
STAT 535: Statistical Machine Learning Autumn 2019

Lecture 7: Model Selection and Prediction
Instructor: Yen-Chi Chen

Useful reference:

• Section 7 in the elements of statistical learning by Trever Hastie, Robert Tibshirani, Jerome Friedman.

• Section 13 (especially 13.6) in all of statistics by Larry Wasserman.

• Section 5.3 in all of nonparametric statistics by Larry Wasserman.

7.1 Introduction

Suppose that we observe X1, · · · , Xn from an unknown distribution function. Under the assumption that
our data comes from a parametric model pθ with θ ∈ Θ ⊂ Rd.

Let
θ̂n = argmaxθL(θ|X1, · · · , Xn) = argmaxθ`(θ|X1, · · · , Xn)

be the MLE. For simplicity, we denote

`n = `(θ̂n|X1, · · · , Xn)

as the maximal value of the empirical log-likelihood function and we define

¯̀(θ) = E(`(θ|X1))

as the population log-likelihood function. The population likelihood function implies the population MLE,
which is

θ∗ = argmaxθ
¯̀(θ).

7.2 AIC: Akaike information criterion

The AIC is an information criterion that is common used for model selection. In model selection, the AIC
propose the following criterion:

AIC = 2d− 2`n,

where d is the dimension of the model.

The idea of AIC is to adjust the empirical risk to be an unbiased estimator of the true risk in a parametric
model. Under a likelihood framework, the loss function is the negative log-likelihood function so the empirical
risk is

R̂n(θ̂n) = −`n = −`(θ̂n|X1, · · · , Xn) = −`n(θ̂n).

On the other hand, the true risk of the MLE is

R(θ̂n) = E(−n¯̀(θ̂n)).
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Note that we multiply it by n to reflect the fact that in the empirical risk, we did not divide it by n.

To derive the AIC, we examine the asymptotic bias of the empirical risk R̂n(θ̂n) versus the true risk R(θ̂n).

Analysis of true risk. To analyze the true risk R(θ̂n), we first investigate the asymptotic behavior of ¯̀(θ̂n)
around θ∗:

¯̀(θ̂n) ≈ ¯̀(θ∗) + (θ̂n − θ∗)T ∇¯̀(θ∗)︸ ︷︷ ︸
= 0

+
1

2
(θ̂n − θ∗)T ∇∇¯̀(θ∗)︸ ︷︷ ︸

=I(θ∗)

(θ̂n − θ∗)

= ¯̀(θ∗) +
1

2
(θ̂n − θ∗)T I(θ∗)(θ̂n − θ∗).

Thus, the true risk is

R(θ̂n) = −nE(¯̀(θ̂n)) ≈ −n¯̀(θ∗)− n

2
E
(

(θ̂n − θ∗)T I(θ∗)(θ̂n − θ∗)
)
. (7.1)

Analysis of expected empirical risk. For the expected empirical risk, we first expand `n as follows:

`n =

n∑
i=1

`(θ̂n|Xi)

≈
n∑
i=1

`(θ∗|Xi) + (θ̂n − θ∗)T
n∑
i=1

∇`(θ∗|Xi)︸ ︷︷ ︸
(I)

+
1

2
(θ̂n − θ∗)T

n∑
i=1

∇∇`(θ∗|Xi)(θ̂n − θ∗)︸ ︷︷ ︸
=(II)

.
(7.2)

The expectation of the first quantity is ¯̀(θ∗), which agrees with the first term in the true risk so all we need
is to understand the behavior of the rest two quantities.

For the first quantity, using the fact that
∑n
i=1∇`(θ̂n|Xi) = 0,

n∑
i=1

∇`(θ∗|Xi) =

n∑
i=1

∇(`(θ∗|Xi)− `(θ̂n|Xi))

≈

(
n∑
i=1

∇∇`(θ∗|Xi)

)
(θ∗ − θ̂n)

≈ (∇∇E(`(θ∗|Xi)))︸ ︷︷ ︸
=I(θ∗)

n(θ∗ − θ̂n).

Thus,
(I) ≈ −n(θ̂n − θ∗)T I(θ∗)(θ̂n − θ∗).

For quantity (II), note that

1

n

n∑
i=1

∇∇`(θ∗|Xi) ≈ ∇∇E(`(θ∗|Xi)) = I(θ∗)

so

(II) =
1

2
(θ̂n − θ∗)T

n∑
i=1

∇∇`(θ∗|Xi)(θ̂n − θ∗)

=
n

2
(θ̂n − θ∗)T I(θ∗)(θ̂n − θ∗)
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Combining (I) and (II) into equation (7.2) and taking the expectation, we obtain

E(R̂n(θ̂n)) = −E(`n) = −n¯̀(θ∗) +
n

2
E
(

(θ̂n − θ∗)T I(θ∗)(θ̂n − θ∗)
)

Comparing this to equation (7.1), we obtain

E(R̂n(θ̂n))−R(θ̂n) = −nE
(

(θ̂n − θ∗)T I(θ∗)(θ̂n − θ∗)
)
.

Note that by the theory of MLE, one can easily shown that

√
n(θ̂n − θ∗) ≈ N(0, I−1(θ∗))

so
n(θ̂n − θ∗)T I(θ∗)(θ̂n − θ∗) ≈ χ2

d,

which implies that1

nE
(

(θ̂n − θ∗)T I(θ∗)(θ̂n − θ∗)
)

= d.

Thus, to make sure that we have an asymptotic unbiased estimator of the true risk R(θ̂n), we need to modify
the empirical risk by

R̂n(θ̂n) + d = −`n + d.

Multiplying this quantity by 2, we obtain the AIC

AIC = 2d− 2`n.

Remark. From the derivation of AIC, we see that the goal of the AIC is to adjust the model so that we
are comparing unbiased estimates of the true risks across different models. Thus, the model selected by
minimizing the AIC can be viewed as the model selected by minimizing unbiased estimates of the true risks.
From the risk minimization point of view, this is trying to make a prediction using a good risk estimator.
Thus, some people would common that the design of AIC is to choose a model that makes good predictions.

7.3 BIC: Bayesian information criterion

Another common approach for model selection is the BIC:

BIC = d log n− 2`n,

where again d denotes the dimension of the model.

Here is the derivation of the BIC. In the Bayesian setting, we place a prior π(m) over all possible models
and within each model, we place a prior over parameters p(θ|m). The BIC is a Bayesian criterion, which
means that we will select model according to the posterior distribution of each model m. Namely, we will
try to derive π(m|X1, · · · , Xn).

By Bayes rule, we have

π(m|X1, · · · , Xn) =
π(m,X1, · · · , Xn)

p(X1, · · · , Xn)
∝ p(X1, · · · , Xn|m)π(m)

so all we need is to derive the marginal density in a model p(X1, · · · , Xn|m).

1Formally, we need a few more conditions; the convergence in distribution is not enough for the convergence in expectation.
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With a prior π(θ|m), this marginal density can be written as

p(X1, · · · , Xn|m) =

∫
p(X1, · · · , Xn|θ,m)π(θ|m)dθ. (7.3)

Suppose that the model m is correct in the sense that under model m, there exists θ∗ ∈ Θ such that the
data are indeed generated from p(x|θ∗).

Using the log-likelihood function, we can expand

p(X1, · · · , Xn|θ,m) = e`(θ|X1,··· ,Xn,m) = e
∑n

i=1 `(θ|Xi,m). (7.4)

Asymptotically, the log-likelihood function can be further expand

n∑
i=1

`(θ|Xi,m) =

n∑
i=1

`(θ∗|Xi,m) + (θ − θ∗)T
n∑
i=1

∇`(θ∗|Xi,m)︸ ︷︷ ︸
=0

+ (θ − θ∗)T
n∑
i=1

∇∇`(θ∗|Xi,m)(θ − θ∗) + small terms

= `n + n(θ − θ∗)T 1

n

n∑
i=1

∇∇`(θ∗|Xi,m)︸ ︷︷ ︸
≈−I(θ∗)

(θ − θ∗) + small terms,

where I(θ∗) is the Fisher’s information matrix. Plugging this into equation (7.4) and ignore the reminder
terms, we obtain

p(X1, · · · , Xn|θ,m) ≈ e`n−n(θ−θ
∗)T I(θ∗)(θ−θ∗). (7.5)

Thus, equation (7.3) can be rewritten as

p(X1, · · · , Xn|m) ≈ e`n
∫
e−n(θ−θ

∗)T I(θ∗)(θ−θ∗)π(θ|m)dθ. (7.6)

To compute the above integral, consider a random vector Y ∼ N(0, 1
nI(θ∗)). The expectation

E(π(Y |m)) =
( n

2π

)d/2
det−1(I(θ∗))

∫
e−n(y−θ

∗)T I(θ∗)(y−θ∗)π(y|m)dy

≈ π(θ̂n|m)

when n→∞. This implies that∫
e−n(θ−θ

∗)T I(θ∗)(θ−θ∗)π(θ|m)dθ ≈
(

2π

n

)d/2
det(I(θ∗))π(θ̂n|m).

Putting this into equation (7.6), we conclude that the Bayesian evidence

p(X1, · · · , Xn|m) ≈ e`n
(

2π

n

)d/2
det(I(θ∗))π(θ̂n|m)

so the log evidence is

log p(X1, · · · , Xn|m) ≈ `n −
d

2
log n+

d

2
log(2π) + log det(I(θ∗)) + log π(θ̂n|m).
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The only quantity that would increases with respect to the sample size n are the first two quantities so after
multiplying by −2 and keeping only the dominating two terms, we obtain

BIC = d log n− 2`n.

Remark. Although the BIC leads to a criterion similar to the AIC, the reasoning is somewhat different.
In the construction of BIC, the effect of priors are ignored since we are working on the limiting regime
but we still use the Bayesian evidence as a model selection criterion. We are selecting the model with the
highest evidence. When the data is indeed generated from one of the model in the collection of models we
are choosing from, the posterior will concentrate on this correct model. So BIC would eventually be able
to select this model. Therefore, some people would argue that unlike AIC that chooses the best predictive
model, the BIC attempts to select the true model if it exists in the model set.

7.4 Information criterion in regression

Using information criterion in a regression problem is very common in practice. However, there is a caveat in
the construction. The information criterion we derived is based on a likelihood framework but the regression
problem is often formulated as an empirical risk minimization process, e.g., least squared approach. So we
need to associate the likelihood function to the loss function used in the regression problem to properly
construct a model selection criterion. Here we gave one example of using the least square approach under a
linear regression model.

Let (X1, Y1), · · · , (Xn, Yn) be the observed data such that Xi ∈ Rd and Yi ∈ R. A regression model associate
Xi and Yi via

Yi = XT
i β + εi,

where εi’s are the noise. To associate the least square method to a likelihood framework, we assume that
εi ∼ N(0, σ2). Under this framework, one can easily shown that the MLE of β and the least squared estimate
are the same.

What will the likelihood function be like in this case? For simplicity, we consider the fixed design such
that Xi’s are non-random and the only random quantity is the noise εi’s. Because εi = Yi − XT

i β, the
log-likelihood function will be

`(β, σ2|Xi, Yi) = log pε(Yi −XT
i β;β, σ2) = −1

2
log(2πσ2)− 1

σ2
(Yi −XT

i β)2.

Let β̂ be the least square estimate (MLE) and σ̂2 = 1
n

∑n
i=1 e

2
i be the MLE of the noise level and ei = Yi−XT

i β̂
is the residual.
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The empirical risk under the MLE/least square estimate is

`n =

n∑
i=1

`(β, σ2|Xi, Yi)

= −n
2

log(2πσ̂2)− 1

σ̂2

n∑
i=1

(Yi −XT
i β)2︸ ︷︷ ︸

=nσ̂2

= −n
2

(log 2 + log π + log σ̂2)− n

= Cn −
n

2
log

(
1

n

n∑
i=1

e2i

)

= Cn −
n

2
log

(
1

n
RSSn

)
,

where RSSn =
∑n
i=1 e

2
i =

∑n
i=1(Yi −XT

i β)2 is the least square objective function or the so-called residual
sum of squares.

The quantity Cn is invariant across models/variables we choose. Thus, the AIC and BIC of the regression
model will be

AIC = 2d− n log

(
1

n
RSSn

)
BIC = d log n− n log

(
1

n
RSSn

)
.

7.5 Prediction risk in regression

Now we consider a general regression prediction problem where we observe (X1, Y1), · · · , (Xn, Yn) where
Xi ∈ Rd and Yi ∈ R and they are from an unknown joint distribution FX,Y . Here we do not specify a
particular model of the regression function and all we assume is

Yi = m(Xi) + εi,

where εi’s are mean 0 noise with Var(εi|Xi = x) = σ2(x) and m(x) = E(Y |X = x) is the regression function.
Suppose that we have an estimator m̂ of m and we would like to know the prediction risk (expected loss in
predicting a future outcome) of this estimator.

To define the prediction risk, let Xnew, Ynew be a new pair of observation from FX,Y . Then the prediction
risk is defined as

R(m̂) = E((Ŷnew − Ynew)2) = E((m̂(Xnew)− Ynew)2),

where Ŷ = m̂(X) is the predictive value of Y given covariate X.

Let m̄(x) = E(m̂(x)) be the expected regression function of the estimator/predictor m̂. We can decompose
the prediction risk using the following expansion:

R(m̂) = E((m̂(Xnew)− Ynew)2)

= E(E((m̂(Xnew)− Ynew)2|Xnew))

= E(R(Xnew))

=

∫
R(x)pX(x)dx
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where
R(x) = E((m̂(Xnew)− Ynew)2|Xnew = x)

is a local predictive risk and pX is the PDF of the covariate X.

The local predictive risk can be decomposed as

R(x) = E((m̂(Xnew)− Ynew)2|Xnew = x)

= E

(m̂(Xnew)− m̄(Xnew)︸ ︷︷ ︸
variance of m̂

+ m̄(Xnew)−m(Xnew)︸ ︷︷ ︸
bias of m̂

+m(Xnew)− Ynew︸ ︷︷ ︸
intrinsic variance

)2|Xnew = x


= E(V (Xnew) + b2(Xnew) + σ2(Xnew)|Xnew = x),

where

V (x) = Var(m̂(Xnew)|Xnew = x)

b(x) = m̄(x)−m(x).

Thus, the predictive risk can be decomposed into

R(m̂) = E(b2(Xnew))︸ ︷︷ ︸
bias

+E(V (Xnew))︸ ︷︷ ︸
Variance

+E(σ2(Xnew))︸ ︷︷ ︸
intrinsic error

.

To compare the performance of prediction, we should use a good estimate of the predictive risk. A naive
estimator is the training error (or empirical risk), which is

R̂(m̂) =
1

n

n∑
i=1

(Yi − Ŷi)2 =
1

n

n∑
i=1

(Yi − m̂(Xi))
2.

Although this estimator seems to be intuitively correct, it may suffer from a severe bias! To see this, note
that the expected value of the empirical risk is

E(R̂(m̂)) =
1

n

n∑
i=1

E(Yi − m̂(Xi))
2.

For each i,

E(Yi − m̂(Xi))
2 = E(Yi −m(Xi) +m(Xi)− m̄(Xi) + m̄(Xi)− m̂(Xi))

2

= E(σ2(Xi)) + E(b2(Xi)) + E(V (Xi)) + 2E((Yi −m(Xi))(m̄(Xi)− m̂(Xi)))

= R(m̂)− 2E((Yi −m(Xi))(Ŷi − m̄(Xi)))

= R(m̂)− 2E(Cov(Yi, Ŷi|Xi)).

Thus, the empirical risk and the predictive risk has the follow relationship

E(R̂(m̂)) = R(m̂)− 2

n

n∑
i=1

E(Cov(Yi, Ŷi|Xi)),

which implies that the empirical risk is always underestimate the predictive risk. This is especially more
severe when the predictor Ŷi is highly correlated with the i-th observation– a common scenario when we are
overfitting the model.
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Note that in the fix design case (covariate X are non-random), the above expression reduces to

E(R̂(m̂)) = R(m̂)− 2

n

n∑
i=1

Cov(Yi, Ŷi),

and the quantity Cov(Yi, Ŷi) is called the degrees of freedom. For more details, see the following papers:

1. Tibshirani, Ryan J. “Degrees of freedom and model search.” Statistica Sinica (2015): 1265-
1296.
2. Tibshirani, Ryan J., and Saharon Rosset. “Excess Optimism: How Biased is the Apparent
Error of an Estimator Tuned by SURE?.” Journal of the American Statistical Association 114,
no. 526 (2019): 697-712.

For a general regression model, a simple and consistent estimate of the predictive risk is the cross-validation
(CV). With the growing power of computing, it is a very convenient tool nowadays.

If we are using a linear smoother, there is a closed-form of the leave-one-out CV:

R̂LOO(m̂) =
1

n

n∑
i=1

(
Yi − m̂(Xi)

1− Lii

)
,

where Lij is the (i, j) component in the linear smoother matrix L, i.e., Ŷ = LY. Also, there is a generalized
method called the generalized cross-validation (GCV) that is available for obtaining a good estimate of the
predictive risk:

R̂GCV(m̂) =
1

n

n∑
i=1

(
Yi − m̂(Xi)

1− ν/n

)
,

where ν =
∑
i Lii.

Remark (Mallow’s Cp). The Mallow’s Cp is an approach to estimate Cov(Yi, Ŷi) and correct the empirical
risk to obtain a better estimate of the predictive risk. The Mallow’s Cp is

R̂Cp = R̂(m̂) +
2dσ̂2

n
,

where σ̂2 is an estimate of the overall noise level σ2 =
∫
σ2(x)pX(x)dx and d is the dimension of the model.

In the case of linear smoother, d = ν. One can simply use the average of squared residuals in this case. The
Mallow’s Cp also leads to a model selection criterion but the goodness-of-fit part is different from AIC/BIC.
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