all our decisions will be related to it. In Bayesian’s point of
view, probability models are just mathematical tools for analyzing data. We do not assume that the data is
generated from a probability distribution. We just view the data as generated from p(x; θ). Given that we
do not assume the probability model to be the true model, there is NO true parameter so we cannot talk
about conventional statistical errors. However, Bayesian does have another way to expressing the error in
our inference – the posterior distribution. The posterior distribution reflects our belief about the parameter
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after seeing the data, we can use it as a measure of uncertainty about θ. If the posterior distribution is more
spread out, then the uncertainty in our inference is larger. On the other hand, if the posterior distribution
is very concentrated, then there is very little (Bayesian) uncertainty.

5.3.1 Bayesian Estimation

There are two common estimator in Bayesian inference: the posterior mean and the maximum a posteriori
estimation (MAP).

Posterior mean. Just like we often use the sample mean as an estimator of the population mean, the mean
of the posterior distribution is a common quantity that was used as an estimator of θ:

θ̂π = E(θ|X1, · · · , Xn) =

∫
θ · π(θ|X1, · · · , Xn)dθ.

It represents the average location of our belief about the parameter after seeing the data.

Maximum a posteriori estimation (MAP). Another common estimator of θ is the MAP; it relies on
the similar principle as the MLE – we choose the one that is the most likely. Here the ‘likely’ is interpreted
as our posterior belief about the parameter of interest θ. Formally, MAP is defined as

θ̂MAP = argmaxθπ(θ|X1, · · · , Xn).

Example: Binomial Sampling. Assume that we have an observation Y ∼ Bin(N, θ) where N is known
and the parameter of interest is θ:

P (Y = y|θ) =

(
N

y

)
θy(1− θ)N−y.

We use a Beta distribution with parameters (α, β) as our prior distribution for θ. Namely,

π(θ) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1,

where Γ(z) =
∫∞

0
tz−1e−tdt is the Gamma function and α, β > 0. Note that (α, β) are called the hypter-

parameters and are known quantities (because we know our belief about the data). For a Beta distribution
with parameter α, β, the mean is α

α+β .

The posterior distribution is

π(θ|Y ) =

(
N
Y

)
θY (1− θ)N−Y Γ(α+β)

Γ(α)Γ(β)θ
α−1(1− θ)β−1∫ (

N
Y

)
θY (1− θ)N−Y Γ(α+β)

Γ(α)Γ(β)θ
α−1(1− θ)β−1dθ

∝ θY+α−1(1− θ)N−Y+β−1

so it is a Beta distribution with parameters (Y + α,N − Y + β). Then the posterior mean and MAP are

θ̂π =
Y + α

N + α+ β
, θ̂MAP =

Y + α− 1

N + α+ β − 2

(these are the mean and the mode of a Beta distribution).
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Note that in this problem, the MLE is θ̂MLE = Y
N . Thus, the posterior mean has an interesting decomposi-

tion:

θ̂π =
Y + α

N + α+ β

= θ̂π =
Y

N + α+ β
+

α

N + α+ β

=
Y

N
× N

N + α+ β
+

α

α+ β
× α+ β

N + α+ β

= θ̂MLE ×W + Prior mean× (1−W ),

where W = N
N+α+β is a weight that is tending to 1 when N → ∞. This phenomenon – the posterior

mean can be written as the weighted average of the MLE and the prior mean – occurs in several scenarios.
Moreover, the fact that the weights W → 1 as the sample size N → ∞ means that when we have more
and more data, the prior distribution seems to be irrelevant. Thus, the posterior mean would have a similar
asymptotic property as the sample mean. However, this is not a general phenomenon; often only certain
combination of prior and likelihood models will have this feature.

Remark

• Choice of prior and conjugate prior. The choice of prior reflects our belief about the parameter
before seeing any data. Sometimes people want to choose a prior distribution such that the posterior
distribution is in the same family as the prior distribution, just like what we have observed in the above
example. If a prior distribution and a likelihood function leads to a posterior that belongs to the same
family as the prior, we call this prior conjugate prior. There are several conjugate priors know to
date, see https://en.wikipedia.org/wiki/Conjugate_prior for an incomplete list of cases.

Another common choice of prior is called the Jeffreys prior5, which chooses a prior π(θ) ∝
√
det(I1(θ)),

where I1(θ) is the Fisher’s information matrix. One can view the Jeffreys prior as the prior that we do
not have any prior belief about θ; or more formally, an uninformative prior.

• Challenge of computing the posterior. In general, if we do not choose a conjugate prior, the posterior
distribution could be difficult to compute. The challenge often comes from the normalization quantity
p(X1, · · · , Xn) in the denominator of the posterior π(θ|X1, · · · , Xn) (the numerator is just the prior
times the likelihood). In practice we will use Monte Carlo method to compute the posterior – we gen-
erate points from π(θ|X1, · · · , Xn) and as we generate enough points, these points should approximate
the true posterior distribution well. We will talk more about this later in the lecture of MCMC (Monte
Carlo Markov Chain).

• Consistency. In pure Bayesian’s point of view, statistical consistency is not an important property
because probability model is a working model to describe the data and we do not need to assume
that there exists an actual parameter that generates the data. Thus, the posterior distribution is the
quantity that we really need to make our inference. However, sometimes Bayesian estimators, such as

the posterior mean or MAP, does have statistical consistency. Namely, θ̂π
P→ θ0 and θ̂MAP

P→ θ0, where

the data X1, · · · , Xn
IID∼ p(x; θ0). This is often related to the Bernstein-von Mises theorem6. Although

statistical consistency was not an important property in Bayesian paradigm (because Bayesian does
not assume the data is indeed from a probability model; probability models are just a mathematical
model to help us analyze the data), still many researchers would prove consistency when proposing a
Bayesian approach.

5see https://en.wikipedia.org/wiki/Jeffreys_prior for more details.
6https://en.wikipedia.org/wiki/Bernstein%E2%80%93von_Mises_theorem

https://en.wikipedia.org/wiki/Conjugate_prior
https://en.wikipedia.org/wiki/Jeffreys_prior
https://en.wikipedia.org/wiki/Bernstein%E2%80%93von_Mises_theorem
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5.3.2 Bayesian Interval: Credible Interval

The Bayesian’s interval is very straight forward – since the posterior contains our belief about the parameter
after seeing the data, we just construct the interval using the posterior distribution. Given a credible level
1− α, a credible interval Dn,α satisfies

1− α =

∫
Dn,α

π(θ|X1, · · · , Xn)dθ.

Often we will choose the credible interval such that it is shortest. It turns out that (actually it is not hard
to prove) such a credible interval is related to the upper level set of the posterior. Given a level λ, we define

Lλ = {θ ∈ Θ : π(θ|X1, · · · , Xn) ≥ λ}.

Define V (λ) =
∫
Lλ
π(θ|X1, · · · , Xn)dθ. When λ is very large, V (λ) is very small. When we decrease λ, V (λ)

will increase since we are including more regions. At a critical level λα, we will have exactly

V (λα) = 1− α.

We will then use the level set Lλα as the credible interval. You can show that under appropriate conditions
(π(θ|X1, · · · , Xn) has not flat region and is Lipschitz), Lλα is a shortest credible interval with a credible
level 1− α.

Because the above (shortest) credible interval is very straight forward, when people are talking about credible
intervals, they are often referring to this interval.

5.3.3 Bayesian Testing: Bayes Factor

Bayesian hypothesis testing is also very straight forward – as you can guess, it is based on the posterior
distribution. Instead of just putting priors on parameter, using our decision theoretic way, we can also put
priors on the hypotheses.

Recall that H0 and Ha are the null and alternative hypotheses. Let π(H0) and π(Ha) = 1−π(H0) denote the
prior distribution on the two hypotheses and let π(H0|X1, · · · , Xn) and π(Ha|X1, · · · , Xn) be the posterior
distribution given the data.

The testing procedure is very simple – we reject H0 if

π(H0|X1, · · · , Xn)

π(H1|X1, · · · , Xn)
< 1⇔ p(X1, · · · , Xn|H0)

p(X1, · · · , Xn|Ha)
· π(H0)

π(Ha)
< 1. (5.1)

Namely, we reject H0 if our posterior belief about H0 is less than that of Ha.

In many scenarios, the hypotheses will not directly give us a probability model related to the data. In a
parametric model, they often put some constraints on the parameter. Thus, we can then rewrite the posterior
p(X1, · · · , Xn|H0) as

p(X1, · · · , Xn|H0) =

∫
p(X1, · · · , Xn, θ|H0)dθ =

∫
p(X1, · · · , Xn|θ,H0)π(θ|H0)dθ.

Using the above equality, we define the Bayes factor as

BF(X1, · · · , Xn) =
p(X1, · · · , Xn|H0)

p(X1, · · · , Xn|Ha)
=

∫
p(X1, · · · , Xn|θ,H0)π(θ|H0)dθ∫
p(X1, · · · , Xn|θ,Ha)π(θ|Ha)dθ

. (5.2)
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Using the Bayes factor, we can rewrite the decision rule as: we reject H0 if

BF(X1, · · · , Xn) · π(H0)

π(Ha)︸ ︷︷ ︸
odds

< 1.

Namely, if the Bayes factor is less than the inverse of the odds of H0, we reject H0.

The Bayes factor can be viewed as a Bayesian version of p-value – the smaller, the less favor for H0. To see
how the Bayes factor is like the p-value, note that the Frequentist way of rejecting H0 is if the p-value is less
than a pre-specified significance level α. The Bayesian’s threshold is given by the odds of H0 from the prior
distribution. If the inverse of the Bayes factor is greater than the odds of H0, we reject H0. In Bayesian,
the threshold in testing (significance level) has a simple interpretation – the odds of our prior belief about
the null hypothesis.

Example: Binomial Sampling. Now we come back to the Binomial sampling example where we have an
observation Y ∼ Bin(N, θ) where N is known and the parameter of interest is θ:

P (Y = y|θ) =

(
N

y

)
θy(1− θ)N−y.

We use a Beta distribution with parameters (α, β) as our prior distribution for θ. Now we consider testing

H0 : θ = 0.5, Ha : θ 6= 0.5.

Our goal is to compute the Bayes factor. First, we compute the numerator:

p(Y |H0) =

∫ 1

0

p(Y |θ,H0)π(θ|H0)dθ =

∫ 1

0

p(Y |θ)δ(θ = 0.5)dθ = p(Y |θ = 0.5) =

(
N

Y

)
0.5Y 0.5N−Y =

(
N

Y

)
0.5N .

The denominator of the Bayes factor will be

p(Y |Ha) =

∫ 1

0

p(Y |θ,Ha)π(θ|Ha)dθ

=

∫ 1

0

p(Y |θ,Ha)π(θ)dθ (Note that θ = 0.5 is just a single point so it does not affect the integral)

=

∫ 1

0

(
N

Y

)
θY θN−Y

Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1dθ

=

(
N

Y

)
Γ(α+ β)

Γ(α)Γ(β)

Γ(Y + a)Γ(N − Y + b)

Γ(N + a+ b)
.

Therefore, the Bayes factor is

BF(Y ) =
0.5N

Γ(α+β)
Γ(α)Γ(β)

Γ(Y+a)Γ(N−Y+b)
Γ(N+a+b)

.

As you can see, the computation of Bayes factor does not involve the prior on H0. However, it does involve
the prior of the parameter θ (and this is why the value of it depends on the hyperparameters α, β).

There is an interesting relation between the Bayes factor and the likelihood ratio test. In the above Binomial
example, if we use the likelihood ratio test, we obtain a test statistic:

LRT =
p(Y |θ = 0.5)

p(Y |θ = θ̂MLE)
=

(
N
Y

)
0.5N

supθ∈[0,1]

(
N
Y

)
θY (1− θ)N−Y

=
0.5N

(Y/N)Y (1− Y/N)N−Y
.
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The numerator is the same while the denominator is slightly different – the LRT only uses the maximum
likelihood value whereas the Bayes factor uses the average value within Ha! An interesting fact: if the
alternative hypothesis is a simple hypothesis Ha : θ = θa for a fixed quantity θa, then the Bayes factor and
the LRT statistic coincides.

5.3.4 Bayesian nonparametric

Bayesian approach can also be applied to nonparametric estimation. Nonparametric estimation refers to
the case where we do not assume the parameter of interest is a vector or number. One common problem is
density estimation. If our goal is to estimate the underlying PDF or CDF, we can do it without assuming
the data being from a parametric family such as a Gaussian. For instance, histogram can be used as a
density estimator without assuming the data is from a Gaussian or any other parametric family (there are
many more advanced techniques such as the kernel density estimator, orthonormal basis approach, wavelet
approach, ...etc).

The challenge of Bayesian inference in nonparametric problem is that we need to put a prior on ‘function
space’ (a collection of functions). Often a function space does not admit a density function. However, there
are some tricks that we can put a prior on function space.

• Dirichlet process. The Dirichlet process7 is a stochastic process that generates random probability
distributions. It also has several other interesting names such as the Chinese buffet process and stick-
breaking process. The appealing feature of Dirichlet process is that it is constructed from an algorithmic
scheme so there is a simple way to sampling points from a random distribution generated from this
process.

• Sequential mixture model. Another way to assign priors on distributions is to use a sequential mixture
model. For instance, a Gaussian mixture model with parameters drawn from some distribution. When
we allow the number of mixture to increase with sample size, we can approximate many distributions
in the function space. Note that when we allow the number of mixture to increase, this implies that
our prior distribution is changing with respect to the sample size.

• Basis approach. A smooth density function with a compact support may be written as p0(x) =∑∞
k=1 θkφk(x), where {φk(x) : k = 1, 2, · · · } is a basis and {θk : k = 1, 2, · · · } are the coefficients.

For instance, one may choose the cosine basis or spline basis. Putting priors on θk leads to a prior
distribution over functions. Note that in practice we often had to truncate the basis at certain level ,
i.e., we use only {φk(x) : k = 1, 2, · · · , N} for some N = N . Often we allow N = Nn to increase with
respect to the sample size so that our prior covers most part of the function space.

• ε-cover/bracketing. There is another approach to assign priors over function space using the cover-
ing/bracketing of function space. An ε-cover is a collection of functions in a function space such that
every function inside the space has a distance at most ε to the nearest element inside the cover (brack-
eting is a generalization of this concept). There are many ε-covers but we often use those with the
minimal number of elements. Now consider a sequence of ε-cover with ε = εn → 0 as n→∞. Let Πn be
a uniform distribution over each element of εn-cover. Then the mixture distribution Π =

∑∞
n=1 βnΠn,

with an appropriate choice of {βn} forms a prior distribution that can well-approximate almost ev-
ery function in the function space (when the function space is sufficiently smooth). This idea is a
powerful tool in constructing a prior with amazing theoretical properties8 although it is often hard to
numerically compute this prior.

7https://en.wikipedia.org/wiki/Dirichlet_process
8see, e.g., the famous paper Ghosal et al. (2000) “Convergence rates of posterior distributions”: https://projecteuclid.

org/euclid.aos/1016218228

https://en.wikipedia.org/wiki/Dirichlet_process
https://projecteuclid.org/euclid.aos/1016218228
https://projecteuclid.org/euclid.aos/1016218228
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5.4 Prediction

Prediction is about the question that given observations X1, · · · , Xn, what will be the possible range of
the next observation Xn+1? Using probability model, we know that the next observation Xn+1 will have
a distribution. So the prediction problem is about finding the distribution p(xn+1|X1, · · · , Xn). Here we
will show how the Frequentist prediction method and the Bayesian prediction method are different in a
parametric model.

The Frequentist approach is very simple – given that we have already assigned a parametric model p(x; θ) for
the observations, we should just use it as our predictive distribution. To use this model, we need to choose
the parameter θ. A simple choice is the MLE θ̂MLE . Thus, we will predict the distribution of Xn+1 as

p(xn+1|X1, · · · , Xn) = p(xn+1; θ = θ̂MLE).

The Bayesian approach again relies on the posterior. The predictive distribution p(xn+1|X1, · · · , Xn) can
be written as

p(xn+1|X1, · · · , Xn) =

∫
p(xn+1, θ|X1, · · · , Xn)dθ

=

∫
p(xn+1|θ,X1, · · · , Xn)π(θ|X1, · · · , Xn)dθ

=

∫
p(xn+1|θ) π(θ|X1, · · · , Xn)︸ ︷︷ ︸

posterior distribution

dθ.

Thus, the predictive distribution is the averaged distribution of p(x|θ) where we average θ over the posterior
distribution.

Here, as you can see, the two paradigms make prediction using different principles – the Frequetists use only
the most likely model to make predictions whereas the Bayesians use the averaged model over the posterior
distribution to make predictions.

5.5 Comments: Frequentist versus Bayesian

Both Frequentist and Bayesian approaches are self-consistent. They start with probability models and design
their own procedure for estimation, interval inference, and hypothesis test. In practice, it is hard to really say
if any method truly describes the reality because we do not even know if our data are indeed generated from a
random process. Some people believe that our data should be viewed as realizations from a complex dynamic
system and they can still construct estimators and derive consistency without introducing any probability
(often they would use the Ergodic theory9). Thus, we cannot say if Frequentist or Bayesian approach is the
right approach to analyze data – they are just principles that allows us to analyze data in a well-established
way. In what follows, I briefly comments on the criticisms and defends of the two paradigms.

Many people support Frequentist paradigm because it is more objective – we do not introduce any subjective
belief (prior) on the parameter of interest. Moreover, the way Frequentist views the parameter of interest,
an unknown but fixed quantity, fits into the what most scientists think about parameters in model – these
parameters are some fixed numbers but we just do not know it. Moreover, the Frequentist’s view of the
probability – long term frequency – is very intuitive for most people.

9https://en.wikipedia.org/wiki/Ergodic_theory

https://en.wikipedia.org/wiki/Ergodic_theory
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The Bayesian paradigm is very clean. From estimation, interval inference, to hypothesis test, every inference
just depends on one single quantity – the posterior distribution. And we only have one single guiding principle
– decision theoretic rule – we choose the one that has a higher posterior distribution. On the other hand,
in the case of Frequentist approach, estimation requires a principle (such as the MLE principle), confidence
interval relies on another principle (coverage), and the hypothesis test introduces another principle (p-value
and significance level). So Bayesian is a very elegant way to analyzing the data.

A major criticism of Bayesian is the concept of subjectivity – the prior distribution. Many people prefer Fre-
quentist approaches over Bayesian approaches because they think that scientific studies should be objective.
However, this argument is actually not valid if we really think deep about Frequentist approach – when we
use a probability model to describe the data, we are already making a subjective choice of how we model
the data! Why not use a dynamic system approach? why not use a Bayesian? The choice of Frequentist
approach itself is a subjective decision made by scientists. Moreover, the choice of estimator, the choice
of confidence level, and the choice of significance level along with the testing procedures, are all subjective
decisions. None of them are truly objective. One attractive feature of Bayesian paradigm is that Bayesians
not only accept the fact that we are making many subjective choices in analyzing data but also they have
a well-defined mathematical framework – the probability model – to describe how these subjectivity are
propagating throughout the analysis.
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