
STAT 425: Introduction to Nonparametric Statistics Winter 2018

Lecture 2: CDF and EDF
Instructor: Yen-Chi Chen

2.1 CDF: Cumulative Distribution Function

For a random variable X, its CDF F (x) contains all the probability structures of X. Here are some properties
of F (x):

• (probability) 0 ≤ F (x) ≤ 1.

• (monotonicity) F (x) ≤ F (y) for every x ≤ y.

• (right-continuity) limx→y+ F (x) = F (y), where y+ = lim
ε>0,ε→0

y + ε.

• limx→−∞ F (x) = F (−∞) = 0.

• limx→+∞ F (x) = F (∞) = 1.

• P (X = x) = F (x)− F (x−), where x− = lim
ε<0,ε→0

x+ ε.

Example. For a uniform random variable over [0, 1], its CDF

F (x) =

∫ x

0

1 du = x

when x ∈ [0, 1] and F (x) = 0 if x < 0 and F (x) = 1 if x > 1.

Example. For an exponential random variable with parameter λ, its CDF

F (x) =

∫ x

0

λe−λudu = 1− e−λx

when x ≥ 0 and F (x) = 0 if x < 0. The following provides the CDF (left) and PDF (right) of an exponential
random variable with λ = 0.5:
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Why do we care about the CDF? Why not just use the PDF or PMF? CDF is the actual quantity that
defines the probability structure of a random variable. The PDF exists only when the RV is continuous and
the PMF exists when the RV is discrete. But CDF always exists – it is a unified quantity regardless of the
RV being continuous or discrete. Moreover, there are cases where the neither PDF nor PMF exist.

Example. X is a random variable such that with a probability of 0.5, it is from a uniform distribution over
the interval [0, 1] and with a probability of 0.5 it takes a fixed value 0.5. Such X does not have a PDF nor
a PMF but its CDF still exists (think about what does its CDF look like).

In the two-sample test, the PX and PY in the hypothesis H0 : PX = PY are actually the CDF of the sample
of X and the CDF of the sample of Y . Essentially, the two-sample test is to determine if the two CDFs are
the same or not.

2.2 EDF: Empirical Distribution Function

Let first look at the function F (x) more closely. Given a value x0,

F (x0) = P (Xi ≤ x0)

for every i = 1, · · · , n. Namely, F (x0) is the probability of the event {Xi ≤ x0}.

A natural estimator of a probability of an event is the ratio of such an event in our sample. Thus, we use

F̂n(x0) =
number of Xi ≤ x0

total number of observations
=

∑n
i=1 I(Xi ≤ x0)

n
=

1

n

n∑
i=1

I(Xi ≤ x0) (2.1)

as the estimator of F (x0).

For every x0, we can use such a quantity as an estimator, so the estimator of the CDF, F (x), is F̂n(x). This

estimator, F̂n(x), is called the empirical distribution function (EDF).

Example. Here is an example of the EDF of 5 observations of 1, 1.2, 1.5, 2, 2.5:
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There are 5 jumps, each located at the position of an observation. Moreover, the height of each jump is the
same: 1

5 .
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Example. While the previous example might not be look like an idealized CDF, the following provides a
case of EDF versus CDF where we generate n = 100, 1000 random points from the standard normal N(0, 1):
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The red curve indicates the true CDF of the standard normal. Here you can see that when the sample size
is large, the EDF is pretty close to the true CDF.

2.2.1 Property of EDF

Because EDF is the average of I(Xi ≤ x), we now study the property of I(Xi ≤ x) first. For simplicity, let
Yi = I(Xi ≤ x). What is the random variable Yi?

Here is the breakdown of Yi:

Yi =

{
1, if Xi ≤ x
0, if Xi > x

.

So Yi only takes value 0 and 1–so it is actually a Bernoulli random variable! We know that a Bernoulli
random variable has a parameter p that determines the probability of outputing 1. What is the parameter
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p for Yi?
p = P (Yi = 1) = P (Xi ≤ x) = F (x).

Therefore, for a given x,
Yi ∼ Ber(F (x)).

This implies

E(I(Xi ≤ x)) = E(Yi) = F (x)

Var(I(Xi ≤ x)) = Var(Yi) = F (x)(1− F (x))

for a given x.

Now what about F̂n(x)? Recall that F̂n(x) = 1
n

∑n
i=1 I(Xi ≤ x) = 1

n

∑n
i=1 Yi. Then

E
(
F̂n(x)

)
= E(I(X1 ≤ x)) = F (x)

Var
(
F̂n(x)

)
=

∑n
i=1 Var(Yi)

n2
=
F (x)(1− F (x))

n
.

What does this tell us about using F̂n(x) as an estimator of F (x)?

First, at each x, F̂n(x) is an unbiased estimator of F (x):

bias
(
F̂n(x)

)
= E

(
F̂n(x)

)
− F (x) = 0.

Second, the variance converges to 0 when n→∞. By Lemma 0.3, this implies that for a given x,

F̂n(x)
P→ F (x).

i.e., F̂n(x) is a consistent estimator of F (x).

In addition to the above properties, the EDF also have the following interesting feature: for a given x,

√
n
(
F̂n(x)− F (x)

)
D→ N(0, F (x)(1− F (x))).

Namely, F̂n(x) is asymptotically normally distributed around F (x) with variance F (x)(1− F (x)).

Example. Assume X1, · · · , X100 ∼ F , where F is a uniform distribution over [0, 2]. Questions:

• What will be the expectation of F̂n(0.8)?

−→ E
(
F̂n(0.8)

)
= F (0.8) = P (x ≤ 0.8) =

∫ 0.8

0

1

2
dx = 0.4.

• What will be the variance of F̂n(0.8)?

−→ Var
(
F̂n(0.8)

)
=
F (0.8)(1− F (0.8))

100
=

0.4× 0.6

100
= 2.4× 10−3.

Remark. The above analysis shows that for a given x,

|F̂n(x)− F (x)| P→ 0.
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This is related to the pointwise convergence in mathematical analysis (you may have learned this in STAT
300). We can extend this result to a uniform sense:

sup
x
|F̂n(x)− F (x)| P→ 0.

However, deriving such a uniform convergence requires more involved probability tools so we will not cover
it here. But an important fact is that such a uniform convergence in probability can be established under
some conditions.

Question to think: Think about how to construct a 95% confidence interval of F (x) for a given x.

2.3 Inverse of a CDF

Let X be a continuous random variable with CDF F (x). Let U be a uniform distribution over [0, 1]. Now
we define a new random variable

W = F−1(U),

where F−1 is the inverse of the CDF. What will this random variable W be?

To understand W , we examine its CDF FW :

FW (w) = P (W ≤ w) = P (F−1(U) ≤ w) = P (U ≤ F (w)) =

∫ F (w)

0

1 dx = F (w)− 0 = F (w).

Thus, FW (w) = F (w) for every w, which implies that the random variable W has the same CDF as the
random variable X! So this leads a simple way to generate a random variable from F as long as we know
F−1. We first generate a random variable U from a uniform distribution over [0, 1]. And then we feed the
generated value into the function F−1. The resulting random number, F−1(U), has a CDF being F .

This interesting fact also leads to the following result. Consider a random variable V = F (X), where F is
the CDF of X. Then the CDF of V

FV (v) = P (V ≤ v) = P (F (X) ≤ v) = P (X ≤ F−1(v)) = F (F−1(v)) = v

for any v ∈ [0, 1]. Therefore, V is actually a uniform random variable over [0, 1].

Example. Here is a method of generating a random variable X from Exp(λ) from a uniform random variable
over [0, 1]. We have already calculated that for an Exp(λ), the CDF

F (x) = 1− e−λx

when x ≥ 0. Thus, F−1(u) will be

F−1(u) =
−1

λ
log(1− u).

So the random variable

W = F−1(U) =
−1

λ
log(1− U)

will be an Exp(λ) random variable.
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2.4 Applications in Testings

Going back to the two-sample test problem, because H0 : PX = PY is essentially testing H0 : FX = FY , we
can use EDF to estimate both FX and FY and then carry out the test. Before we describe the two-sample
test, we first study a simpler case – one-sample test problem – testing against a known distribution. This
problem is also known as the goodness-of-fit test. Later we will discuss how to generalize to two-sample test.

2.4.1 Goodness-of-fit Test

Sometimes we have only one sample and the goal is to determine if this sample is from a known distribution.
Say we want to test if a collection of values are from a normal distribution. Then we can use the one-sample
test or goodness-of-fit test approach.

Assume that we want to test if X1, · · · , Xn are from an known distribution F0 (goodness-of-fit test), i.e.,

H0 : X1, · · · , Xn ∼ F0.

There are three approaches for testing if they are from F0:

• The first one is called KS test (Kolmogorov–Smirnov test)1, where the test statistic is the KS-statistic

TKS =
√
n sup

x
|F̂n(x)− F0(x)|.

The idea is: when H0 is correct, F̂n should converge to F0 for every point2. Thus, we just choose the
largest deviation between the EDF and the CDF suggested by H0. Note that there is a known limiting
distribution of the test statistic TKS called the Kolmogorov distribution so the test can be carried out
very quickly using many statistical softwares.

• The second approach is the Cramér–von Mises test3, which uses the Cramér–von Mises statistic as the
test statistic

TCM = n

∫ (
F̂n(x)− F0(x)

)2
dF0(x).

If H0 is correct, this quantity should be around 0 and if we do not scale it by n, it should converge to
0. Such a test statistic also has a known limiting distribution so the actual test is to compare to the
limiting distribution. Note that the integrated squared difference between two functions is also known
as the L2(P0) distance for functions.

• The third approach is the Anderson-Darling test4 and the test statistic is

TAD = n

∫ (
F̂n(x)− F0(x)

)2
F0(x)(1− F0(x))

dF0(x).

In a sense, this test statistic is just a weighted version of the statistic used in Cramér–von Mises test.
The weight comes from the fact that under H0, the variance of

√
nF̂n(x) is F0(x)(1 − F0(x)). Thus,

the weight is to balance out the variance at each x before integrating them.

The p-values will be computed based on the limiting distribution and the observed test statistic.

1https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
2There are assumptions for such a uniform convergence but it is generally true so we omit the details.
3https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93von_Mises_criterion
4https://en.wikipedia.org/wiki/Anderson%E2%80%93Darling_test

https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93von_Mises_criterion
https://en.wikipedia.org/wiki/Anderson%E2%80%93Darling_test
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2.4.2 Two-sample Test

Going back to the two-sample test problem. Let X1, · · · , Xn and Y1, · · · , Ym be the two samples we have.
Let F̂X and F̂Y denote the EDFs of the first and the second samples, respectively. In addition, we define
the EDF by treating both samples as the same sample:

Ĥ(t) =
nF̂X(t) +mF̂Y (t)

n+m
=

1

n+m

 n∑
i=1

I(Xi ≤ t) +

m∑
j=1

I(Yj ≤ t)

 .

• The KS test (Kolmogorov–Smirnov test) will be using

TKS =

√
nm

n+m
sup
x
|F̂X(t)− F̂Y (t)|.

• The Cramér–von Mises test is based on

TCM =
nm

n+m

∫ (
F̂X(t)− F̂Y (t)

)2
dĤ(t).

• The Anderson-Darling test is using

TAD =
nm

n+m

∫ (
F̂X(t)− F̂Y (t)

)2
Ĥ(t)(1− Ĥ(t))

dĤ(t).
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