
STAT 425: Introduction to Nonparametric Statistics Winter 2018

Lecture 15: Learning Theory: Concentration Inequalities
Instructor: Yen-Chi Chen

15.1 Introduction

Recall that in the lecture on classification, we have seen that empirical risk may not (uniformly) converge to
the actual risk. And we want a bound of the type

sup
c∈C
|R̂n(c)−R(c)| = something converges to 0 in probability (15.1)

so that we can use the empirical risk minimization to train our classifier.

How do we achieve this? In the normal means model, we have seen that if we have N IID normal with
mean 0 and standard deviation σ2, then the maximal error is at rate O(σ2

√
logN). This implies that if

σ2 = σ2
n → 0, the maximal value of many normal still converges to 0.

The empirical risk R̂n(c) is a sample average of the risk evaluated at observations. Thus, we do have

R̂n(c)−R(c) ≈ N
(

0,
σ2(c)

n

)
for some σ2(c). The variance σ2(c)

n does converge to 0. Thus, as long as Therefore, as long as we do not
have too many classifiers being considered, i.e, number of element in C is not too large, we should be able to
derive a uniform convergence.

In what follows, we introduce a method called Hoeffding’s inequality that allows us to derive equation (15.1)
without using any normal distribution approximation.

15.2 Hoeffding’s Inequality

For bounded IID random variables, the Hoeffding’s inequality is a powerful to bound the behavior of their
average.

We first start with a property of a bounded random variable.

Lemma 15.1 Let X be a random variable with E(X) = 0 and a ≤ X ≤ b. Then

E(etX) ≤ et
2(b−a)2/8

for any positive number t.

Proof: We will use the fact that x 7→ etx is a convex function for all positive t. Recall that a function g(x)
is a convex function if for any two point a < b and α ∈ [0, 1],

g(αa+ (1− α)b) ≤ αg(a) + (1− α)g(b).
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Because X ∈ [a, b], we define αX to
X = αXb+ (1− αX)a.

This implies

αX =
X − a
b− a

Using the fact that x 7→ etx is convex,

etX ≤ αXetb + (1− αX)eta =
X − a
b− a

etb +
b−X
b− a

eta.

Now taking the expectation in both sides,

E(etX) ≤ E(X)− a
b− a

etb +
b− E(X)

b− a
eta =

b

b− a
eta − a

b− a
etb = eg(s), (15.2)

where s = t(b− a) and g(s) = −γs+ log(1− γ + γes) and γ = −a/(b− a). Note that g(0) = g′(0) = 0 and
g′′(s) ≤ 1/4 for all positive s. Using Taylor’s theorem,

g(s) = g(0) + sg′(0) +
1

2
s2g′′(s∗)

for some s∗ ∈ [0, s]. Thus, we conclude g(s) ≤ 1
2 × s

2 × 1
4 = 1

8s
2.

Then equation (15.2) implies

E(etX) ≤ eg(s) ≤ e s2

8 = e
t2(b−a)2

8 .

With this lemma, we can prove the Hoeffding’s inequality.

Theorem 15.2 Let X1, · · · , Xn be IID with E(X1) = µ and a ≤ X1 ≤ b. Then

P
(
|X̄n − µ| ≥ ε

)
≤ 2e−2nε2/(b−a)2 .

Proof:

We first prove that P
(
X̄n − µ ≥ ε

)
≤ e−2nε2/(b−a)2 .

Let Yi = Xi − µ. Because the exponential function is monotonic, for any positive r,

P
(
X̄n − µ ≥ ε

)
= P

(
Ȳn ≥ ε

)
= P

(
n∑
i=1

Yi ≥ nε

)
= P

(
e
∑n

i=1 Yi ≥ enε
)

= P
(
et

∑n
i=1 Yi ≥ etnε

)
≤ E(et

∑n
i=1 Yi)

etnε
by Markov’s inequality

= e−tnεE(etY1 · etY2 · · · etYn)

= e−tnεE(etY1) · E(etY2) · · ·E(etYn)

= e−tnεE(etY1)n

≤ e−tnεent
2(b−a)2/8 by Lemma 15.1.
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Because the above inequality holds for all positive t, we can choose t to optimize the bound. To get the
bound as sharp as possible, we would like to make it as small as possible. Thus, we need to find t such that

−tnε+ nt2(b− a)2/8

is minimized. Taking derivatives with respect to t and set it to be 0, we obtain

t∗ =
4ε

(b− a)2

and
−t∗nε+ nt2∗(b− a)2/8 = −2nε2/(b− a)2.

Thus, the inequality becomes

P
(
X̄n − µ ≥ ε

)
≤ e−t∗nεent

2
∗(b−a)2/8 = e−2nε2/(b−a)2 .

The same proof also applies to the case P
(
X̄n − µ ≤ ε

)
and we will obtain the same bound. Therefore, we

conclude that
P
(
|X̄n − µ| ≥ ε

)
≤ 2e−2nε2/(b−a)2 .

An inequality like the one in Theorem 15.2 is called a concentration inequality and this phenomena caused
by this type of inequalities is called concentration of measures – indeed the probability measure of X̄n is
concentrating around µ, its expectation. Concentration inequalities are common theoretical tools in analyzing
the property of a statistic. And they are particularly powerful when applies to estimators and classifiers.

15.2.1 Application in Classification

The Hoeffding’s inequality has a direct application to classification problem Remember that in binary clas-
sification case with 0− 1 loss, the loss at each observation is

L(c(Xi), Yi) = I(c(Xi) 6= Yi),

a bounded random variable with a = 0 and b = 1! The empirical risk

R̂n(c) =
1

n

n∑
i=1

L(c(Xi), Yi)

is an unbiased estimator of E(R̂n(c)) = R(c). Thus, the Hoeffding’s inequality implies that for a given
classifier c,

P (|R̂n(c)−R(c)| ≥ ε) ≤ 2e−2nε2 . (15.3)

A powerful feature of the Hoeffding’s inequality is that it holds regardless of the classifier. Namely, even
if we are considering many different types of classifiers, some are decision trees, some are kNN, some are
logistic regression, they all satisfy equation (15.3).

Assume that the collection of classifier C contains only N classifiers c1, · · · , cN . Then we have

P

(
sup
c∈C
|R̂n(c)−R(c)| ≥ ε

)
= P

(
max

j=1,··· ,N
|R̂n(cj)−R(cj)| ≥ ε

)
≤

N∑
j=1

P
(
|R̂n(cj)−R(cj)| ≥ ε

)
≤ N2e−2nε2 .
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Thus, as long as N · 2e−2nε2 → 0, we have

P

(
sup
c∈C
|R̂n(c)−R(c)| ≥ ε

)
→ 0⇔ sup

c∈C
|R̂n(c)−R(c)| P→ 0,

the desired property we want in equation (15.1).

15.2.2 Convergence Rate

The Hoeffding’s inequality directly implies that

|X̄n − µ| = OP

(
1√
n

)
.

It actually implies a bound on the expectation E|X̄n − µ| as well.

To see this, recall that for a positive random variable T ,

E(T ) =

∫ ∞
0

P (T > t)dt.

Thus, for any positive s,

E
(
|X̄n − µ|2

)
=

∫ ∞
0

P (|X̄n − µ|2 > t)dt

=

∫ ∞
0

P (|X̄n − µ| >
√
t)dt

=

∫ s

0

P (|X̄n − µ| >
√
t)︸ ︷︷ ︸

≤1

dt+

∫ ∞
c

P (|X̄n − µ| >
√
t)︸ ︷︷ ︸

Hoeffding

dt

≤
∫ s

0

1dt+

∫ ∞
c

2e−2nt/(b−a)2dt

= s+
(b− a)2

n
e−ns/(b−a)2 .

It is not easy to optimize this but there are some simple choice that gives a good result. We will choose

s =
2(b−a)2 log 1

b−a

n , which leads to

E
(
|X̄n − µ|2

)
≤

2(b− a)2 log 1
b−a

n
+

1

n
= O

(
1

n

)
.

Finally, using the Cauchy-Schwarz inequality,

E|X̄n − µ| ≤
√
E
(
|X̄n − µ|2

)
= O

(
1√
n

)
, (15.4)

which is the desired bound on the expectation.

In the case of classification, when that the collection of classifier C contains N classifiers, we have

P

(
sup
c∈C
|R̂n(c)−R(c)| ≥ ε

)
≤ N · 2e−2nε2 .
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This implies

sup
c∈C
|R̂n(c)−R(c)| = OP

(√
logN

n

)
.

Moreover, using a similar calculation as we have done for deriving equation (15.4), one can show that

E
(

sup
c∈C
|R̂n(c)−R(c)|

)
= O

(√
logN

n

)
.

15.2.3 Application in Histogram

We have derived the convergence rate for a histogram density estimator at a given point x. However, we
have not yet analyzed the uniform convergence rate of the histogram. Using the Hoeffding’s inequality, we
are able to obtain such a uniform convergence rate.

Assume that X1, · · · , Xn ∼ F with a PDF p that has a non-zero density over [0, 1]. If we use a histogram
with M bins:

B1 =

[
0,

1

M

)
, B2 =

[
1

M
,

2

M

)
, · · · , BM =

[
M − 1

M
, 1

]
.

Let p̂M (x) be the histogram density estimator:

p̂M (x) =
M

n

n∑
i=1

I(Xi ∈ B(x)),

where B(x) is the bin that x belongs to.

The goal is to bound

sup
x
|p̂M (x)− p(x)| .

We know that the difference p̂M (x)− p(x) can be written as

p̂M (x)− p(x) = p̂M (x)− E(p̂M (x))︸ ︷︷ ︸
stochastic variation

+E(p̂M (x))− p(x)︸ ︷︷ ︸
bias

.

The bias analysis we have done in Lecture 6 can be generalized to every point x, so we have

sup
x
|E(p̂N (x))− p(x)| = O

(
1

M

)
.

So we only need to bound the stochastic variation part supx |p̂M (x) − E(p̂M (x))|. Although we are taking
supremum over every x, there are only M bins B1, · · · , BM so we can rewrite the stochastic part as

sup
x
|p̂M (x)− E(p̂M (x))| = max

j=1,··· ,M

∣∣∣∣∣Mn
n∑
i=1

I(Xi ∈ Bj)−MP (Xi ∈ Bj)

∣∣∣∣∣
= M · max

j=1,··· ,M

∣∣∣∣∣ 1n
n∑
i=1

I(Xi ∈ Bj)− P (Xi ∈ Bj)

∣∣∣∣∣ .
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Because the indicator function takes only two values: 0 and 1, we have

P

(
sup
x
|p̂M (x)− E(p̂N (x))| > ε

)
= P

(
M · max

j=1,··· ,M

∣∣∣∣∣ 1n
n∑
i=1

I(Xi ∈ Bj)− P (Xi ∈ Bj)

∣∣∣∣∣ > ε

)

= P

 max
j=1,··· ,M

∣∣∣∣∣ 1n
n∑
i=1

I(Xi ∈ Bj)− P (Xi ∈ Bj)

∣∣∣∣∣ > ε

M︸︷︷︸
=ε′


≤M · 2e−2nε′2

= M · 2e−2nε2/M2

.

Thus,

sup
x
|p̂M (x)− E(p̂M (x))| = OP

(√
M2 logM

n

)
This, together with the uniform bias, implies

sup
x
|p̂M (x)− p(x)| ≤ sup

x
|E(p̂N (x))− p(x)|+ sup

x
|p̂M (x)− E(p̂N (x))|

= O

(
1

M

)
+OP

(√
M2 logM

n

)
.

Note that this bound is not the tightest bound we can obtain. Using the Bernstein’s inequality1, you can
obtain a faster convergence rate:

sup
x
|p̂M (x)− p(x)| = O

(
1

M

)
+OP

(√
M logM

n

)
.

15.3 VC Theory

Hoeffding’s inequality has helped us to partially solve the problem of proving equation (15.1) when the
number of classifiers are fixed. However, in many cases we are working on infinite number of classifiers so
that the Hoeffding’s inequality does not work.

For instance, in the logistic regression, the collection of all possible classifiers is

Clogistic = {c̃β0,β : β0 ∈ R, β ∈ Rd},

where

c̃β0,β(x) = I

(
eβ0+βT x

1 + eβ0+βT x
>

1

2

)
.

The parameters (indices) are β0 ∈ R, β ∈ Rd, both contain infinite number of points (the real line contain
infinite number of points). Thus, the Hoeffding’s inequality will not work in this case.

To overcome this problem, we first think about the performance of the classifier c̃β0,β(x) for different values
of (β0, β). For simplicity, we assume that the classifiers cθ are indexed by a quantity θ ∈ Rp, i.e., there are
p parameters controlling each classifier and let

CΘ = {cθ : θ ∈ Rp}.
1https://en.wikipedia.org/wiki/Bernstein_inequalities_(probability_theory)

https://en.wikipedia.org/wiki/Bernstein_inequalities_(probability_theory)
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In the case of the logistic regression, p = d+ 1 and θ = (β0, β).

Consider two classifiers cθ1 and cθ2 . When θ1, θ2 are close, we will expect their performance to be similar.
Just like in the logistic regression, when two classifiers with similar parameters, their decision boundary (the
boundary between the two class labels) should be similar. Namely, the performance of many classifiers may
be similar to each other so when using the concentration inequality, we do not need to treat all of them as
independent classifiers.

Thus, although there are infinite number of classifiers in CΘ, there might only be a few effetive independent
classifiers. Instead of using the total number of classifiers in constructing a uniform bound, we will use

P

(
sup
c∈C
|R̂n(c)−R(c)| ≥ ε

)
≤ Neff · 2e−2nε2 , (15.5)

where Neff is some measure of effective independent classifiers. In a sense, Neff measures the complexity of
CΘ.

There are many ways of measuring the number of effective independent classifiers such as the covering
number and bracketing number, we will introduce a simple and famous quantity call the VC dimension.

15.3.1 Shattering Number and VC Dimension

In the 0− 1 loss case, given a classifier c, the empirical risk

R̂n(c) =
1

n

n∑
i=1

I(Yi 6= c(Xi))

and the actual risk
R(c) = E(I(Y1 6= c(X1))) = P (Y1 6= c(X1)).

If we define a new random variable Zi = (Xi, Yi), then the event

Yi 6= c(Xi)⇐⇒ Zi ∈ Ac,

for some region Ac that is determined by the classifier c. Thus, we can then rewrite the difference between
the empirical risk and the actual risk as

R̂n(c)−R(c) =
1

n

n∑
i=1

I(Yi 6= c(Xi))− P (Y1 6= c(X1)) =
1

n

n∑
i=1

I(Zi ∈ Ac)− P (Z1 ∈ Ac)).

The uniform bound in equation (15.1) can then be rewritten as

sup
c∈C
|R̂n(c)−R(c)| = sup

c∈C

∣∣∣∣∣ 1n
n∑
i=1

I(Zi ∈ Ac)− P (Z1 ∈ Ac))

∣∣∣∣∣ = sup
A∈A

∣∣∣∣∣ 1n
n∑
i=1

I(Zi ∈ A)− P (Z1 ∈ A))

∣∣∣∣∣ ,
where A = {Ac : c ∈ C} is a collection of regions. Thus, the effective number Neff should be related to how
complex the set A is. If A contains many very different regions, then Neff is expected to be large.

Note that the quantity 1
n

∑n
i=1 I(Zi ∈ A) is just the ratio of our data that falls within the area Ac whereas

the quantity P (Z1 ∈ A) is the probability of observing an random quantity Z1 within the area Ac. Thus,
eventually we are trying to bound the difference between using the ratio of a sample as an estimator of the
probability of falling into a given region, which is the classical problem in STAT 101. However, the challenge
here is that we are considering many many many regions so the problem is much more complicated.
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The VC theory shows the following bound:

P

(
sup
A∈A

∣∣∣∣∣ 1n
n∑
i=1

I(Zi ∈ A)− P (Z1 ∈ A))

∣∣∣∣∣ > ε

)
≤ 8(n+ 1)ν(A)e−nε

2/32. (15.6)

Namely, 8(n + 1)ν(A) = Neff is the effective number we want and the quantity ν(A) is called the VC
dimension of A2 .

To define the VC dimension, we first introduce the concept of shattering. Shattering is a concept about using
sets in a collection of regions R to partition a set of points. Here are some simple examples of R:

1. R1 = {(∞, t] : t ∈ R}. This is related to the uniform bound of the EDF.

2. R2 = {(a, b) : a ≤ b}.

3. R3 = {[x0 − r, x0 + r] : r ≥ 0} for some fixed x0.

4. R4 = {[x0 − r, x0 + r] : r ≥ 0, x0 ∈ R}. Note that the difference between R3 and R4 is that this
collection is much larger than the previous one because the x0 in the previous example is fixed whereas
here x0 is allowed to change.

The above examples are where R contains subregions in 1D. But it can be generalized to other dimensions.
Here are some examples about d-dimension regions:

1. R5 = {(∞, t] × (∞, s] : t, s ∈ R}. In this case, d = 2 and this is related to the performance of a 2D
EDF.

2. R6 = {(a1, b1)× (a2, b2)× · · · × (ad, bd) : aj ≤ bj , j = 1, · · · , d}. In this case the dimension is d.

3. R7 = {B(x0, r) : r ≥ 0}, where B(x0, r) = {x : ‖x − x0‖ ≤ r} is a d-dimensional ball with radius r
centered at x0.

4. R8 = {Bβ,c : β ∈ Rd, c ∈ R}, where Bβ,c = {x : βTx+ c ≤ 0} is the half space in d-dimension. This is
related to the linear classifier or the logistic regression.

Let F = {x1, · · · , xn} ⊂ Rd be a set of points. For a subset G ⊂ F , we say R picks out G if there exists
R ∈ R such that

G = R ∩ F.

Namely, there exists a subregions in R that we can find the subset G by the intersection of F and this
subregion.

Example 1. For example, consider the case d = 1 and R = R1 and let F = {1, 5, 8}. For the case
G = {1, 5}, it can be picked out by R1 because we can choose (−∞, 6] ∈ R1 such that (−∞, 6] ∩ F = G.
Note that the choice may not be unique; (−∞, 7] ∈ R1 also picks up G. However, the subset G′ = {5, 8}
cannot be picked out by any element of R1.

Let S(R, F ) be the number of subsets of F that can be picked out by R. By definition, if F contains n
elements, then S(R, F ) ≤ 2n (because there is at most 2n unique subsets of n elements, including the empty
set).

2Note that the quantity in the exponential part becomes −nε2/32 rather than −2nε2. The rates nε2 are the same but just
the constants are different. This change is due to the fact that we are not just using Hoeffding’s inequality but also another
technique called symmetrization in the proof so the constant changes.
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Example 2. In the case of Example 1, S(R1, F ) is 4 because R1 can only picks out the following subsets:

∅, {1}, {1, 5}, {1, 5, 8}.

However, if we consider R2, the quantity becomes S(R2, F ) = 7. The only case that R2 cannot pick out is
{1, 8}.

Example 3. Now assume that we are working on F ′ = {1, 5}, then S(R1, F
′) = 3 because we can picks out

∅, {1}, {1, 5}

and S(R2, F
′) = 4 = 22 because every subset of F ′ can be picked out.

F is shattered by R if S(R, F ) = 2n, where n is the number of elements in F . Namely, F is shattered by
R if every subset of F can be picked out by R. In Example 2 and 3, we see that F ′ = {1, 5} is shattered by
R2 but F = {1, 5, 8} is not.

The VC dimension of R, denoted as ν(R), is the maximal number of distinct points that can shattered
by R. Namely, if R has a VC dimension ν, then we will be able to find a set of ν points such that R can
pick out every subsets of this set. With the VC dimension, we can then use the equation (15.6) to obtain
equation (15.1).

Here are the VC dimension corresponds to the regions we have mentioned

1. R1 = {(∞, t] : t ∈ R} =⇒ ν(R1) = 1.

2. R2 = {(a, b) : a ≤ b} =⇒ ν(R2) = 2.

3. R3 = {[x0 − r, x0 + r] : r ≥ 0} for some fixed x0 =⇒ ν(R3) = 1 .

4. R4 = {[x0 − r, x0 + r] : r ≥ 0, x0 ∈ R} =⇒ ν(R4) = 2.

5. R5 = {(∞, t]× (∞, s] : t, s ∈ R} =⇒ ν(R5) = 1.

6. R6 = {(a1, b1)× (a2, b2)× · · · × (ad, bd) : aj ≤ bj , j = 1, · · · , d} =⇒ ν(R6) = 2d.

7. R7 = {B(x0, r) : r ≥ 0}, where B(x0, r) = {x : ‖x− x0‖ ≤ r}. =⇒ ν(R7) = 1.

8. R8 = {Bβ,c : β ∈ Rd, c ∈ R} =⇒ ν(R8) = d+ 1.

Example: uniform convergence of the EDF. Let F̂n(x) be the EDF of a CDF F (x) based on an IID
random sample from F . Using VC theory, we can prove that

P (sup
x
|F̂n(x)− F (x)| > ε) = P

(
sup
A∈R1

∣∣∣∣∣ 1n
n∑
i=1

I(Xi ∈ A)− P (X1 ∈ A))

∣∣∣∣∣ > ε

)
≤ 8(n+ 1)ν(R1)e−nε

2/32

= 8(n+ 1)e−nε
2/32

converges to 0 as n→∞3. Moreover, using the method in Section 15.2.2, we have

sup
x
|F̂n(x)− F (x)| = OP

(√
log n

n

)
3Note that there is a better bound for the EDF called the DKW (Dvoretsky-Kiefer-Wolfowitz) inequality:

P

(
sup
x
|F̂n(x)− F (x)| > ε

)
≤ 2e−2nε2 .
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and

E
(

sup
x
|F̂n(x)− F (x)|

)
= O

(√
log n

n

)
.
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