
STAT 535: Statistical Machine Learning Autumn 2019

Lecture 9: Hamiltonian Monte Carlo
Instructor: Yen-Chi Chen

The Hamiltonian Monte Carlo (HMC) is a new MCMC approach that has been shown to work better than
the usual MH algorithm. It is based on the idea of Hamiltonian dynamics.

The high-level idea of HMC is to generate a proposal from a better proposal distribution’ and modify the
acceptance part so the it has a higher acceptance rate. In the usual MH algorithm, we are directly sample
from a proposal density q(y|x). The HMC modifies this process using two components: a random momentum
(velocity) vector ω and the Hamiltonian dynamics. The momentum is required fro every coordinate of the
position x. Thus, if x ∈ Rd, then we also need a vector of d elements for the momentum. As the name
suggest, the momentum vector determines how we move x during the dynamics. The randomness is due to
the random momentum vector (and the later acceptance part).

The rough idea of one-run HMC is as follows. Starting at the location x0:

1. (Proposal step 1) We draw a random momentum vector ω0 ∼ p(ω) ∝ e−V (ω), where V (ω) is called the
kinematic energy. Often p(ω) is taken to be a multivariate Gaussian.

2. (Proposal step 2) Then we apply the Hamiltonian dynamics at location x0 and velocity ω0 with the
Hamiltonian (energy) H(x, ω) = − log π(x) +V (ω) and let the dynamics run for time T . This changes
(x0, ω0) to (xT , ωT). Note that the pair (x, ω) is called the state.

3. (Acceptance step) We accept the new location xT with a probability of

a(x0, ω0, xT , ωT) = max

{
1,

exp(−H(xT , ωT))

exp(−H(x0, ω0))

}
.

To approximate the distribution of π, we will iterate the HMC several times.

Note that in the second step (Hamiltonian dynamics), the dynamics is deterministic. Namely, if we start
with the same location and the same momentum, we always end up being in the same destination. So for
HMC the proposal density q(xT |x0) is determined by the density p(ω) ∝ e−V (ω) and the initial location x0

To understand what happen in the HMC, we first note that the Hamiltonian contains two parts.

Potential energy. The targeted density π(x) is incorporated into the HMC through the Hamiltonian

H(x, ω) = − log π(x)︸ ︷︷ ︸
=U(x)

+V (ω).

The quantity U(x) = − log π(x) is also known as the potential energy.

Kinematic energy. The momentum is drawn from the Kinematic energy. The density p(ω) ∝ e−V (ω) is

crucial in the performance of an HMC algorithm. In general, we will choose V (ω) =
∑d

j=1

ω2
j

2mj
, where d

is the dimension of x and mj is called the mass of the j-th coordinate. Although this looks fancy, but it
implied an extremely sample distribution of p(ω) :

p(ω) ∝ e− 1
2ω

TM−1ω ∼ N(0,M),

9-1

9-2 Lecture 9: Hamiltonian Monte Carlo

where M = diag(m1, · · · ,md). So in fact, we are generating the momentum from a multivariate Gaussian
(and all coordinates are independent).

Hamiltonian dynamics. The Hamiltonian dynamics governs the usual motion of an object under a
specified potential energy and the kinematic energy. It provides excellent description on many physical
phenomena such as how planets orbiting around a star. When H(x, ω) is given, the Hamiltonian dynamics
is a deterministic equation of motion. Suppose we start with a location x(0) and a momentum ω(0), the
trajectory of the state {x(t), ω(t) : t ∈ [0,∞)} is determined by

dxj(t)

dt
≡ x′j(t) =

∂H(x(t), ω(t))

∂ωj(t)
,

dωj(t)

dt
≡ ω′j(t) = −∂H(x(t), ω(t))

∂xj(t)

for j = 1, · · · , d. Note that even if we only have access to r(x) ∝ π(x), we can still compute the dynamics
since the potential energy U(x) = − log π(x) = − log r(x) +C0 for some constant C0. We can totally ignore

the constant C0 in practice. Because kinematic energy is V (ω) =
∑d

j=1

ω2
j

mj
, the change in location (in j-th

coordinate) is simply

x′j(t) =
ωj

mj
.

Thus, given an initial state (x(0), ω(0)) = (x0, ω0), after running the Hamiltonian dynamics for time T , we
will move to the state (x(T), ω(T)) = (xT , ωT). The new state (xT , ωT) is the new proposal. Then in the
HMC, we will make a acceptance decision to see if we will accept this proposal.

Here is one caveat in the HMC:

No matter we accept or reject the proposal, we will draw a new momentum in the next iteration.

Namely, only the location xT will be kept after this iteration. The momentum will be deleted and we
will draw a new momentum (from the kinematic energy) without using any information from the previous
iteration.

Potential informs momentum: better proposal. The Hamiltonian dynamics allow the target density
π(x) changes the momentum vector via the equation

ω′j(t) = −∂H(x(t), ω(t))

∂xj(t)
= ω′j(t) = −∂ log π(x(t))

∂xj(t)
.

Thus, even if the original momentum ω(0) may be pointing toward a bad direction (with least density), the
dynamics will adjust its orientation so that it tends to point toward a higher density area. So this proves
the proposal location xT .

Energy conservation of the Hamiltonian dynamics: high acceptance rate. The Hamiltonian
dynamics has a powerful property called energy conservation, which implies that the acceptance probability
is very high. It is not hard to see that the change of Hamiltonian energy with respect to time is

dH(x(t), ω(t))

dt
=

d∑
j=1

{
∂H(x(t), ω(t))

∂ωj(t)

dωj(t)

dt
+
∂H(x(t), ω(t))

∂xj(t)

dxj(t)

dt

}
= 0.

Namely, the Hamiltonian energy will always stay the same during the dynamics. This is a powerful property!
Now we examine the acceptance probability:

a(x0, ω0, xT , ωT) = max

{
1,

exp(−H(xT , ωT))

exp(−H(x0, ω0))

}
.

Lecture 9: Hamiltonian Monte Carlo 9-3

The acceptance probability uses the ratio between the initial Hamiltonian energy and the final Hamiltonian
energy after applying the dynamics. Because the Hamiltonian energy is conserved during the dynamics, this
ratio will always be 1! Namely, the acceptance probability is 1 if we apply a real Hamiltonian dynamics.
In fact, we need this acceptance step because in practice, we are using a numerical approximation to the
Hamiltonian dynamics so there could be some energy loss due to the approximation. So the final acceptance
step is to account for this numerical error.

HMC and detailed balance. Here we have seen that the HMC tends to give a better proposal and have
a high acceptance rate. But to make sure we are indeed sampling from the desired density, we need to show
that the generated points converge to a stationary distribution that is the desired density π. First, it is easy
to see that the generated points form a Markov chain since in each iteration, we only use the information
from the previous location. So we only need to show that π satisfies the detailed balance equation of the
transition under HMC. In the HMC (that we indeed perform the Hamiltonian dynamics), since the dynamics
is deterministic, given the time T being fixed, the mapping

(x0, ω0)→ (xT , ωT)

is deterministic. Namely, there exists φ1, φ2 such that xT = φ1(x0, ω0) and ωT = φ2(x0, ω0). An interesting
fact about Hamiltonian dynamics is that if we reverse the time, the trajectory will remain the same. Namely,
if we start the dynamics with initial location xT and momentum −ωT , after time T we will come back to
x0 and ω0. Namely, x0 = φ1(xT ,−ωT), ω0 = φ2(xT ,−ωT). Thus, there is a one-one correspondence between
(x0, ω0)↔ (xT ,−ωT).

To show the detail balanced, we need to show that

π(x)p(x→ y) = π(y)p(x→ x),

where p(x→ y) is the transition density.

Here is an intuitive explanation about the detailed balanced. Suppose that there is only one ω such that
φ1(x, ω) = y and let ω̃ = φ2(x, ω) be the corresponding velocity. Then we also have φ1(y,−ω̃) = x and
φ2(y,−ω̃) = ω. Thus, there is also only one η such that the dynamics moves (y, η) to (x, ω) and the choice
is η = −ω̃.

In this case, p(x → y) = p(ω) because ω is the only choice that moves x into y. Similarly, we have
p(y → x) = p(−ω̃) . Then

π(x)p(x→ y) = π(x)p(ω)

=
1

Z0
exp{−U(x)− V (ω)}

=
1

Z0
exp{−H(x, ω)}

=
1

Z0
exp{−H(y, ω̃)} (Energy conservation)

=
1

Z0
exp{−U(y)− V (ω̃)}

= π(y)p(ω̃)

= π(y)p(−ω̃) (ω is from a Gaussian)

= π(y)p(y → x)

so the detailed balance is satisfied. Actually, this idea can be generalized to the case where we have more
than one momentum leading to y; there is always a one-one correspondence between ω and ω̃ and the detailed
balance is always satisfied.

9-4 Lecture 9: Hamiltonian Monte Carlo

The HMC algorithm and the leapfrog method. The practical usage of the HMC involves a discretized
step of the dynamics. This discretization is called the leapfrog method. Suppose that x0 is the input location
and we are only able to evaluate r(x) ∝ π(x). Also, let ε be the step size in the discretization and L is the
number of updates in the dynamics. Namely, ε · L = T is the time that we apply the dynamics.

1. Generate the initial momentum ω0 ∼ N(0,M−1).

2. Set x(0) = x0.

3. For the momentum, make a half-step update:

ω(0) = ω0 −
ε

2
∇ log r(x(0)).

4. For ` = 1, · · · , L− 1, do the followings:

(a) Update position: x(`) = x(`−1) + ε · ω(`−1).

(b) Update momentum: ω(`) = ω(`−) − ε · ∇ log r(x(`)).

5. Make one last update on the position: x(L) = x(L−1) + ε · ω(L−1).

6. Make another half-step update of the momentum:

ω(L) = ω(L−1) − ε

2
∇ log r(x(L)).

7. Compute the acceptance probability:

a(x0, ω0, x
(L), ω(L)) = min

{
1,

exp(−H(x(L), ω(L)))

exp(−H(x0, ω0))

}
.

8. Accept xnew = x(L) with a probability of a(x0, ω0, x
(L), ω(L)). If we reject, then xnew = x0.

9. Return xnew.

A practical challenge is how do we numerically approximate the dynamics part in the HMC algorithm. In
the dynamics, the momentum and the location are updated simultaneously. But in practice, we have to
make a choice on which one to update first. This leads to a problem that the algorithm is non-symmetric
with respect to time. To see this, suppose that we start at x1 with a momentum ω1 and move to x2 with a
momentum ω2. The actual Hamiltonian dynamics is time-reversible, meaning that if we apply the algorithm
to (x2,−ω2), we will get back (x1, ω1). However, if we only use the leapfrog procedure (step 4), we will not
move (x2,−ω2) back to (x1, ω1). So the half step update (step 3) before and after the for loop (step 6)
is to resolve this problem and make the algorithm symmetric with respect to time.

Here is an R code for the HMC from https://arxiv.org/pdf/1206.1901.pdf, and excellent introduction
to the HMC.

HMC = function (U, grad_U, epsilon, L, current_q)

{

q = current_q

p = rnorm(length(q),0,1) # independent standard normal variates

current_p = p

Make a half step for momentum at the beginning

p = p - epsilon * grad_U(q) / 2

https://arxiv.org/pdf/1206.1901.pdf

Lecture 9: Hamiltonian Monte Carlo 9-5

Alternate full steps for position and momentum

for (i in 1:L)

{

Make a full step for the position

q = q + epsilon * p

Make a full step for the momentum, except at end of trajectory

if (i!=L) p = p - epsilon * grad_U(q)

}

Make a half step for momentum at the end.

p = p - epsilon * grad_U(q) / 2

Negate momentum at end of trajectory to make the proposal symmetric

p = -p

Evaluate potential and kinetic energies at start and end of trajectory

current_U = U(current_q)

current_K = sum(current_p^2) / 2

proposed_U = U(q)

proposed_K = sum(p^2) / 2

Accept or reject the state at end of trajectory, returning either

the position at the end of the trajectory or the initial position

if (runif(1) < exp(current_U-proposed_U+current_K-proposed_K))

{

return (q) # accept

}

else {

return (current_q) # reject

}

}

Although the HMC works well theory, it requires tuning a couple of parameters for practical use. The choice
of step size ε and the number of updates L and the mass M will all affect the final performance. Detailed
discussion about the tuning can be found in Section 5.4 of https://arxiv.org/pdf/1206.1901.pdf.

https://arxiv.org/pdf/1206.1901.pdf

