
STAT 425: Introduction to Nonparametric Statistics Winter 2018

Lecture 7: Density Estimation: k-Nearest Neighbor and Basis Approach
Instructor: Yen-Chi Chen

Reference: Section 8.4 of All of Nonparametric Statistics.

7.1 k-nearest neighbor

k-nearest neighbor (k-NN) is a cool and powerful idea for nonparametric estimation. Today we will talk
about its application in density estimation. In the future, we will learn how to use it for regression analysis
and classification.

Let X1, · · · , Xn ∼ p be our random sample. Assume each observation has d different variables; namely,
Xi ∈ Rd. For a given point x, we first rank every observation based on its distance to x. Let Rk(x) denotes
the distance from x to its k-th nearest neighbor point.

For a given point x, the kNN density estimator estimates the density by

p̂knn(x) =
k

n
· 1

Vd ·Rdk(x)
=
k

n
· 1

Volume of a d-dimensional ball with radius being Rk(x)
,

where Vd = πd/2

Γ( d2 +1)
is the volume of a unit d-dimensional ball and Γ(x) is the Gamma function.

Here are the results when d = 1, 2, and 3 –

• d = 1, V1 = 2: p̂knn(x) = k
n

1
2Rk(x) .

• d = 2, V1 = π: p̂knn(x) = k
n

1
πR2

k(x)
.

• d = 3, V1 = 4
3π: p̂knn(x) = k

n
3

4πR3
k(x)

.

What is the intuition of a kNN density estimator? By the definition of Rk(x), the ball centered at x with
radius Rk(x)

B(x,Rk(x)) = {y : ‖x− y‖ ≤ Rk(x)}
satisfies the fact that

k

n
=

1

n

n∑
i=1

I(Xi ∈ B(x,Rk(x))).

Namely, ratio of observations within B(x,Rk(x)) is k/n.

Recall from the relation between EDF and CDF, the quantity

1

n

n∑
i=1

I(Xi ∈ B(x,Rk(x)))

can be viewed as an estimator of the quantity

P (Xi ∈ B(x,Rk(x))) ≈
∫
B(x,Rk(x))

p(y)dy.
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When n is large and k is relatively small compared to n, Rk(x) will be small because the ratio k
n is small.

Thus, the density p(y) within the region B(x,Rk(x)) will not change too much. Namely, p(y) ≈ p(x) for
every y ∈ B(x,Rk(x)). Note that p(x) is the center of the ball B(x,Rk(x)).

Therefore,

P (Xi ∈ B(x,Rk(x))) ≈
∫
B(x,Rk(x))

p(y)dy ≈ p(x)

∫
B(x,Rk(x))

dy = p(x) · Vd ·Rdk(x).

This quantity will be the target of the estimator 1
n

∑n
i=1 I(Xi ∈ B(x,Rk(x))), which equals to k

n . As a
result, we can say that

p(x) · Vd ·Rdk(x) ≈ P (Xi ∈ B(x,Rk(x))) ≈ 1

n

n∑
i=1

I(Xi ∈ B(x,Rk(x))) ≈ k

n
,

which leads to

p(x) · Vd ·Rdk(x) ≈ k

n
⇒ p(x) ≈ k

n

1

Vd ·Rdk(x)

This motivates us to use

p̂knn(x) =
k

n

1

Vd ·Rdk(x)

as a density estimator.

Example. We consider a simple example in d = 1. Assume our data is X = {1, 2, 6, 11, 13, 14, 20, 33}. What
is the kNN density estimator at x = 5 with k = 2? First, we calculate R2(5). The distance from x = 5 to
each data point in X is

{4, 3, 1, 6, 8, 9, 15, 28}.
Thus, R2(5) = 3 and

p̂knn(5) =
2

8

1

2 ·R2(5)
=

1

24
.

What will the density estimator be when we choose k = 5? In this case, R5(5) = 8 so

p̂knn(5) =
5

8

1

2 ·R5(5)
=

5

64
.

Now we see that different value of k gives a different density estimate even at the same x. How do we choose
k? Well, just as the smoothing bandwidth in the KDE, it is a very difficult problem in practice. However,
we can do some theoretical analysis to get a rough idea about how k should be changing with respect to the
sample size n.

7.1.1 Asymptotic theory

The asymptotic analysis of a k-NN estimator is quiet complicated so here I only stated its result in d = 1.
The bias of the k-NN estimator is

bias(p̂knn(x)) = E(p̂knn(x))− p(x) = b1
p′′(x)

p2(x)

(
k

n

)2

+ b2
p(x)

k
+ o

((
k

n

)2

+
1

k

)
,

where b1 and b2 are two constants. The variance of the k-NN estimator is

Var(p̂knn(x)) = v0 ·
p2(x)

k
+ o

(
1

k

)
,
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where v0 is a constant. The quantity k is something we can choose. We need k →∞ when n→∞ to make
sure both bias and variance converge to 0. However, how k diverges affects the quality of estimation. When
k is large, the variance is small while the bias is large. When k is small, the variance is large and the bias
tends to be small but it could also be large (the second component in the bias will be large).

To balance the bias and variance, we consider the mean square error, which is at the rate

MSE(p̂knn(x)) = O

(
k4

n4
+

1

k

)
.

This motivates us to choose

k = C0 · n
4
5

for some constant C0. This leads to the optimal convergence rate

MSE(p̂knn,opt(x)) = O(n−
4
5 )

for a k-NN density estimator.

Remark.

• When we consider a d-dimensional data, the bias will be of the rate

bias(p̂knn(x)) = O

((
k

n

) 2
d

+
1

k

)

and the variance is still at rate

Var(p̂knn(x)) = O

(
1

k

)
.

This shows a very different phenomenon compared to the KDE. In KDE, the rate of variance depends
on the dimension whereas the bias remains the same. In kNN, the rate of variance stays the same
rate but the rate of bias changes with respect to the dimension. One intuition is that no matter
what dimension is, the ball B(x,Rk(x)) always contain k observations. Thus, the variability of a kNN
estimator is caused by k points, which is independent of the dimension. On the other hand, in KDE,
the same h in different dimensions will cover different number of observations so the variability changes
with respect to the dimension.

• The kNN approach has an advantage that it can be computed very efficiently using kd-tree algorithm1.
This is a particularly useful feature when we have a huge amount of data and when the dimension of
the data is large. However, a downside of the kNN is that the density often has a ‘heavy-tail’, which
implies it may not work well when |x| is very large. Moreover, when d = 1, the density estimator
p̂knn(x) is not even a density function (the integral is infinite!).

7.2 Basis approach

In this section, we assume that the PDF p(x) is supported on [0, 1]. Namely, p(x) > 0 only in [0, 1]. When

the PDF p(x) is smooth (in general, we need p to be squared integrable, i.e.,
∫ 1

0
p(x)2dx < ∞), we can

use an orthonormal basis to approximate this function. This approach has several other names: the basis
estimator, projection estimator, and an orthogonal series estimator.

1https://en.wikipedia.org/wiki/K-d_tree

https://en.wikipedia.org/wiki/K-d_tree


7-4 Lecture 7: Density Estimation: k-Nearest Neighbor and Basis Approach

Let {φ1(x), φ2(x), · · · , φm(x), · · · } be a set of basis functions. Then we have

p(x) =

∞∑
j=1

θjφj(x).

The quantity θj is the coefficient of each basis. In signal process, these quantities are refereed to as the
signal.

The collection {φ1(x), φ2(x), · · · , φm(x), · · · } is called a basis if its elements have the following property:

• Unit 1: ∫ 1

0

φ2
j (x)dx = 1 (7.1)

for every j = 1, · · · .

• Orthonormal: ∫ 1

0

φj(x)φk(x)dx = 0 (7.2)

for every j 6= k = 1, · · · .

Here are some concrete examples of the basis:

• Cosine basis:

φ1(x) = 1, φj(x) =
√

2 cos(π(j − 1)x), j = 2, 3, · · · ,

• Trigonometric basis:

φ1(x) = 1, φ2j(x) =
√

2 cos(2πjx), φ2j+1(x) =
√

2 sin(2πjx), j = 1, 2, · · ·

Often the basis is something we can choose so it is known to us. What is unknown to use is the coefficients
θ1, θ2, · · · ,. Thus, the goal is to estimate these coefficients using the random sample X1, · · · , Xn.

How do we estimate these parameters? We start with some simple analysis. For any basis φj(x), consider
the following integral:

E(φj(X1)) =

∫ 1

0

φj(x)dP (x)

=

∫ 1

0

φj(x)p(x)dx

=

∫ 1

0

φj(x)

∞∑
k=1

θkφk(x)dx

=

∞∑
k=1

θk

∫ 1

0

φj(x)φk(x)dx︸ ︷︷ ︸
=0 except k = j

=

∞∑
k=1

θkI(k = j)

= θj .



Lecture 7: Density Estimation: k-Nearest Neighbor and Basis Approach 7-5

Namely, the expectation of φj(X1) is exactly the coefficient θj . This motivates us to use the sample average
as an estimator:

θ̂j =
1

n

n∑
i=1

φj(Xi).

By construction, this estimator is unbiased, i.e., E(θ̂j)− θj = 0. The variance of this estimator is

Var(θ̂j) =
1

n
Var(φj(X1))

=
1

n

(
E(φ2

j (X1))− E2(φj(X1))
)

=
1

n
(E(φ2

j (X1))− φ2
j )

=
σ2
j

n
,

where σ2
j = E(φ2

j (X1))− φ2
j .

In practice, we cannot use all the basis because there will be infinite number of them being calculated. So
we will use only M basis as our estimator. Namely, our estimator is

p̂n,M (x) =

M∑
j=1

θ̂jφj(x). (7.3)

Later in the asymptotic analysis, we will show that we should not choose M to be too large because of the
bias-variance tradeoff.

7.2.1 Asymptotic theory

To analyze the quality of our estimator, we use the mean integrated squared error (MISE). Namely, we want
to analyze

MISE(p̂n,M ) = E(

∫ 1

0

(p̂n,M (x)− p(x))2dx) =

∫ 1

0

[
bias2(p̂n,M (x)) + Var(p̂n,M (x))

]
dx

Analysis of Bias. Because each θ̂j is an unbiased estimator of θj , we have

E(p̂n,M (x)) = E(

M∑
j=1

θ̂jφj(x)) =

M∑
j=1

E(θ̂j)φj(x) =

M∑
j=1

θjφj(x).

Thus, the bias at point x is

bias(p̂n,M (x)) = E(p̂n,M (x))− p(x) =

M∑
j=1

θjφj(x)−
∞∑
j=1

θjφj(x) = −
∞∑

j=M+1

θjφj(x).
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Thus, the integrated squared bias is

∫ 1

0

bias2(p̂n,M (x))dx =

∫ 1

0

− ∞∑
j=M+1

θjφj(x)

2

dx

=

∫ 1

0

 ∞∑
j=M+1

θjφj(x)

( ∞∑
k=M+1

θkφk(x)

)
dx

=

∞∑
j=M+1

∞∑
k=M+1

θjθk

∫ 1

0

φj(x)φk(x)dx︸ ︷︷ ︸
=I(j=k)

=

∞∑
j=M+1

θ2
j .

(7.4)

Namely, the bias is determined by the signal strength of the ignored basis, which makes sense because the
bias should be reflecting the fact that we are not using all the basis and if there are some important basis
(the ones with large |θj |) being ignored, the bias ought to be large.

We know that in KDE and kNN, the bias is often associated with the smoothness of the density function.
How does the smoothness comes into play in this case? It turns out that if the density is smooth, the
remaining signals

∑∞
j=M+1 θ

2
j will also be small. To see this, we consider a very simple model by assuming

that we are using the cosine basis and ∫ 1

0

|p′′(x)|2dx ≤ L0 (7.5)

for some constant L0 > 0. Namely, the overall curvature of the density function is bounded.

Using the fact that for cosine basis function φj(x),

φ′j(x) = −
√

2π(j − 1) sin(π(j − 1)x),

φ′′j (x) = −
√

2π2(j − 1)2 cos(π(j − 1)x) = −π2(j − 1)2φj(x).

Thus, equation (7.5) implies

L0 ≥
∫ 1

0

|p′′(x)|2dx

=

∫ 1

0

|
∞∑
j=1

θjφ
′′
j (x)|2dx

=

∫ 1

0

|
∞∑
j=1

π2(j − 1)2θjφj(x)|2dx

=

∫ 1

0

 ∞∑
j=1

π2(j − 1)2θjφj(x)

( ∞∑
k=1

π2(k − 1)2θkφk(x)

)
dx

= π4
∞∑
j=1

∞∑
k=1

(j − 1)2(k − 1)2θjθk

∫ 1

0

φj(x)φk(x)dx︸ ︷︷ ︸
=I(j=k)

= π4
∞∑
j=1

(j − 1)2θ2
j .
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Namely, equation (7.5) implies
∞∑
j=1

(j − 1)4θ2
j ≤

L0

π4
. (7.6)

This further implies that
∞∑

j=M+1

θ2
j = O(M−4). (7.7)

An intuitive explanation is as follows. Equation (7.6) implies that when j →∞, the signal θ2
j = O(j−5). The

reason is: if θ2
j ≈ 1

j−5 , equation (7.6) becomes
∑∞
j=1(j − 1)4θ2

j ≈
∑∞
j=1(j − 1)4 1

j−5 ≈
∑∞
j=1

1
j → ∞! Thus,

the tail signals have to be shrinking toward 0 at rate O(j−5). As a result,
∑∞
j=M+1 θ

2
j ≈

∑∞
j=M+1O(j−5) =

O(M−4).

Equation (7.7) and (7.4) together imply that the bias is at rate∫ 1

0

bias2(p̂n,M (x))dx = O(M−4).

Analysis of Variance. Now we turn to the analysis of variance.

∫ 1

0

Var(p̂n,M (x))dx =

∫ 1

0

Var

 M∑
j=1

θ̂jφj(x)

 dx

=

∫ 1

0

 M∑
j=1

φ2
j (x)Var(θ̂j) +

M∑
j 6=k=1

φj(x)φk(x)Cov(θ̂j , θ̂k)

 dx

=

M∑
j=1

Var(θ̂j)

∫ 1

0

φ2
j (x)dx︸ ︷︷ ︸
=1

+

M∑
j 6=k=1

Cov(θ̂j , θ̂k)

∫ 1

0

φj(x)φk(x)dx︸ ︷︷ ︸
=0

=

M∑
j=1

Var(θ̂j)

=

M∑
j=1

σ2
j

n

= O

(
M

n

)
.

Now putting both bias and variance together, we obtain the rate of the MISE

MISE(p̂n,M ) =

∫ 1

0

[
bias2(p̂n,M (x)) + Var(p̂n,M (x))

]
dx = O

(
1

M4

)
+O

(
M

n

)
.

Thus, the optimal choice is M = M∗ = C0n
1/5 for some positive constant C). And this leads to

MISE(p̂n,M∗) = O(n−4/5),

which is the same rate as the KDE and kNN.

Remark.
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• (Sobolev space) Again, we see that the bias is dependent on the smoothness of the density function.
Here, as long as the density function has an overall curvature (second derivative) being bounded, we
have an optimal MISE at the rate of O(n−4/5). In fact, if the density function has stronger smoothness,
such as the overall third derivatives being bounded, we will have an even faster convergence rate
O(n−6/7). Now for any positive integer β and a positive number L > 0, we define

W (β, L) =

{
p :

∫ 1

0

|p(β)(x)|2dx ≤ L <∞
}

be a collection of smooth density functions. Then the bias between a basis estimator and any density

p ∈ W (β, L) is at the rate O(M−2β) and the optimal convergence rate is O(n−
2β

2β+1 ). The collection
W (β, L) is a space of functions and is known as the Sobolev Space.

• (Tuning parameter) The number of basis M in a basis estimator, the number of neighborhood k in
the kNN approach, and the smoothing bandwidth h in the KDE all play a very similar role in bias-
variance tradeoff. These quantities are called tuning parameters in statistics and machine learning.
Just like what we have seen in the analysis of the KDE, choosing these parameters is often a very
difficult task because the optimal choice depends on the actual density function, which is unknown to
us. A principle approach to choosing the tuning parameters is based on minimizing an error estimator.

For instance, in the basis estimator, we try to find an estimator for the MISE, M̂ISE(p̂n,M ). When we
change value of M , this error estimator will also change. We then choose M by minimizing the error,
i.e.,

M̂∗ = argminMM̂ISE(p̂n,M ).

Then we pick M̂∗ basis and construct our estimator.
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