
STAT 425: Introduction to Nonparametric Statistics Winter 2018

Lecture 4: Contingency Table
Instructor: Yen-Chi Chen

4.1 Contingency Table

Contingency table is a power tool in data analysis for comparing two categorical variables. Although it is
designed for analyzing categorical variables, this approach can also be applied to other discrete variables and
even continuous variables. We start with a simple example.

Example 1.1 Suppose we have two categorical variables: gender (male or female) and handedness (right or
left handed). Assume that we conduct a simple random sampling and obtain a size 100 data. We can then
summarize our data using the following 2× 2 table:

Right-handed Left-handed
Male 43 9
Female 44 4

Such table is called a 2× 2 contingency table.

Sometimes you may see people augmented the table with the total sums:

Right-handed Left-handed Total
Male 43 9 52
Female 44 4 48
Total 87 13 100

The contingency table elegantly summarizes the information about our data and may be one of the most
common data analysis tools.

A general 2× 2 contingency table will be like the follows:

Y = y1 Y = y2
X = x1 a b
X = x2 c d

Here the two variables are X and Y and each of them have two possible categories.

When the two variables have more than two categories, they can still be presented in a contingency table but
the table will be larger. For instance, if X has n distinct categories and Y has m categories, the contingency
table will be a n×m table as follows:

The quantity Tij is the number of observations with X = xi and Y = yj and Ri =
∑n
j=1 Tij is the sum of

the i-th row and Cj =
∑n
i=1 Tij is the sum of the j-th column and N =

∑
i,j Tij is the sample size.

1This example is from wikipedia: https://en.wikipedia.org/wiki/Contingency_table.
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Y = y1 Y = y2 · · · Y = ym Total
X = x1 T11 T12 · · · T1m R1

X = x2 T21 T22 · · · T2m R2

· · · · · · · · · · · · · · · · · ·
X = xn Tn1 Tn2 · · · Tnm Rn
Total C1 C2 · · · Cm N

Example 2. Here is an example of a 2× 4 contingency table2:

Outcome
Diet Cancers Fatal Heart Disease Non-Fatal Heart Disease Healthy Total
AHA 15 24 25 239 303

Mediterranean 7 14 8 273 302
Total 22 38 33 512 605

As we have mentioned, the contingency table is a tool for analyzing two variables. Given two variables, a
common question we often ask is: are these two variables dependent? The contingency table provides us a
simple way to test such a hypothesis. Here is a key insight. If the null hypothesis is correct, the two variables
will be independent. Thus, the ratio

Tij
N should be close to Ri

N ×
Cj
N which implies Tij should be comparable

to
RiCj
N . We will called Tij the observed frequencies and

RiCj
N = Eij the expected (theoretical) frequencies.

The Pearson’s χ2 test utilizes this fact and uses the test statistic

χ2 =
∑
i,j

(Tij − Eij)2

Eij
.

And it can be shown that this test statistic has an asymptotic distribution of a χ2 distribution with degree
of freedom (n− 1)(m− 1). Thus, the p-value is

pvalue = Φ−1
χ2
(n−1)(m−1)

(χ2),

where Φχ2
ν
(x) is the CDF of a χ2 distribution with ν degree of freedom.

Example 2 (revisited). Now we test if the diet and the outcome are independent in the data of Example
2. By calculating the expected frequencies, we obtain a new table where the number in the parentheses
denotes the expected frequencies:

Outcome
Diet Cancers Fatal Heart Disease Non-Fatal Heart Disease Healthy Total
AHA 15 (11.02) 24 (19.03) 25 (16.53) 239 (256.42) 303

Mediterranean 7 (10.98) 14 (18.97) 8 (16.47) 273 (255.58) 302
Total 22 38 33 512 605

This leads to the Pearson’s χ2 test statistic χ2 = 16.55 and comparing this to a chi-square distribution with
(2− 1)(4− 1) = 3 degree of freedom, we obtain a p-value 0.0009.

Example 1 (revisisted). We check the gender and handedness in example 1 are independent or not. Here
is the table with expected frequencies:

This yields a test statistic χ2 = 1.78 and by comparing to a χ2 distribution with degree of freedom 1, we
obtain a p-value 0.8179.

2This data is from the Mediterranean Diet and Health case study http://onlinestatbook.com/2/chi_square/contingency.

html.

http://onlinestatbook.com/2/chi_square/contingency.html
http://onlinestatbook.com/2/chi_square/contingency.html


Lecture 4: Contingency Table 4-3

Right-handed Left-handed Total
Male 43(45.24) 9(6.76) 52
Female 44(41.76) 4(6.24) 48
Total 87 13 100

Remark. (On degree of freedom) Why in testing the independence of an n × m contingency table the
degree of freedom of the χ2 distribution is (n − 1)(m − 1)? Why does it called degree of freedom? Here
is a simple explanation. At first, the contingency table has totally nm variables. All these variables can
change freely without any restriction so the initial degree of freedom is nm. When we test the independence,
this hypothesis imposes some restriction on the variables so not all variables can change freely if the null
hypothesis H0 is correct. In the model of the null hypothesis, the nm variables (cells in the table) can be
expressed by the products of Ri and Cj for i = 1, · · · , n and j = 1, · · · ,m. Thus, this model (the model
under H0) has n + m variables. However, not all these n + m variables are free – the sum of Ri’s and the
sum of Cj ’s will be the same. So these n + m variables only contain n + m− 1 free variables. Namely, the
degree of freedom of R1, · · · , Rn, C1, · · · , Cm is n + m − 1. Because the model under H0 has a degree of
freedom n+m−1 and the model without any restriction has as degree of freedom nm, the remaining degree
of freedom is nm− (n+m− 1) = nm− n−m+ 1 = (n− 1)(m− 1).

Remark. In addition to the Pearson’s χ2 test, there is another approach called Fisher’s exact test. We
do not have time to cover it here but I would highly recommend to read the following article on wikipedia:
https://en.wikipedia.org/wiki/Fisher%27s_exact_test.

4.2 Log-linear Model

A common parametric model for modeling the contingency table is the log-linear model. Because in the
contingency table, each cell Tij is a nonnegative integer Thus, a natural model for Tij is a Poisson distribution.
Namely, we assume that Tij ∼ Poisson(λij) for some rate parameter λij for i = 1, · · · , n and j = 1, · · · ,m.

The log-linear model uses a better parametrization of λij by rewriting it as

log(λij) = µ+ αi + βj + γij (4.1)

with the following constraints:

0 =

n∑
i=1

αi =

m∑
j=1

βj =

n∑
i=1

γij =

m∑
j=1

γij .

These constraints are applied to ensure there is no overparametrization (more variables than we need).

What is the benefits of using the parametrization in equation (4.1)? The parameters in equation (4.1) has
simple interpretations: µ stands for the overall effect, αi is the effect from variable X being in the i-th
category, βj is the effect from variable Y being in the j-th category, and γij is the remaining individual
effect.

The log-linear model also has a good way of expressing independence. The two variables are independent if

γij = 0 ∀ i = 1, · · · , n, j = 1, · · · ,m.

Namely, we can rewrite the independence as setting certain parameters being 0. The estimation of these
parameters is often done using a maximum likelihood procedure3, which is beyond the scope of this course.

3https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

https://en.wikipedia.org/wiki/Fisher%27s_exact_test
https://en.wikipedia.org/wiki/Maximum_likelihood_estimation


4-4 Lecture 4: Contingency Table

The log-linear model can be easily extended to three variables or even more variables. When we are comparing
more than two variables, contingency table may not be easily displayed. However, the log-linear model still
has an elegant form. In the case of three variables, we have a table Tijk where i = 1, · · · , n, j = 1, · · · ,m,
and k = 1, · · · , p (first variable has n categories; second variable has m categories; third variable has p
categories). The log-linear model will be

Tijk ∼ Poisson(λijk)

log(λijk) = µ+ αi + βj + γk + δij + ρik + κjk + ξijk

with constraints to avoid overparametrization.

If you are interested in learning more about log-linear model and contingency table, I would recommend the
following online source: https://onlinecourses.science.psu.edu/stat504/node/117.

4.3 Simpson’s Paradox

The Simpson’s paradox is perhaps one of the most famous paradox in Statistics. Here is an simple example
illustrating it. Consider the following 2× 2 contingency table:

This is a famous data about kidney stone treatment from wikipedia4 This table is not the conventional
contingency table we are seeing. It is a table describing the success rate of each case and the number in the
parenthesis shows the number of observation in that scenario. For instance, Group 1 is the case where the
individuals have small stones in their kidney and they received treatment A and there are 87 individuals
in this scenario and the treatment works in 81 out of 87 individuals. The entire dataset consists of two
treatments (A or B) and two types of kidney stones (small and large) and 700 individuals.

Now, if we ignore the types of stones and just compare the success rate of the two treatment (comparing the
bottom row), treatment B has a higher success rate. However, if we take the type of stones into account, then
regardless of the type of stones, treatment A is always better than treatment B ! This paradoxical phenomenon
is called the Simpson’s paradox.

Why this happens? The main reason is that the two variables being considered here, the treatment and the
type of stones, are highly dependent. As you can see, treatment A is often applied to large stones individuals
whereas treatment B is often used to treat small stones patients. Such a dependence may cause the Simpson’s
paradox. Thus, when designing an experiment, we often need to check if the dependence inside our variables.
This is why the methods we just learned in analyzing a contingency table is very useful.

4https://en.wikipedia.org/wiki/Simpson%27s_paradox
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4.4 Pearson’s χ2 Test for the Goodness-of-fit Test

In addition to the test of independence in a contingency table, the Pearson’s χ2 test can be applied to the
goodness-of-fit test as well5. It is a common approach for testing the distribution of a discrete random
variable or a categorical random variable. We start with a simple example.

Example 3. A normal die (6-sided) is thrown 60 times and we record the number of each time. Here is the
outcome of the 60 tosses: Is this die a fair die (i.e., all faces have equal probability facing up)?

Number face up: 1 2 3 4 5 6
Counts: 5 8 9 8 10 20

To test such a hypothesis, again we use the Pearson’s χ2 statistic. Here the expected frequency is 10 for
every case. We modify the previous table by adding the expected frequencies in parentheses:

Number face up: 1 2 3 4 5 6
Counts: 5 (10) 8 (10) 9 (10) 8 (10) 10 (10) 20 (10)

The Pearson’s χ2 statistic is

χ2 =
∑
i

(Oi − Ei)2

Ei
=

(5− 10)2

10
+

(8− 10)2

10
+

(9− 10)2

10
+

(8− 10)2

10
+

(10− 10)2

10
+

(20− 10)2

10
= 13.4,

where Oi is the observed outcomes whereas Ei is the expected outcomes.

As for the reference distribution, it will follows a χ2 distribution with a degree of freedom 5. The degree of
freedom 5 = 6− 1, where 6 is the total number of free variables (the frequencies of each number being face
up) and the minus 1 is from the degree of freedom in H0 : there is only one frequency in H0 (the average
frequency). Thus, the p-value in this case is about 0.02.

Essentially, the Pearson’s χ2 test for the goodness-of-fit test uses the same test statistic as for the inde-
pendence test. The challenging part is to determine the number of degree of freedom of the reference χ2

distribution. Here is a simple rule for calculating the degree of freedom: it is the number of total free
parameters minus the number of free parameter in H0.

5https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
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