
STAT 425: Introduction to Nonparametric Statistics Winter 2018

Lecture 8: Density Estimation: Parametric Approach
Instructor: Yen-Chi Chen

8.1 Parametric Method

So far, we have learned several nonparametrc methods for density estimation. In fact, we can use a simple
parametric method for density estimation.

We will start with a simple example by assuming the data is from a Gaussian (Normal) distribution. Recall
that we observe

X1, · · · , Xn ∼ P,
where P is the underlying population CDF and it has a PDF p. If we fit a Gaussian distribution to the data,
we need to find the two parameters of Gaussian: the mean µ and the variance σ2. While there are many
approaches for estimating them (e.g., method of moments, or maximum likelihood method), we use a very
simple estimator: the sample mean and sample variance.

Let

µ̂n = X̄n =
1

n

n∑
i=1

Xi, σ̂2
n = S2

n =
1

n− 1

n∑
i=1

(Xi − X̄n)2

be the sample mean and sample variance. Then our density estimator is

p̂n(x) =
1√

2πσ̂2
n

e
− 1

2σ̂2
n

(x−µ̂n)2

.

8.1.1 Analysis of Parametric Method

Is the parametric approach a good one? It depends. If the true PDF p is close to a Gaussian distribution,
then probably the parametric approach is a good one. But if p is very far away from being a Gaussian,
this method is going to give us a huge bias. Now we analyze the quality of estimation in the parametric
approach. The goal is to quantify p̂n(x)− p(x).

Because the sample mean µ̂n
P→ µ̄ = E(X1) and the sample variance σ̂2

n
P→ σ̄2 = Var(X1), we define another

density

p̄(x) =
1√

2πσ̄2
e−

1
2σ̄2 (x−µ̄)2

.

This is the density generated by the Normal distribution with the mean being the population mean and
the variance being the population variance. It is NOT the actual population PDF. Namely, p̄(x) 6= p(x) in
general.

Using p̄(x), we obtain
p̂n(x)− p(x) = p̂n(x)− p̄(x) + p̄(x)− p(x). (8.1)

The first difference p̂n(x) − p̄(x) is something that converges to 0 because the sample mean and variance
converges to their population counterparts. Namely, we have

p̂n(x)
P→ p̄(x).
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Note that this is due to the continuous mapping theorem. However, the second difference p̄(x)− p(x) never
goes to 0 unless the the true PDF is Gaussian.

In what follows we study the convergence rate of p̂n(x)−p̄(x). This will help us understand when a parametric
approach may be better than a nonparametric approach. Recall two facts in parameter estimation:

µ̂n − µ̄ = OP (1/
√
n)

σ̂2
n − σ̄2 = OP (1/

√
n).

p̂n(x)− p̄(x) =
1√

2πσ̂2
n

e
− 1

2σ̂2
n

(x−µ̂n)2

− 1√
2πσ̄2

e−
1

2σ̄2 (x−µ̄)2

=
1√

2πσ̂2
n

e
− 1

2σ̂2
n

(x−µ̂n)2

− 1√
2πσ̄2

e
− 1

2σ̂2
n

(x−µ̂n)2

︸ ︷︷ ︸
(A)

+
1√

2πσ̄2
e
− 1

2σ̂2
n

(x−µ̂n)2

− 1√
2πσ̄2

e−
1

2σ̄2 (x−µ̂n)2

︸ ︷︷ ︸
(B)

+
1√

2πσ̄2
e−

1
2σ̄2 (x−µ̂n)2

− 1√
2πσ̄2

e−
1

2σ̄2 (x−µ̄)2

︸ ︷︷ ︸
(C)

For the part (A),

(A) =
1√

2πσ̂2
n

e
− 1

2σ̂2
n

(x−µ̂n)2

− 1√
2πσ̄2

e
− 1

2σ̂2
n

(x−µ̂n)2

=
1√
2π
e
− 1

2σ̂2
n

(x−µ̂n)2
(

1

σ̂2
n

− 1

σ̄2

)
=

1√
2π
e
− 1

2σ̂2
n

(x−µ̂n)2
(
σ̄2 − σ̂2

n

σ̂2
nσ̄

2

)
= OP (1/

√
n).

For the part (B), we will need to use an approximation: for any C > 0 and εn → 0,

1− Cεn = 1− eεn·logC = εn · logC +
(εn · logC)2

2!
+ · · · = O(εn). (8.2)

(B) =
1√

2πσ̄2
e
− 1

2σ̂2
n

(x−µ̂n)2

− 1√
2πσ̄2

e−
1

2σ̄2 (x−µ̂n)2

=
1√

2πσ̄2

{
e
− 1

2σ̂2
n

(x−µ̂n)2

− e−
1

2σ̄2 (x−µ̂n)2

}
=

1√
2πσ̄2

· e−
1

2σ̂2
n

(x−µ̂n)2
{

1− e−[ 1
2σ̄2 (x−µ̂n)2− 1

2σ̂2
n

(x−µ̂n)2]
}

=
1√

2πσ̄2
· e−

1
2σ̂2
n

(x−µ̂n)2
{

1− e−[ 1
2 (x−µ̂n)2][ 1

σ̄2− 1
σ̂2
n

]
}

︸ ︷︷ ︸
=O

(
1
σ̄2− 1

σ̂2
n

)
by equation (8.2)

= O

(
1

σ̄2
− 1

σ̂2
n

)
= OP (1/

√
n).
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Note that in the above analysis, we treat µ̂n as nonrandom but it is actually a random quantity. To take
into account this, we can just replace the O’s by OP ’s.

Similarly, we can expand part (C) and this will lead us the same rate, i.e,

(C) = OP (1/
√
n).

Thus, we conclude
p̂n(x)− p̄(x) = OP (1/

√
n).

8.2 Mixture Model

A problem of parametric model is that the bias p̄(x) − p(x) is unavoidable so even we have huge amount
of observations from the same population, we are still unable to recover the original PDF. However, the
parametric model has an advantage that each parameter has its own meaning so it is very easy to interpret
the result. In addition, as our analysis has shown, a parametric model has a convergence rate OP (1/

√
n),

which is often faster than a nonparametric estimator (the optimal rate is OP (1/n2/5)). Thus, in many
situations we would like to stick with parametric models.

If we want to use a parametric model, how can we resolve the problem of unavoidable bias? Here is a method
that can alleviate this bias – mixture of distributions.

The mixture of distributions is using a mixture of parametric distribution to model the underlying population
PDF. For instance, the famous Gaussian mixture model (GMM) uses

pGMM(x) =

K∑
`=1

π` · φ(x;µ`, σ
2
` ),

where π` ≥ 0 are weights with
∑K
`=1 π` = 1 and

φ(x;µ, σ2) =
1√

2πσ2
e−

1
2σ2 (x−µ)2

is the PDF of a standard normal distribution. Namely, GMM uses a mixture of K Gaussians to model the
population PDF. Here the number K is a tuning parameter that specifies the number of Gaussians in our
model.

In GMM, each (π`, µ`, σ
2
` ) is a set of 3 parameters and we have one constraint:

∑K
`=1 π` = 1, so there will be

totally 3K−1 parameters. Estimation of these parameters are often done by the MLE (maximum likelihood
estimator), namely,

π̂1, µ̂1, σ̂
2
1 , · · · , π̂K , µ̂K , σ̂2

K = argmax
π`,µ`,σ2

` :`=1,··· ,K

n∑
i=1

log

(
K∑
`=1

π` · φ(Xi;µ`, σ
2
` )

)

And the final density estimator is

p̂GMM(x) =

K∑
`=1

π̂` · φ(x; µ̂`, σ̂
2
` ),

GMM is easy to interpret – each component is like a hidden ideal distribution. So our data can be viewed
as coming from a population with K hidden sub-populations. The parameter π` is the proportion of `-th
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sub-population and µ` and σ2
` are the center and variation of the `-th sub-population. Moreover, a GMM

can well-approximate a complicated distribution when K is large. Namely, under good conditions, the bias
E(p̂GMM(x))− p(x) converges to 0 when K →∞.

Although the GMM or other mixture model have these good advantages, there are three serious issues about
them.

• Identifiability problem. When K ≥ 2, we may have non-unique MLE. Namely, there might be
different sets of parameters that lead to the same distribution. Consider a simple case where p(x) =
0.3φ(x; 0, 1) + 0.7φ(x; 2, 1). There are two equivalent representation for the same PDF:

(π1, µ1, σ
2
1 , π2, µ2, σ

2
2) = (0.7, 0, 1, 0.3, 2, 1) or (0.3, 2, 1, 0.7, 0, 1).

• Computation problem. Even we do not have identifiability issue, the MLE often does not have a
closed-form solution so we need to use a numerical method such as a gradient descent/ascent approach1

or the EM algorithm2 to find the MLE. However, the likelihood function being optimized is often non-
convex and has many local optima. Thus, there is no simple approach that guarantees that what we
obtained from a computational algorithm is the actual MLE.

• Choice of K. The quantity K plays a key role in a mixture model and it acts as the tuning parameter
in our model. However, unlike the tuning parameters in nonparametric estimation (e.g., smoothing
bandwidth, number of nearest neighbor, number of basis) that we have theories about the optimal
choice, the effect of K on the quality of estimation is very complicated and there is no simple form of
it. Thus, choosing K turns out to be a more difficult task than the tuning parameter selection problem
in nonparametric method. One may use a model selection technique3 to choose it; we will discuss this
at the end of this quarter.

8.3 Density Estimation: Final Comments

Here is a comparison among all the density estimators we have introduced so far:

Type Method Convergence rate Tuning parameter Limitation

Parametric
Parametric model O

(
1√
n

)
None Unavoidable bias

Mixture model O
(

1√
n

)
K, number of mixture Hard to compute

Nonparametric

Histogram O
(

1
n1/3

)
b, bin size Lower convergence rate

Kernel density estimator O
(

1
n2/5

)
h, smoothing bandwidth

K-nearest neighbor O
(

1
n2/5

)
k, number of neighbor

Basis approach O
(

1
n2/5

)
M , number of basis

Note that there are far more other density estimators but due to the time constraint, we cannot cover others.
To understand the performance of a density estimator, we often analyze its mean integrated square error
(MISE). The MISE can often be written as a bias and a variance part and we can often get a good sense on
how to choose the tuning parameter by optimizing the MISE.

1https://en.wikipedia.org/wiki/Gradient_descent
2https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
3https://en.wikipedia.org/wiki/Model_selection
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