
STAT 425: Introduction to Nonparametric Statistics Winter 2018

Lecture 14: Learning Theory: Normal Means Model
Instructor: Yen-Chi Chen

Reference: Chapter 7.1 – 7.4 and 7.6 in All of nonparametric statistics.

14.1 The Normal Means Model

The normal means model considers the following problem. Assume that we have N independent Gaussian
random variables Z1, · · · , ZN such that

Zi ∼ N(µi, σ
2).

Namely, each random variable is a Gaussian that has its own mean and every random variable has a common
variance σ2. We will assume σ2 is known (we know the noise level).

Example: nonparametric regression. This problem arises naturally in nonparametric regression, where
we observe IID pairs (X1, Y1), · · · , (Xn, Yn) from some distribution. Recall that in basis approach, we model
m(x) =

∑n
`=1 θ`φ`(x) for some basis φ1, φ2, · · · . And our estimator of the coefficients are

θ̂` =
1

n

n∑
i=1

Yiφ`(Xi).

If X1, · · · , Xn are IID from Uni[0, 1], each estimator of the coefficient satisfies

θ̂` ≈ N(θ`, σ
2
φ/n)

when n is large. Moreover, the covariance between any distinct pair θ̂`, θ̂j is 0, which implies that they are
independent asymptotically (this is a property of multivariate Gaussian). Thus, the estimated coefficients

θ̂1, · · · , θ̂M are just like the random variables being studied Z1, · · · , ZM with σ2 = σ2
φ/n.

Example: multiple experiments. Another scenario that the normal means model will be useful is
in certain experiments. Assume that we are interested in the average value of M quantities. A simple
experiment is that for each quantity, we make n measurements. So totally we have ran M × n independent
experiments. Let Tij denotes the i-th measurement of the j-th quantity. Then the average

Wj =
1

n

n∑
i=1

Tij

is a good estimate of the average value of the j-th quantity. Because of the central limit theory and the fact
that every measurement is independent,

Wj ≈ N(µj , σ
2
j /n).

If we further assume that the variability of measuring every quantity is the same (σ2
1 = σ2

2 = · · · = σ2
M ), we

obtain the normal means model with σ2 = σ2
1/n.

In the normal means model, we want to jointly estimate all parameters µ = (µ1, · · · , µM ) from Z =
(Z1, · · · , ZM ). A naive estimator is just use the original values of Z1, · · · , ZM as an estimator, which
leads to a mean square error

R(Z) = MSE(Z, µ) = E‖Z − µ‖2 = Mσ2.
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We denote θ̂naive = Z as this estimator. Is this a good estimator? How do we estimate the risk (MSE)?

14.2 Stein’s Unbiased Risk Estimator (SURE)

Now we consider any estimator θ̂ = η(Z). And define the function g : RM 7→ RM such that g(Z) = θ̂ − Z.
When g is differentiable, there is a powerful method for estimating the risk called SURE (Stein’s Unbiased
Risk Estimator) for the normal means model:

R̂(θ̂) = Mσ2 + 2σ2
M∑
i=1

∂gi(z1, · · · , zM )

∂zi
+ ‖g(Z)‖2, (14.1)

where gi(z1, · · · , zM ) is the i-th component of g(z1, · · · , zM ).

In what follows, we will show that

E(R̂(θ̂)) = R(θ̂). (14.2)

Namely, SURE is an unbiased estimator of the risk/MSE.

Before proving that it is an unbiased estimator, we first introduce a useful lemma called Stein’s Lemma.

Lemma 14.1 (Stein’s Lemma) Let W ∼ N(µ, σ2) be a normal random variable and f : R 7→ R. Then

E(f(W )(W − µ)) = σ2E(f ′(W )).

This lemma can be proved using the integration by parts.

Now we will prove equation (14.2). Let gi(z1, · · · , zM ) be the i-th component of g(z1, · · · , zM ). Using the
Stein’s lemma, we have

σ2E
(
∂gi(z1, · · · , zM )

∂zi

)
= E (gi(Z)(Zi − µi)) .

Thus, the expectation of SURE is

E(R̂(θ̂)) = Mσ2 + 2σ2
M∑
i=1

E
(
∂gi(z1, · · · , zn)

∂zi

)
+ E‖g(Z)‖2

=

M∑
i=1

E|Zi − µi|2 + 2

M∑
i=1

E

 gi(Z)︸ ︷︷ ︸
=θ̂i−Zi

(Zi − µi)

+

M∑
i=1

E|gi(Z)|2

=

M∑
i=1

E
(
|Zi − µi|2 + 2(θ̂i − Zi)(Zi − µi) + |Zi − µi|2

)
=

M∑
i=1

E|θ̂i − Zi + Zi − µi|2

=

M∑
i=1

E|θ̂i − µi|2

= R(θ̂).
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SURE can be applied as long as we know g and σ2 (noise level). A good news is – we choose the estimator θ̂
so the function g is often known, making the SURE a powerful tool in practice. If we do not know the noise
level σ2, we may try to estimate it. If the model comes from nonparametric regression and we are using a
linear smoother, we can use the theory of linear smoother to construct an estimator of the noise level.

Example: naive estimator. In the naive estimator θ̂ = Z so g(z) = 0. SURE will imply that the risk is
Mσ2, which is what we expect.

Example: soft-thresholding estimator. Now we consider a soft-thresholding estimator. Let λ > 0 be a
constant representing the threshold. Then the soft-thresholding estimator with this threshold is

θ̂i =


Zi + λ if Zi < −λ
0 if − λ ≤ Zi ≤ λ
Zi − λ if Zi > λ

= sgn(Zi)(|Zi| − λ)+.

Note that a+ = max{0, a} . This estimator is like the one we have encountered in LASSO that shrinks every
signal toward 0 by the amount λ and if the signal has an amplitude below λ, we just output 0. In this case,

gi(Z) = sgn(Zi)(|Zi| − λ)+ − Zi =


λ if Zi < −λ
−Zi if − λ ≤ Zi ≤ λ
λ if Zi > λ

SURE will give a risk estimator as

R̂(θ̂) =

M∑
i=1

(σ2 − 2σ2I(|Zi| ≤ λ) + min{Z2
i , λ

2}).

Remark

• The SURE can be applied to a more general settings where the random vector Z ∼ N(µ,Σ). Again

let θ̂ = η(Z) be the estimator and g(Z) = θ̂ − Z be the function describing the difference between the

estimator and Z. Moreover, define an M×M matrix D such that Dij = ∂gi(z1,··· ,zM )
∂zj

. Then the SURE

is

SURE = tr(Σ) + 2tr(ΣD) +

M∑
i=1

g2i (Z).

14.3 Shrinkage Estimator

Let b ∈ [0, 1] be a constant. We now consider an estimator of the form θ̂b = bZ. Such an estimator is called
linear estimator. Naively, b = 1 seems to be a good estimator. As we have seen, b = 1 gives an unbiased
estimator of the parameter of interest µ. But is this the best estimator among all linear estimators?

To talk about optimality, we just consider the risk (MSE). What is the risk (MSE) of this estimator? Simple
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calculation shows that

R(θ̂b) = E‖bZ − µ‖2

= bias2(bZ) + Var(bZ)

= (1− b)2
M∑
i=1

µ2
i +Mb2σ2

= (1− b)2‖µ‖2 +Mb2σ2.

It is in a quadratic form of b, so we take derivative and optimize it. The optimal choice is

b∗ =
‖µ‖2

‖µ‖2 +Mσ2

with an optimal risk

R(θ̂∗b ) =
Mσ2‖µ‖2

‖µ‖2 +Mσ2
< Mσ2 = the risk of the naive estimator.

Namely, we should shrink the value of Z a little bit to obtain the optimal estimator.

From a mathematical point of view, this seems to be a reasonable choice – we are finding an estimator that
has the minimal risk for estimating µ.

However, if we try to interpret the result, this seems to be something that is very counter intuitive. Now
we think about a common scenario where we will face the normal means model – the situations that we
have multiple independent experiments (the second example in Section 14.1). When we are analyzing the
M quantities of interest, they can be completely unrelated quantities. For instance, the first quantity may
be the average temperature of Chicago and the second quantity is the average GPA of all UW students and
the third quantity is the average height of residents in New York City. All these quantities are unrelated to
each other but somehow when we estimate them jointly, the optimal estimator would use all information to
estimate one quantity. Namely, the average height of the residents in NYC will affect how we are estimating
the average GPA of UW students!

This phenomenon is called Stein’s phenomenon and was discovered by Prof. Charles Stein, a famous statis-
tician at UC Berkeley, in 1956 and it has shocked the entire statistical community because people at that
time believed that the unbiased estimator should be a very good estimator. Moreover, the naive estimator
Z is not only an unbiased estimator but also the maximum likelihood estimator so most people believe that
it should be the best estimator. In addition, what astonished people more was the counter intuitive example
we just talked about – unrelated experiments somehow interact each other in the optimal estimator when
we want to jointly estimate them.

Although the choice b∗ minimizes the MSE, it cannot be used in practice because it involves unknown
quantity µ. Now we will introduce a famous estimator called the James-Stein (JS) estimator:

µ̂JS =

(
1− (M − 2)σ2

‖Z‖2

)
Z.

Namely, the JS estimator uses b = 1 − (M−2)σ2

‖Z‖ . You can prove that such an estimator has a smaller risk

than the naive estimator Z.
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14.4 Many Normal Random Variables

What happens if there is no signal at all in our data but we still try to fit a model? As we have seen, the
coefficients will behave like a normal distribution. When there is no signal at all, then the expectations
µ1, · · · , µN will all be 0. Thus, we are observing

X1, · · · , XN ∼ N(0, σ2).

Even all these random variables have mean 0, just by chance we will see some large number as long as N
is large. So we want to quantify the magnitude of such a large number caused by randomness. A simple
approach is to consider the maximum deviation

YN = max{X1, · · · , Xn} = max
i=1,··· ,N

Xi.

And we want to study E(YN ), the expected value of such a maximum deviation caused by purely random
noises.

Before we deriving a bound on YN , we need to introduce a very useful inequality. Recall that a function
g : R 7→ R is called a convex function if for any two points x, y and any number α ∈ [0, 1],

g(αx+ (1− α)y) ≤ αg(x) + (1− α)g(y).

Examples of convex functions are g(x) = x2, g(x) = ex. Note that a function h is called a concave function
if −h is a convex function.

A simple way to picture a convex function is: for any point x, we can define a tangent line passing through
(x, g(x)) and is tangent to the function g(x). Then g(x) is always above or equal to such a line.

A more mathematical way to think about a convex function is: if g′′(x) ≥ 0, then g(x) is convex.

Lemma 14.2 (Jensen’s inequality) If g is convex, then

E(g(X)) ≥ g(E(X)).

If g is concave, then
E(g(X)) ≤ g(E(X)).

Proof: Consider a line L(x) = ax + b such that it it tangent to g(x) at (E(X), g(E(X))). By the property
of a convex function.

E(g(X)) ≥ E(L(X)) = E(a+ bX) = a+ bE(X) = L(E(X)) = g(E(X)).

Moreover, we define the moment generating function (MGF) for a random variable X as

φX(t) = E(etX)

for t > 0. The MGF is also called the Laplace transform in Physical sciences. If X follows a normal
distribution N(µ, σ2), then its MGF is

φN(µ,σ2)(t) = eµt+σ
2t2/2.

Using Jensen’s inequality and the MGF of normal, we can bound the expectation of the maximum fluctuation
E(YN ).
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Theorem 14.3 Assume that
X1, · · · , XN ∼ N(0, σ2)

and define YN = max{X1, · · · , XN} = maxi=1,··· ,N Yi. Then

E(YN ) ≤ σ
√

2 logN.

Proof: Because ex is a convex function, for any positive number t, Jensen’s inequality implies

exp

(
t E
(

max
i=1,··· ,N

Xi

))
≤ E

(
exp

(
t max
i=1,··· ,N

Xi

))
(Jensen’s inequality)

= E
(

max
i=1,··· ,N

exp (tXi)

)
≤ E

(
N∑
i=1

exp (tXi)

)

=

N∑
i=1

E (exp (tXi))

= Net
2σ2/2 (MGF of normal).

Thus, taking logarithm in both sides, we obtain

tE(YN ) = t E
(

max
i=1,··· ,N

Xi

)
≤ logN +

t2σ2

2
.

Diving both sides by t, we have

E(YN ) ≤ logN

t
+
tσ2

2

for every t > 0. Now by optimizing t, which occurs at t =
√

2 logN
σ2 , we obtain

E(YN ) ≤ σ
√

2 logN.

Namely, the fluctuation caused by random noises is at the order of O(
√

logN). Although it diverges when
we have many coefficients (N →∞), the rate of divergence is quiet slow.

Remark.

• Although we only consider normal distributions in Theorem 14.3, the same result applies to any random
variables with a moment generating function

φX(t) ≤ e 1
2σ

2t2

for some σ2 and for every positive t.


	The Normal Means Model
	Stein's Unbiased Risk Estimator (SURE)
	Shrinkage Estimator
	Many Normal Random Variables

