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Lecture 16: Learning Theory: Empirical Risk Minimization
Instructor: Yen-Chi Chen

16.1 Introduction

Recall that in (binary) classification problem, we observe

(X1, Y1), · · · , (Xn, Yn)

that are IID from some distribution P and each Yi is a binary class label, i.e. Y = 0 or 1 and each
Xi ∈ X ⊂ Rd contains d variables/features/covariates.

A classifier c : X 7→ {0, 1} is a function such that the input is the feature of a new observation (without
label) and then the output is a predicted class label.

To measure the quality of our classifier, we use a loss function L(c(x), y) and a common loss function is the
0 − 1 loss, which is L(c(x), y) = I(c(x) 6= y). Note that the MLE method for the logistic regression uses
another loss function. The expected loss is the risk function

R(c) = E(L(c(X), Y )),

where (X,Y ) ∼ P. R(c) is the expected loss for the future prediction.

Let C be a collection of classifiers, we want to find the one c∗ ∈ C such that the risk function is minimized,
i.e.,

c∗ = argminc∈CR(c).

This classifier is called the Bayes classifier and it it is the one with the best predictive performance for the
future data.

Because R(c) is an unknown quantity, so a sample analogue is

R̂n(c) =
1

n

n∑
i=1

L(c(Xi), Yi).

R̂n(c) is called the empirical risk. By the law of large number, R̂n(c)−R(c) = oP (1) for any given c.

The empirical risk minimization (ERM) is to find the classifier c∗ by minimizing the empirical risk

ĉ = argminc∈CR̂n(c). (16.1)

As we have seen in the past few lectures, the ERM may not work because we not only need R̂n(c)−R(c) ≈ 0

for a given c but also R̂n(c)−R(c) ≈ 0 uniformly for all c ∈ C. Namely, we need

sup
c∈C
|R̂n(c)−R(c)| = oP (1). (16.2)

When C contains only finite number of classifiers, say N classifiers, then Hoeffding’s inequality shows that

sup
c∈C
|R̂n(c)−R(c)| = OP

(√
logN

n

)
,
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so as long as N is not too large compared to the sample size n, we eventually have (16.2).

Even when C contains infinite number of classifiers, as long as its VC dimension is not too large, the VC
theory tells us that

sup
c∈C
|R̂n(c)−R(c)| = OP

(√
ν

log n

n

)
,

where ν is the VC dimension of C (which is often a fixed number).

16.2 Excess Risk

Recall that the excess risk of a classifier c is defined as

E(c) = R(c)−R(c∗) = R(c)−min
c∈C

R(c).

Namely, the excess risk describes the amount of decreased performance of a classifier c compared to the
Bayes classifier c∗.

If a classifier ĉn is from the ERM (equation (16.1)), how will its excess risk be like? It turns out that we can
control the excess risk using the uniform error bound

εn = sup
c∈C
|R̂n(c)−R(c)|.

Because ĉ is the minimizer of R̂n(c),

R̂n(ĉ) ≤ R̂n(c)

for any classifier c ∈ C, including c∗. Thus,

R̂n(ĉ) ≤ R̂n(c∗).

Because εn is the uniform bound, which implies

|R̂n(ĉ)−R(ĉ)| ≤ εn, |R̂n(c∗)−R(c∗)| ≤ εn.

This further implies

R(ĉ) ≤ R̂n(ĉ) + εn

≤ R̂n(c∗)︸ ︷︷ ︸
≤R(c∗)+εn

+εn

≤ R(c∗) + 2εn

and
E(ĉ) = R(ĉ)−R(c∗) ≤ 2εn = 2× sup

c∈C
|R̂n(c)−R(c)|.

Namely, the excess risk of a classifier from ERM is no more than 2 times the uniform error.

So when the uniform error εn converges to 0, the excess risk converges to 0, implying that the classifier ĉ is
as good as the Bayes classifier.

Moreover, the distribution of εn can be used to construct a confidence interval for the Bayes risk R(c∗) =
minc∈C R(c). Let t1−α be the 1− α upper quantile of εn, i.e,

P (εn ≤ t1−α) = 1− α.
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Recall that to construct a CI, we often need a lower bound and an upper bound.

Because

R̂n(ĉ) ≤ R̂n(c∗) ≤ R(c∗) + εn,

a lower bound of R(c∗) can be obtained by

R̂n(ĉ)− εn ≤ R(c∗).

For the upper bound,

R(c∗) ≤ R(ĉ) ≤ R̂n(ĉ) + εn.

Thus, we conclude that

R̂n(ĉ)− εn ≤ R(c∗) ≤ R̂n(ĉ) + εn.

Namely,

|R(c∗)− R̂n(ĉ)| ≤ εn.

Thus, a 1− α CI of the Bayes risk R(c∗) is[
R̂n(ĉ)− t1−α, R̂n(ĉ) + t1−α

]
.

16.3 Data Splitting

After finding a classifier ĉ from the ERM, we may be interested in the actual performance of this estimator
R(ĉ). The empirical R̂n(ĉ) may be misleading because we choose ĉ by minimizing R̂n(·) so in most cases, we
will underestimate the actual risk R(ĉ). Although the uniform bound εn implies that R(ĉ) cannot be larger

than R̂n(ĉ) + εn, the upper bound R̂n(ĉ) + εn may still be quiet large so that it is not useful in practice.

Is there any way we can get a better estimate of R(ĉ)?

In some special case, the answer is yes. Now assume that after training our classifier ĉ, somehow we have
a set of new data that are IID from the same population and are independent of the original data. Let the
new data be

(X∗1 , Y
∗
1 ), · · · , (X∗m, Y ∗m).

Then we can use the new data to evaluate the performance of our classifier, i.e.

R̂∗m(ĉ) =
1

m

m∑
j=1

L(ĉ(X∗j ), Y ∗j ).

Because now the classifier ĉ is fixed and the new data is independent of the classifier ĉ,

R̂∗m(ĉ)−R(ĉ) = OP

(√
1

m

)

and E(R̂∗m(ĉ)|ĉ) = R(ĉ), implying that R̂∗m(ĉ) is an unbiased estimator of R(ĉ).

Thus, as long as we have a set of new data, the empirical risk on the new dataset is an unbaised estimator
of the actual risk.
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However, in reality we may not have a new dataset, what can we do? A simple approach is to create the
new dataset by splitting the original data set. Namely, we will random split

D = {(X1, Y1), · · · , (Xn, Yn)}

into DTr and DV al where
D = DTr ∪ DV al, DTr ∩ DV al = ∅.

Namely, some observations are in DTr while some are in DV al and each observation is either in DTr or DV al.
We will call DTr the training set and DV al the validation set.

We then apply ERM of DTr to find the classifier ĉ and then evaluate its performance on DV al. Namely,
we are treating the training set as our original data and the validation set as the new data. Indeed, both
datasets are independent of each other and they are from the same population so the analysis above can be
applied in this case. This technique is called data splitting and is a common way when we have a multi-stage
estimation procedure (here we have two stages, the first stage is finding the classifier ĉ and the second stage
is estimating the risk R(ĉ)).

By using the data splitting, we obtain a good classifier with a good estimate about its performance.
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