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17.1 Introduction

Model selection is a central topic in statistics and machine learning. The abstract idea is: given a data and
a set of possible models, we want to choose the model that ‘best’ fits the data. Here the ‘best’ is generally
refer to subject to some measure of fitness (e.g., risk function).

It is a topic that occurs in both parametric and nonparametric methods.

Here are some examples about model selection:

Example 1 (density estimation): Given X1, · · · , Xn from an unknown distribution P . Now we have
three possible models:

M1 : P is a normal distribution

M2 : P is a gamma distribution

M3 : P is a Cauchy distribution.

The question is: which model that best fits the data?

Example 2 (regression): In a regression problem with 2 covariates X1 and X2. Let the regression function

m(x) = E(Y |X = x).

Assume that we consider a linear model (linear regression). Depending on if we allow each covariate to
contribute to the regression function, there are 4 possible models:

M1 : m(x) = β0

M2 : m(x) = β0 + β1x1

M3 : m(x) = β0 + β2x2

M4 : m(x) = β0 + β1x1 + β2x2.

The model selection is to choose the right model among these 4 candidates.

Example 3 (classification): Assume in a binary classification problem, we observe IID

(X1, Y1), · · · , (Xn, Yn).

We apply a decision tree model and let Mk denotes the collection of decision trees with k leaves. Now we
have a sequence of competing models:

M1,M2, · · · .

The question is to ask: which model will be the best one in predicting future class label?
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17.2 Cross-Validation

The cross-validation (CV) is a method for selecting the model that has good predictive power over several
possible candidates. Essentially, it is a method for estimating the risk of a model so it can be applied to not
only the model selection but also the selection of a tuning parameter.

The cross-validation can be viewed as an extension of the data-splitting technique we have discussed in the
previous lecture. For simplicity, we consider the example of decision tree and our data is

(X1, Y1), · · · , (Xn, Yn).

The goal is to choose the best model (number of leaves) for predicting future labels. Thus, the problem is
like Example 3 where the models are

M1,M2, · · ·

and each Mk is a decision tree with k leaves. The measure the prediction accuracy, we use the 0 − 1 loss
and the risk function becomes a good measure of success. Let

R(k) = min
c∈Mk

R(c) = min
c∈Mk

E(L(c(x), y)).

Leave-one-out CV (LOO-CV). The LOO-CV do a data splitting n times and for the j-th time, we use
the following training data and validation data:

Dval,j = {(Xj , Yj)},
Dtr,j = {(X1, Y1), · · · , (Xj−1, Yj−1), (Xj+1, Yj+1), · · · , (Xn, Yn)}.

Namely, the validation set is just the j-th observation whereas the training set is all but the j-th observation.
This is like leaving the j-th observation out of the training set so that is why it is called ‘leave-one out’. Let
the classifier ĉj be the classifier learned from the dataset Dtr,j . The estimated risk using the validation set
can be simply written as

R̂j(k) = L(ĉj(Xj), Yj).

Because we have j = 1, · · · , n, totally n estimated risk. We will use their average as an estimate of R(k),
which can be written as

R̂LOO(k) =
1

n

n∑
j=1

R̂j(k).

By applying this method to each k = 1, · · · , we obtain an estimated risk for each model. Then we choose
the model Mk̂ by

k̂ = argminkR̂LOO(k).

k-fold CV. Another popular version of CV is the K-fold CV. We randomly split the data into K equal size
groups. Each time we leave out one group and use the other K-1 groups to construct our estimator. Then
we use the left out group to evaluate the risk. Repeat this procedure many times and take the average as
the risk estimator R̂(k). Figure 17.2 summarizes how to apply a K-fold CV for decision tree.

After computing R̂K−fold(k) for each k, we then choose the model Mk̂ such that

k̂ = argminkR̂K−fold(k).
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K-fold Cross-Validation for Decision Tree.

1. Randomly split D = {(X1, Y1), · · · , (Xn, Yn)} into K groups: D1, · · · ,DK .

2. For `-th group, use D` as the validation set and treat the others as training set. Namely,
construct the estimator ĉ(`) using all the data except `-th group.

3. Evaluate the error by

R̂(`)(k) =
1

n`

∑
(Xi,Yi)∈D`

L(ĉ(`)(Xi), Yi)

4. Compute the average error

R̂∗(k) =
1

K

K∑
`=1

R̂(`)(k).

5. Repeat the above 4 steps N times, leading to N average errors

R̂∗(1)(k), · · · , R̂∗(N)(k).

6. Estimate R(k) via

R̂K−fold(k) =
1

N

N∑
m=1

R̂∗(m)(k).

17.3 Penalty

In addition to the cross-validation, another comment approach of model selection is to use the penalty
function we are familiar with. The idea is: for each model Mk, we assign a penalty value P(k) to it such
that a complex model has a higher penalty value whereas a simple model has a lower penalty value. And
the goal is to choose the model Mk̂ such that

k̂ = argminkR̂n(k) + P(k),

where R̂n(k) = argminc∈Mk

1
n

∑n
i=1 L(c(Xi), Yi).

When the model is related to the number of variables (such as the problem in example 2), the penalty
function is often chosen proportional to the number of variable being used. For instance, when Mk denotes
the models using k variables, the famous AIC criterion1 uses P(k) = 2k

n as the penalty and the BIC criterion2

uses P(k) = k logn
n .

1https://en.wikipedia.org/wiki/Akaike_information_criterion
2https://en.wikipedia.org/wiki/Bayesian_information_criterion
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