
STAT 425: Introduction to Nonparametric Statistics Winter 2018

Lecture 1: Robust Two-Sample Test
Instructor: Yen-Chi Chen

1.1 Introduction

In many problems, we would like to test if two samples are coming from the same population. This is a
common scenario in scientific studies. For instance, if a research lab invented a new drug for curing a disease,
they will often do a clinical trial to test if this. In a clinical trial, the researchers will recruit a couple of
patients and then randomized them into two groups: a control group and a treatment group. For individuals
in the control group, they will receive a placebo whereas the individuals in the treatment group will receive
the actual drug. After a couple of weeks, the patients will be asked to come back and the researchers will
examine disease characteristics of each individuals. Finally, they will compare the responses from the control
group versus the treatment group and test if the responses are different.

For simplicity, we assume that we have equal sample size in both control and treatment group. The above
problem can be formulated as having two sets of observations

SX = X1, · · · , Xn ∼ PX

SY = Y1, · · · , Ym ∼ PY ,

where Xi’s denote the response of individuals in the control group and Yi’s are the response of individuals
in the treatment group. The quantities n,m are the sample sizes. Namely, we assume that these responses
are from two populations: the population of those taking placebo PX and the population of those taking the
drug PY .

If the drug has no influence on the diseases, then there should be no difference between the two populations.
Namely, PX = PY if the drug has no effect. Thus, the two-sample test problem is to test

H0 : PX = PY . (1.1)

Testing equation (1.1) might be non-trivial because both PX and PY are functions (they are cumulative
distribution functions). Thus, many methods will test certain characteristics of the cumulative distribution
function. For instance, the t-test1 (or Z-test) will test

H0 : µX = µY , (1.2)

where µX , µY are the mean of PX and PY , respectively. Two-sample tests based on comparing the mean is
often called a mean test.

However, testing the mean has a potential problem – when there are outliers, the power will be low. Namely,
even the two samples are clearly very different from each other, we often are still unable to reject them.
Consider the following very simple example:

SX = −2,−1,−1, 0,−2,−1, 0,−1,−2, 100

SY = 7, 13, 11, 5, 14, 9, 8, 10, 12, 11.
(1.3)

1I assume you all know t-test. If you are not familiar with it, please read some related materials.
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The sample average of both sample are 9 but you can clearly see that except the last observation of SX , all
other observations of SX are smaller than SY . Thus, the t-test or other mean tests fail in this case!

The mean tests are not ideal when the outliers are present. In the next few sections, we are going to introduce
a few new methods that are much more robust to outliers. We will consider two common scenarios in two-
sample tests: paired sample and non-paired sample. Paired sample means that for each i, the observation
in the first sample Xi and the observation in the second sample Yi are paired. This often occurs in medical
research where Xi is some pre-drug biomarker whereas Yi is the post-drug biomarker. Note that in the
paired sample, m = n.

1.2 Paired Sample: Sign Test

In the paired sample case, a common method is to introduce a new set of variables Z1, · · · , Zn, where
Zi = Yi −Xi for each i = 1, · · · , n. Under the H0 in equation (1.1), PX = PY so the difference Zi is coming
from a distribution with 0 mean and 0 median.

Sign test utilizes the fact that the distribution of Zi has 0 median. This implies that the chance of having
positive value and the chance of having negative value of Zi are the same: 0.5 (we assume that the two
samples are from a continuous distribution). Thus, if we count the number of Zi’s being positive, this
number should follow a binomial distribution Bin(n, 0.5) under H0. Let this number be T .

In the example at the beginning, we have

SZ = −9,−14,−12,−5,−16,−10,−8,−11,−14, 89.

There are only one of them has a positive sign. Thus, T = 1 in our case.

If H0 is correct, the number of positive difference should be around n/2 (half of the sample size). The
number being very small (≈ 0) or very large (≈ n) are both evidences against H0. A simple way to compute
a p-value using T is to calculate the probability of observing a more extreme event again H0 than what is
observed. In our case, we see T = 1 so a more extreme event is T = 0 and each of them corresponds to a
probability

P (T = 1) =

(
10
1

)
210

, P (T = 0) =

(
10
0

)
210

.

However, T ≈ 10 is also against H0 so here we need to do a two-sided test. Thus, the p-value will be two
times the sum of the above two probabilities, which is

pvalue1 = 2(P (T = 1) + P (T = 0)) =
22

1024
≈ 2.15%.

We can use asymptotic normality to carry this test as well. If H0 is correct, then T will follow Bin(n, 0.5),
which is approximately normal with N(n/2, n/4). Thus, we can use

T∗ =
T − n/2√

n/4

as out test statistic. T∗ will follow a standard normal distribution so the p-value can be computed using

pvalue2 = 2P (N(0, 1) ≥ |T∗|) ≈ 1.14%.

You may notice that p-values are from the two methods are slightly different. The former one is the exact
p-value whereas the later one (using normal distribution) is an asymptotic approximation. When the sample
size is small, the asymptotic approximation may not be very accurate.
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Assumptions (Sign Test).

• The data is paired.

• Every pair of observations is IID from an unknown continuous distribution function.

Note that the sign test allows for ordinal data.

1.3 Paired Sample: Signed-Rank Test

The sign test has a powerful extension that incorporates the information of ‘rank’. This extension is called
the signed-rank test, also known as Wilcoxon signed-rank test. It assumes a little bit more assumptions about
the the distribution of the differences Zi: symmetric. The signed-rank test requires that the distribution of
Zi is symmetric.

In our case, we have Z1, · · · , Zn, n differences. Let sgn(Zi) denotes the sign of Zi (+1 or −1). Now we
define a new variable Ri = rank(|Zi|), where Ri = 1 means that Zi is the smallest value of |Z1|, · · · , |Zn| and
Ri = n implies that Zi is the largest value.

The signed-rank test uses a test statistic

W =

n∑
i=1

sgn(Zi)Ri.

Namely, W is the signed-rank sum. Under H0, the median of Zi is 0, so W should be close to 0. We can
then use the limiting distribution of W to test if the median is 0 or not. Note that because we assume that
the distribution of Z is symmetric, the mean and median are the same.

Under H0, the variance of W is

Var(W ) =
n(n+ 1)(2n+ 1)

6

and
W√

Var(W )

D→ N(0, 1).

Thus, the p-value can be computed using

pvalue = 2P

(
N(0, 1) ≥

∣∣∣∣∣ (W − 0)√
Var(W )

∣∣∣∣∣
)

= 2P

(
N(0, 1) ≥

√
6W 2

n(n+ 1)(2n+ 1)

)
.

Now, going back to our example:

Zi -9 -14 -12 -5 -16 -10 -8 -11 -14 89
sgn(Zi) -1 -1 -1 -1 -1 -1 -1 -1 -1 +1
Ri 3 7.5 6 1 9 4 2 5 7.5 10

Thus, W = −35, leading to a p-value 2P
(
N(0, 1) ≥

√
6W 2

n(n+1)(2n+1)

)
≈ 7.45%.

Assumptions (Signed-Rank Test).
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• The data is paired.

• Every pair of observations is IID from an unknown continuous distribution function.

Although the signed-rank test has a better power of testing H0 compared to the signed test, the signed test
works for general ordinal data whereas signed-rank test will not (think about why).

1.4 Non-paired Sample: Rank-Sum Test

In the previous two cases, we focus on paired sample. When the two samples are not paired, we can no longer
use the sign test or the signed-rank test. However, there is still a robust approach for performing a two-
sample test – the rank-sum test. The rank-sum test has several names. It is also called the MannWhitney
U test, MannWhitneyWilcoxon (MWW), Wilcoxon rank-sum test, and WilcoxonMannWhitney test. The
rank-sum test directly test the null hypothesis H0 : PX = PY .

The idea of the rank-sum test is similar to the signed-rank test but now we do not use the sign. Instead, we
pull both samples together and compute the rank of each observation. Then we compute the summation of
rank in one sample (the summation of rank in the other sample will also be determined). The summation
of ranks will be our test statistics.

Recall that our original two samples are X1, · · · , Xn and Y1, · · · , Ym. We pull them together to form a
new data D1, · · · , Dn+m such that Di = Xi for i = 1, · · · , n and Di = Yi−n for i = n + 1, · · · , n + m.
Essentially, we just concatenating the two samples to form a new one. Then let S1, · · · , Sn+m be the rank of
D1, · · · , Dn+m. Again, a smaller rank means a lower value whereas a higher rank indicates a higher value.

Before we formulate our test statistic, consider the following two statistics:

Q1 =

n∑
i=1

Si, Q2 =

n+m∑
i=n+1

Si.

Q1 is the sum of ranks in SX while Q2 is the sum of ranks in SY . Note that Q1 +Q2 = (n+m)(n+m+1)
2 .

Now we define two statistics:

U1 = Q1 −
n(n+ 1)

2
, U2 = Q2 −

m(m+ 1)

2
.

We can use any of them as our test statistic because U1 + U2 = n ·m. You can view U` as the “joint rank
sum” (two sample jointly) minus individual group rank-sum (using only one sample). U` has several nice
properties:

E(U`) =
nm

2
, Var(U`) =

nm(n+m+ 1)

12
2,

and
U` − E(U`)√

Var(U`)

D→ N(0, 1).

Thus, we can use this asymptotic distribution to test H0. Essentially, the p-value will be

pvalue = 2P

(
|N(0, 1)| ≥ U1 − E(U1)√

Var(U1)

)
= 2P

|N(0, 1)| ≥
U` − nm

2√
nm(n+m+1)

12

 .
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10
value -2 -1 -1 0 -2 -1 0 -1 -2 100 7 13 11 5 14 9 8 10 12 11
Si 2 5.5 5.5 8.5 2 5.5 8.5 5.5 2 20 11 18 15.5 10 19 13 12 14 17 15.5

Again, we turn to our example in equation (1.3): Using the above table, Q1 = 65 so U1 = 65 − 55 = 10.
Thus, the p-value is

pvalue = 2P

(
|N(0, 1)| ≥ 10− 50√

175

)
≈ 0.25%.

Assumptions (Rank-Sum Test).

• All observations are independent from each other.

• Observations within the same sample are IID.

The rank-sum test requires much weaker assumptions compared to the signed-rank test or signed test. And
it also works for ordinal data. However, in general, the rank-sum test is a consistent test (power goes to
infinity when the sample size goes to infinity) if P (X > Y ) 6= P (Y > X). Namely, the distribution of one
dataset is stochastically greater than the distribution of the other.

1.5 Median Test: One Sample Case

We end this section with a simple application of the median. We will consider testing the median in a
one-sample problem. Namely, we only have one sample and our goal is to test if the median equals to certain
value. Assume that we observe a sample

SX = −2,−1,−1, 0,−2,−1, 0,−1,−2, 100.

Now we want to test

H0 : mX = 9.

How should we test this statement?

If H0 is true, then the median is 9, so any observation having a value above 9 is about 50%. We can simply
compute the ratio of observations whose value is above 9. If H0 is correct, the ratio should be around 50%.
In our case, we see that there is only 1 out of 10 observations whose value is above 9.

Well, this could be cause by purely sampling error. So to see how unlikely our observation is, we compute
its p-value. The p-value is the chance of observing a more extreme event than what we have observed, which
corresponds to 0 out of 10 and 1 out of 10 observations whose value is above 9.

P (0 out of 10) =
1

210
, P (1 out of 10) =

10

210
.

Notice that we need to do a two-sided test here (think about why), so the p-value will be 2 times the sum
of the above two probabilities, which is

pvalue = 2× (P (0 out of 10) + P (1 out of 10)) =
22

1024
≈ 2.15%.

2Note that this result is assuming no ties in the data. When there are ties, there will be some modification for the variance.
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Essentially, the median test is based on the powerful property that under H0, any observations being greater
than or less than the median value is 0.5. Then we just need to apply combinatorial methods to compute
the p-value.

Here is a description about a general form of the median test. Assume we observe Z1, · · · , Zn ∼ PZ and we
want to test

H0 : mZ = m0.

Then we first count the number of observations such that

T =

n∑
i=1

I(Zi ≥ m0),

where I(·) is an indicator function such that if the input is a true statement, it return 1 and 0 otherwise.
Namely, T is the number of observations whose value is above or equal to the median. Because both large
T and small T are the case where H0 is unlikely to be true, we use a symmetrized test statistic

T∗ =

{
T if T ≤ n/2
n− T if T > n/2.

The p-value will then be

pvalue =
2×

∑T∗
`=0

(
n
`

)
2n

.
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