
STAT 535: Statistical Machine Learning Winter 2019

Lecture 6: SVM, PCA, and Kernel methods
Instructor: Yen-Chi Chen

In this lecture, we will study two problems: the support vector machine (SVM) and the principle component
analysis (PCA). Both methods can be kernelized using the reproducing kernel Hilbert space (RKHS). We
will see that the key insight of kernelization is to replace the inner product by a kernel inner product. We
start with SVM.

6.1 Support vector machine

Consider the binary classification problem that our observations are

(X1, Y1), · · · , (Xn, Yn)

such that Xi ∈ Rd and Yi are binary. To simplify the classification problem, instead of using binary
representation of the two classes, we use Yi ∈ {+1,−1} to indicate the two classes.

SVM is one of the most popular classification tools that machine learning experts were using before the
invention of deep neural nets. SVM is motivated by constructing the ‘best’ linear classifier that separates
two classes when the two classes are indeed separable by a linear classifier (in this case, we call the problem
linearly separable). Two classes are linearly separable if there exists one hyperplane H(x) = bTx + a such
that the sign of H perfectly separate the two classes, i.e,

Yi ·H(Xi) = Yi(b
TXi + a) > 0

for all i = 1, · · · , n.

Given a linear classifier H(x) = bTx + a, the distance from observation (Xi, Yi) to the decision boundary
H(x) = 0 = bTx+ a is

1

‖b‖
Yi(b

TXi + a).

Thus, the margin–minimal distance to the decision boundary–is

1

‖b‖
min
i
Yi(b

TXi + a).

The SVM attempts to find the classifier that maximizes the margin, i.e, the SVM tries to solve

argmaxb,a
1

‖b‖
min
i
Yi(b

TXi + a). (6.1)

Because the classifier is unchanged when we rescale (a, b) by (κa, κb), we add an constraint

Yi(b
TXi + a) ≥ 1 for all i = 1, · · · , n (6.2)

and there exists at least one observation such that the equality holds. Thus, the minimization of margin
becomes maximizing 1

‖b‖ subject to the constraint in equation (6.2) so the problem in equation (6.1) is

equivalently to solving

argmaxb,a
1

‖b‖
subject to equation (6.2)
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or equivalently,

argminb,a
1

2
‖b‖2 subject to equation (6.2). (6.3)

Note that we add the additional 1
2 to simplify later derivation.

Using the Lagrangian multiplier, we can derive the dual form of the problem in equation (6.3) as minimizing
the following Lagrangian:

L(a, b, λ) =
1

2
‖b‖2 −

n∑
i=1

λi[Yi(b
TXi + a)− 1], (6.4)

where λ1, · · · , λn are the Lagrangian multiplier. To simplify the problem, we consider taking derivatives of
L with respect to a and b first, which leads to

∂L

∂b
= 0⇒ b =

n∑
i=1

λiYiXi

∂L

∂a
= 0⇒ 0 =

n∑
i=1

λiYi

. (6.5)

Plugging the above two equations into equation (6.4), we obtain

L1(λ) =
1

2
‖

n∑
i=1

λiYiXi‖2 −
n∑
i=1

λj [Yj((

n∑
i=1

λiYiXi)
TXj + a)− 1]

=
1

2
‖

n∑
i=1

λiYiXi‖2 − ‖
n∑
i=1

λiYiXi‖2 +

n∑
i=1

λi

=

n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λiλjYiYjX
T
i Xj

=

n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λiλjYiYj〈Xi, Xj〉,

(6.6)

where we use 〈·, ·〉 to denote inner product. Thus, the SVM problem becomes the above quadratic minimiza-
tion problem– we will find λ1, · · · , λn such that L1(λ) is minimized.

It turns out that many λi’s will have a value of 0. From Lagrangian multiplier theory, we know that when
λi = 0, the constraint Yi(b

TXi + a) − 1 = 0 does not hold, i.e, the pair (Xi, Yi) is not the observation that
is closest to the decision boundary (so they are not on the margin). Those observation with λi > 0 are the
ones that determines the margin so we will call them the support vectors.

6.1.1 Not linearly separable case

The above analysis is under the assumption that the data is linearly separable. When the data is not linearly
separable, the constraint in equation (6.2)

Yi(b
TXi + a) ≥ 1

is too strict. We have to relax it.

One approach to relax such constraint is to introduce a set of slack variables ξ1, · · · , ξn ≥ 0 and replace the
above constraint by

Yi(b
TXi + a) ≥ 1− ξi, ξi ≥ 0, for all i = 1, · · · , n. (6.7)
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If we attempt to optimize equation (6.3) with respect to the above constraint, the we can always choose ξi
to be as large as possible and it is bad for solving the problem. To avoid choose a large value of ξi’s, we
modify the optimization problem in equation (6.4)

argminb,a,ξ C

n∑
i=1

ξi +
1

2
‖b‖2 subject to equation (6.7), (6.8)

where C > 0 behaves like a penalization parameter (later we will show this). After solving this problem, the
value of ξi falls into three interesting regimes

ξi


= 0, if i-th observation is correctly classified and away from the boundary,

∈ (0, 1], if i-th observation is correctly classified but close to the boundary,

> 1, if i-th observation is mis-classified.

(6.9)

Solving equation (6.8) is also a challenging task so we consider the dual problem of it. Using Lagrangian
multipliers, we obtain the Lagrangian form of it as

L3(a, b, λ, ξ, µ) = C

n∑
i=1

ξi +
1

2
‖b‖2 −

n∑
i=1

λi[Yi(b
TXi + a)− 1− ξi]−

n∑
i=1

µiξi, (6.10)

where λ and µ are Lagrangian multipliers. Again, to simplify the problem we take derivatives, which leads
to

∂L

∂b
= 0⇒ b =

n∑
i=1

λiYiXi

∂L

∂a
= 0⇒ 0 =

n∑
i=1

λiYi

∂L

∂ξi
= 0⇒ C = λi + µi

. (6.11)

Among all of them, the last constraint is very informative– because µi ≥ 0, we obtain a constraint λi ≤ C.

Plugging equation (6.11) into equation (6.10), we obtain an interesting result:

L4(λ, µ) =

n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λiλjYiYj〈Xi, Xj〉. (6.12)

Namely, the objective function is the same as the linearly separable case. But the minimization of equation
(6.12) has a slightly different constraints:

0 ≤ λi ≤ C, for all i = 1, · · ·n. (6.13)

The upper bound on λi’s is due to the penalty on the slack variables in the objective function.

Another way to view the SVM is to study the slack variable ξi. We can rearrange equation (6.7) to obtain

ξi ≥ 1− Yi(bTXi + a), ξi ≥ 0,

which can be re-expressed as
ξi ≥ [1− Yi(bTXi + a)]+,

where [x]+ = max{x, 0}. Since in equation (6.8), we are trying to minimize ξi, it is easy to see that at the
optima, we will always choose

ξi = [1− Yi(bTXi + a)]+.
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Thus, equation (6.8) can be rewritten as

argminb,a,ξ C

n∑
i=1

[1− Yi(bTXi + a)]+ +
1

2
‖b‖2

⇔ argminb,a,ξ

n∑
i=1

[1− Yi(bTXi + a)]+ +
1

2C
‖b‖2.

(6.14)

The quantity [1− Yi(bTXi + a)]+ is called the hinge loss L(a, b) = (1− ab)+. So the SVM is to minimize a
regularized hinge loss with squared penalty.

Remark (KKT conditions). In the above analysis, we are moving between a constrained form and its
dual Lagrangian form. One sufficient condition that make the optima from the two problems agree is the
Karush-Kuhn-Tucker (KKT) conditions hold. It is a very important topic in optimization and I would highly
recommend you to look for related materials1.

6.2 Principle component analysis

The principle component analysis (PCA) is a common multivariate analysis approach to discover the hidden
structure within the data. It is also used to discover the hidden subspace within the data.

Suppose that we observed X1, · · · , Xn ∈ Rd and without loss of generality, we assume that the data is
centered, i.e, the sample average is 0. Let

Σ̂n =
1

n

n∑
i=1

XiX
T
i ∈ Rd

be the sample covariance matrix. Since the covariance matrix is a positive semi-definite matrix, it has well-
defined eigenvalues and eigenvectors. Let λ1 ≥ λ2 ≥ · · ·λd be the ordered eigenvalues and v1, · · · , vd be
the corresponding eigenvectors. The eigenvectors of the covariance matrix are called the principle vectors of
the data. In particular, v1 will be called the first principle vector and v2 will be called the second principle
vector.

Why are these principle vectors important? Now suppose that we make a linear combination of the variables
such that Zi(µ) = XT

i µ, where ‖µ‖ = 1. This creates a set of new observations Z1, · · · , Zn. Which choice of
µ will make Zi to have the highest sample variance? i.e., we want to find

argmaxµ:‖µ‖=1

1

n

n∑
i=1

Z2
i (µ).

You can prove that the solution to the above maximization is v1, the first principle vector and λ1 will be the
maximal variance. The second principle vector can be defined in a similar way but with the constraint that
the vector µ has to be orthogonal to v1.

In fact, the spectral decomposition of Σn shows a very interesting property of principle vectors:

Σ̂n =

d∑
j=1

λjvjv
T
j .

Thus, the covariance matrix can be viewed as the summation of covariance from each eigenvector multiply by
the eigenvalue. So an eigenvalue represents the contribution of covariance from the corresponding eigenvector.

1A good reference: https://www.cs.cmu.edu/~ggordon/10725-F12/slides/16-kkt.pdf

https://www.cs.cmu.edu/~ggordon/10725-F12/slides/16-kkt.pdf
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PCA is often used to perform dimension reduction. Suppose that the original data has d variables and we
would like to reduce the dimension to s < d by a linear transformation of the original variables. Namely,
we want to find the matrix Q ∈ Rd×s such that observations in the reduced dimension Si(Q) = QTXi are
similar to the original data in the following sense. We want to find Q such that the trace of the covariance
matrix of S1, · · · , Sn is minimized, i.e.,

argminQ Tr(Σ̂S(Q)),

where Σ̂S(Q) = 1
n

∑n
i=1 Si(Q)Si(Q)T . Namely, we want to find the best s linear subspace such that the data

has the least residual variance.

6.3 Kernel methods

WARNING: the kernel method (also known as the kernel trick) is using a different idea of kernel from the
kernel function used in density estimation and regression.

The kernel method is a feature mapping approach that we convert the original features/covariates into a
new sets of features and perform statistical inference. The idea is very simple, given a feature x ∈ X ⊂ Rd,
we construct a (non-linear) mapping φ(x) ∈ Rm and then use φ(x) as our new features to analyze data.

The power of kernel method is that we do not need to explicitly compute the new feature φ(x). We can
compute the inner product 〈φ(x), φ(y)〉 =

∑m
j=1 φj(x)φj(y) = K(x, y) without evaluating the new feature.

So this even allows the dimension of the new feature m to be infinite. Namely, suppose that we want to
compute the inner product between two transformed observations φ(Xi), φ(Xj), we just need to compute

K(Xi, Xj) = 〈φ(Xi), φ(Xj)〉.

There is no need to compute φ(Xi) and φ(Xj). One scenario that m is infinite is the case where the new
feature φ(x) = ηx is a function (in L2 space). In this case, the inner product can be defined as

〈φ(x), φ(y)〉 =

∫
ηx(z)ηy(z)dz = K(x, y).

As you can see, as long as we use a good feature mapping φ, the computation of the inner product is just
evaluating the kernel.

It turns out that the kernel methods reverse this direction–we specify the kernel function first and then the
kernel function implies a set of new features φ(x). But what kernel function K will implies such a good
inner product property? The Mercer’s theorem shows that roughly speaking, when the kernel function
K is positive semi-definite, i.e., ∫ ∫

K(x, y)f(x)f(y)dxdy ≥ 0

for all f ∈ L2(X ), such φ that corresponds to K exists. Therefore, we just need to specify a good kernel
function and then the feature mapping will be determined automatically. Here are some commonly-used
kernel function:

• Polynomials. K(x, y) = (〈x, y〉+ a)r, where a, r are tuning parameters.

• Sigmoid. K(x, y) = tanh(a〈x, y〉+ b), where a, b are tuning parameters.

• Gaussian. K(x, y) = exp
(
− 1

2σ2 ‖x− y‖2
)
, where σ2 is a tuning parameter.
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6.3.1 Kernel SVM

Kernelizing the SVM is very straight forward. Recall that we need to optimize equation (6.12) to find the
SVM solution:

L4(λ, µ) =

n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λiλjYiYj〈Xi, Xj〉.

We simply replace 〈Xi, Xj〉 by the kernel K(Xi, Xj), leading to

L4(λ, µ;K) =

n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λiλjYiYjK(Xi, Xj).

Then we can optimize the above with respect to λ and the constraint that 0 ≤ λj ≤ C.

6.3.2 Kernel PCA

PCA is another scenario that is commonly kernelized. It is often called the kernel PCA. The kernelization
of the PCA is not as simple as the SVM since it does not directly involve an inner product. Recall that the
covariance matrix

Σ̂n =
1

n

n∑
i=1

XiX
T
i .

Suppose that we perform a feature mapping that maps Xi into φ(Xi) ∈ Rm, then the covariance matrix
becomes

Σ̂φ =
1

n

n∑
i=1

φ(Xi)φ(Xi)
T ∈ Rm×m.

Let (λ`, v`) be the `-th eigenvalue/vector pair of Σ̂φ, i.e.,

Σ̂φv` = λ`v` =
1

n

n∑
i=1

φ(Xi)φ(Xi)
T v`. (6.15)

Recall that in the PCA, the key is to find the eigenvector/value pairs (λ`, v`) for each ` = 1, · · · ,m. In what

follows, we will show that we do not need to compute φ(Xi) at all to obtain the eigenstructures of Σ̂φ.

Because of the property of the kernel function (later we will introduce this–a property of the RKHS), we can
express the eigenvector

v` =

n∑
i=1

ai`φ(Xi) ∈ Rm.
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With this, we can rewrite equation (6.15) as

λ`

n∑
i=1

ai`φ(Xi) = λ`v`

= Σ̂φv`

=
1

n

n∑
i=1

φ(Xi)φ(Xi)
T

 n∑
j=1

aj`φ(Xj)


=

1

n

n∑
i,j=1

φ(Xi)aj`φ(Xi)
Tφ(Xj)

=
1

n

n∑
i,j=1

φ(Xi)aj`K(Xi, Xj)

=
1

n

n∑
i,j=1

aj`φ(Xj)K(Xi, Xj).

Inner product the above with φ(Xk), we obtain

λ`

n∑
i=1

ai`φ(Xk)Tφ(Xi) =
1

n

n∑
i,j=1

aj`φ(Xk)Tφ(Xj)K(Xi, Xj)

or equivalently,

λ`

n∑
i=1

ai`K(Xk, Xi) =
1

n

n∑
i,j=1

aj`K(Xk, Xj)K(Xi, Xj). (6.16)

Let a` = (a1`, · · · , an,`) ∈ Rn and K = [K(Xi, Xj)] ∈ Rn×n. The vector a` can be viewed as the coefficient
vector that is of interest. The we can rewrite equation (6.16) as

λ`Ka` =
1

n
K2a`

or equivalently,

λ`a` =
1

n
Ka`.

Thus, the coefficient vector a` is the eigenvector of K and λ` will be the corresponding eigenvalue divided
by n.

So the eigenvectors (and eigenvalues) of Σ̂φ can be obtained by using the eigenvectors (and eigenvalues) of
K. The matrix K can be computed without explicitly finding the feature mapping φ.

6.3.3 RKHS: reproducing kernel Hilbert space

The kernel methods rely on the fact that when the kernel function K(x, y) has nice properties, it implies
a useful feature mapping that avoid explicitly computing the feature. Now we take a deeper look at the
kernel function K(x, y) and the inner product structure. We begin with an interesting property called the
reproducing property.

To simplify the problem, we consider the case where φ(x) is an infinite dimensional object so we write it as
φ(x) = ηx(·), where the input value x is now an index (or a parameter) that is fixed and the feature is a
function with the index x.
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To see how the reproducing property works, consider the Dirac delta function δy(x) = δ0(y − x) = δ0(x, y)
which put a probability mass 1 at location y. Then for any function f(x), the integral∫

δ0(x, y)f(x)dx = 〈δ0(·, y), f(·)〉 = f(y),

where the inner product here is defined using the usual inner product between two functions in L2 space.
So we insert a function f(x) and then get back the same function f(y) (with a different argument). The
reproducing property refers to functions K(x, y) that behave like δ0(x, y).

The reproducing property can be generalized to other Hilbert space. In particular, we are interested in the
reproducing kernel Hilbert space (RKHS), which is defined as follows.

Definition 6.1 For a compact subset X ⊂ Rd and a Hilbert space H of functions f : X 7→ R, we say that
H is an RKHS if there exists K : X × X 7→ R such that

• K’s span is dense in H, i.e., H = span{K(·, x) : x ∈ X}.

• K is a reproducing kernel, i.e, 〈K(x, ·), f(·)〉H = f(x) for any f ∈ H, the inner product is defined
below.

Let g and h ∈ H be such that

g(·) =

M∑
i=1

αiK(·, xi), h(·) =

N∑
j=1

βjK(·, xj).

We define the inner product to be

〈g, h〉H =
∑
i,j

αiβjK(xi, xj).

It is easy to see that for an RKHS,

〈K(x, ·),K(y, ·)〉H = K(x, y).

Thus, when we choose the feature map φ(x) = ηx(·) = K(x, ·), then

〈φ(x), φ(y)〉H = 〈K(x, ·),K(y, ·)〉H = K(x, y).

So the kernel methods construct the mapping to map x into K(x, ·) and convert X into H.

The reproducing property can be viewed as a property of evaluation functional. This makes the RKHS
different from the usual Hilbert space. The evaluation function is the functional Tx(f) = f(x). In RKHS,
Tx(f) = 〈f,K(x, ·)〉H. Roughly speaking, in a general Hilbert space, the evaluation functional is not contin-
uous. To see this, consider the Dirac delta function in the L2 space. It is easy to see that 〈f, δx〉 = f(x). Now
we consider a sequence of functions fn(x) =

√
nI(‖x‖ ≤ 1/n2) it is easy to see that this function converges

in L2 distance to f0(x) = 0. More explicitly,

‖fn − f0‖2 =

∫
nI(‖x‖ ≤ 1/n2)dx =

2

n
→ 0.

However, after applying the evaluation function, you can see that

〈fn, δx〉 = fn(x) =
√
n 6→ 〈f0, δx〉 = f0(x)
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at x = 0. Thus, the evaluation functional is not continuous. On the other hand, you can show that in
RKHS, the evaluation functional is always continuous. In fact, a Hilbert space is an RKHS if and only if the
evaluation function is continuous.

Recall that we mentioned the Mercer’s theorem previously. Here is how the theorem goes. Let TK be a
linear operator such that for f ∈ L2(X ), TK(f)(x) =

∫
K(x, y)f(y)dy.

Theorem 6.2 (Mercer’s theorem) Assume that K is a continuous symmetric positive semi-definite ker-
nel over X × X , where X is compact. Then there exists an orthonormal basis {ei(·) : i = 1, · · · , } of L2(X )
consisting of eigenfunctions of TK such that

K(x, y) =

n∑
i=1

λiei(x)ei(y),

where λi ≥ 0 are the corresponding eigenvalues.

It also implies another representation under the regular L2 space:

φ(x) = (
√
λ1e1(x),

√
λ2e2(x), · · · ).

The quantities λi and ei(x) are from Theorem 6.2.

For any functions f, g ∈ H, we can expand them by the kernel function K(·, ·) or the basis {ei(·)}:

f(·) =

M∑
i=1

αiK(·, xi) =

∞∑
k=1

akek(·), g(·) =

N∑
j=1

βjK(·, xj) =

∞∑
k=1

bkek(·).

Then we have
〈f, g〉H =

∑
i,j

αiαjK(xi, xj), 〈f, g〉 =
∑
k=1

akbk.

These two inner products can be different! In fact, when using the RKHS inner product, we can still
express the inner product in terms of orthornormal basis but with the following forms:

〈f, g〉H =
∑
i,j

αiαjK(xi, xj) =
∑
k=1

akbk
λk

.

Example (two inner products are different). Here is one example that shows how the two inner
products are different. Consider the 1D Gaussian kernel K(x, y) = exp(− 1

2 |x − y|2) and two functions
f(x) = exp(− 1

2 |x − 1|2) = K(x, 1) and g(x) = exp(− 1
2 |x + 1|2) = K(x,−1). Then the inner product under

RKHS is
〈f, g〉H = K(1,−1) = exp (−2)

but the inner product under L2 space is

〈f, g〉 =

∫
exp(−1

2
|x− 1|2 −−1

2
|x+ 1|2)dx =

∫
exp(−x2 − 1)dx =

√
π exp(−1).

Note that there are 4 equivalent conditions for continuous, symmetric K defined on compact set X :

(K1) Every Gram matrix (i.e., K = [K(xi, xj)] ∈ Rn×n for any x1, · · · , xn) is positive semi-definite.

(K2) The operator TK is positive semi-definite.
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(K3) The kernel function K can be expressed as K(x, y) =
∑∞
i=1 λiei(x)ei(y).

(K4) K is a reproducing kernel of an RKHS over X .

The fact that (K3) implies (K4) shows that Theorem 6.2 implies that we can use φ(x) = K(x, ·) so the
feature map can always be interpreted as K(x, ·).

The RKHS generalizes the kernel methods to a much wider class of problems. The following representer
theorem2 shows that it can be used in regression and classification problems. Suppose that we observe
random variables

(X1, Y1), · · · , (Xn, Yn).

Theorem 6.3 (Representer Theorem (Kimeldorf and Wahba 1971)) Let H be an RKHS with a ker-
nel K over a compact set X . Let L : R × R 7→ R be a loss function and g be a strictly increasing function.
For any solution f̂n to the following minimization problem

f̂n = argmin
f∈H

n∑
i=1

L(Yi, f(Xi)) + g(‖f‖H),

we can express it as

f̂n(·) =

n∑
i=1

α̂iK(Xi, ·),

for some coefficients α̂1, · · · , α̂n.

The significance of the above theorem is that when we are minimizing the regularized loss, we only need to
use the kernel function evaluated at observations to represent the final estimator. There is no need to use
an expansion with infinite number of kernel basis. The above theorem can be found in the following two
papers (the first one is the original version but the second one has an elegant form and proof):

Kimeldorf, G., & Wahba, G. (1971). Some results on Tchebycheffian spline functions. Journal
of mathematical analysis and applications, 33(1), 82-95.
Schölkopf, B., Herbrich, R., & Smola, A. J. (2001, July). A generalized representer theorem.
In International conference on computational learning theory (pp. 416-426). Springer, Berlin,
Heidelberg.

RKHS regression. Using the representer theorem, one can derive the RKHS regression easily. The RKHS
regression is to find the regression function that minimizes the following penalized loss function:

RH(m) =

n∑
i=1

(Yi −m(Xi))
2 + λ‖m‖2H.

Let K = [K(Xi, Xj)] ∈ Rn×n be the kernel matrix (Gram matrix). You can show that

α̂ = (K + λI)−1Y

and the predicted response is
Ŷ = Kα̂ = K(K + λI)−1Y,

which implies that the RKHS regression is another linear smoother.

2Modified from https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/

lecture-notes/MIT15_097S12_lec13.pdf

https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
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