
STAT 425: Introduction to Nonparametric Statistics Winter 2018

Lecture 13: Classification: Multivariate Approaches
Instructor: Yen-Chi Chen

In the previous lecture, we have learned that we can construct an optimal classifier if we know the true under-
lying probability model. Even we do not know the true model, we can estimate the model nonparametrically
and then train a classifier using the estimated density function or regression function.

This approach is mathematically great but practically problematic because in reality the dimension of the
data is often large (i.e., the feature/covariate X has many values). Recall that the MSE of a nonparametric

density/regression estimator often has a convergence rate of the order O(n−
4

4+d). This rate is extremely slow
when d is large. Thus, converting a nonparametric estimator to a classifier may not work in practice.

Now we are going to introduce a couple of other classifiers that does not require an explicit estimation of
the density function or the regression function.

13.1 k-NN Approach

The k-NN approach can be applied to classification as well. The idea is very simple – for a given point x0,
we find its k-th nearest data points. Then we compare the labels of these k points and assign the label of
x0 as the majority label in these k points.

Take the data in the following picture as an example. There are two classes: black dots and red crosses. We
are interested in the class label at the two blue boxes (x1 and x2).

x1

x2

Assume we use a 3-NN classifier ĉ3−NN . At point x1, its 3-NN contains two black dots and one red cross,
so ĉ3−NN (x1) = black dot. At point x2, its 3-NN has one black dots and two red crosses, so ĉ3−NN (x1) =
red cross. Note that if there are ties, we will randomly assign the class label attaining the tie.

The k-NN approach is simple and easy to operate. It can be easily generalize to multiple classes – the idea
is the same: we assign the class label according to the majority in the neighborhood.

How do we choose k? The choice of k is often done by a technique called cross-validation. The basic principle
is: we split the data into two parts, use one part to train our classifier and evaluate the performance on
the other part. Repeating the above procedure multiple times and applying it to each k, we can obtain an

13-1

13-2 Lecture 13: Classification: Multivariate Approaches

estimate of the performance. We then choose the k with the best performance. We will talk about this topic
later.

13.2 Decision Tree

Decision tree is another common approach in classification. A decision tree is like a regression tree – we
partition the space of covariate into rectangular regions and then assign each region a class label. If the tree
is given, the class label at each region is determined by the majority vote (using the majority of labels in
that region).

The following picture provides an example of a decision tree using the same data as the one in the previous
section.

4 6 8

4

6

8

x1

x2

x2

x1 x1

x2

< 5 ≥ 5

< 5.4 ≥ 5.4 < 5 ≥ 5

≥ 6.6< 6.6

In the left panel, we display the scatterplot and regions separated by a decision tree. The background color
denotes the estimated label. The right panel displays the tree structure.

In the case of binary classification (the class label Y = 0 or 1), the decision tree can be written as follows.
Let (X1, Y1), · · · , (Xn, Yn) denotes the data and R1, · · · , Rk is a rectangular partition of the space of the
covariates. Let R(x) denotes the rectangular regions where x falls within. The decision tree is

ĉDT (x) = I

(∑n
i=1 YiI(Xi ∈ R(x))∑n
i=1 I(Xi ∈ R(x))

>
1

2

)
.

Here, you can see that the decision tree is essentially a classifier converted from a regression tree.

13.3 Logistic Regression

The logistic regression is a regression model that is commonly applied to classification problems as well.
Like the method of converting a regression estimator to a classifier, the logistic regression use a regression
function as an intermediate step and then form a classifier. We first talk about some interesting examples.

Example. In graduate school admission, we are wondering how a student’s GPA affects the chance that
this applicant received the admission. In this case, each observations is a student and the response variable
Y represents whether the student received admission (Y = 1) or not (Y = 0). GPA is the covariate X.
Thus, we can model the probability

P (admitted|GPA = x) = P (Y = 1|X = x) = q(x).

Lecture 13: Classification: Multivariate Approaches 13-3

Example. In medical research, people are often wondering if the heretability of the type-2 diabetes is related
to some mutation from of a gene. Researchers record if the subject has the type-2 diabetes (response) and
measure the mutation signature of genes (covariate X). Thus, the response variable Y = 1 if this subject
has the type-2 diabetes. A statistical model to associate the covariate X and the response Y is through

P (subject has type-2 diabetes|mutation signature = x) = P (Y = 1|X = x) = q(x).

Thus, the function q(x) now plays a key role in determining how the response Y and the covariate X are
associated. The logistic regression provides a simple and elegant way to characterize the function q(x) in a
‘linear’ way. Because q(x) represents a probability, it ranges within [0, 1] so naively using a linear regression
will not work. However, consider the following quantity:

O(x) =
q(x)

1− q(x)
=
P (Y = 1|X = x)

P (Y = 0|X = x)
∈ [0,∞).

The quantity O(x) is called the odds that measures the contrast between the event Y = 1 versus Y = 0.
When the odds is greater than 1, we have a higher change of getting Y = 1 than Y = 0. The odds
has an interesting asymmetric form– if P (Y = 1|X = x) = 2P (Y = 0|X = x), then O(x) = 2 but if
P (Y = 0|X = x) = 2P (Y = 1|X = x), then O(x) = 1

2 . To symmetrize the odds, a straight-forward
approach is to take (natural) logarithm of it:

logO(x) = log
q(x)

1− q(x)
.

This quantity is called log odds. The log odds has several beautiful properties, for instance when the two
probabilities are the same (P (Y = 1|X = x) = P (Y = 0|X = x)), logO(x) = 0, and

P (Y = 1|X = x) = 2P (Y = 0|X = x)⇒ logO(x) = log 2

P (Y = 0|X = x) = 2P (Y = 1|X = x)⇒ logO(x) = − log 2.

The logistic regression is to impose a linear model to the log odds. Namely, the logistic regression models

logO(x) = log
q(x)

1− q(x)
= β0 + βTx,

which leads to

P (Y = 1|X = x) = q(x) =
eβ0+β

T x

1 + eβ0+βT x
.

Thus, the quantity q(x) = q(x;β0, β) depends on the two parameter β0, β. Here β0 behaves like the intercept
and β behaves like the slope vector (they are the intercept and slope in terms of the log odds).

When we observe data, how can we estimate these two parameters? In general, we will use the maximum
likelihood approach to estimate them. You can view the (minus) likelihood function as the loss function in
the classification (actually, we will use the log-likelihood function as the loss function). And the goal is to
find the parameter via minimizing such a loss.

Recall that we observe IID random sample:

(X1, Y1), · · · , (Xn, Yn).

Let pX(x) denotes the probability density of X; note that we will not use it in estimating β0, β. For a given
pair Xi, Yi, recalled that the random variable Yi given Xi is just a Bernoulli random variable with parameter

13-4 Lecture 13: Classification: Multivariate Approaches

q(x = Xi). Thus, the PMF of Yi given Xi is

L(β0, β|Xi, Yi) = P (Y = Yi|Xi) = q(Xi)
Yi(1− q(Xi))

1−Yi

=

(
eβ0+β

TXi

1 + eβ0+βTXi

)Yi (
1

1 + eβ0+βTXi

)1−Yi

=
eβ0Yi+β

TXiYi

1 + eβ0+βTXi
.

Note that here we construct the likelihood function using only the conditional PMF because similarly to the
linear regression, the distribution of the covariate X does not depends on the parameter β0, β. Thus, the
log-likelihood function is

`(β0, β|X1, Y1, · · · , Xn, Yn) =

n∑
i=1

logL(β0, β
T |Xi, Yi)

=

n∑
i=1

log

(
eβ0Yi+β

TXiYi

1 + eβ0+βTXi

)

=

n∑
i=1

β0Yi + βTXiYi − log
(

1 + eβ0+β
TXi

)
.

Our estimates are

β̂0, β̂ = argmax
β0,β

`(β0, β|X1, Y1, · · · , Xn, Yn)

= argmin
β0,β

− `(β0, β|X1, Y1, · · · , Xn, Yn)

= argmin
β0,β

1

n

n∑
i=1

−`(β0, β|Xi, Yi)︸ ︷︷ ︸
loss function︸ ︷︷ ︸

empirical estimate of the loss function

,

where the loss function is

−`(β0, β|Xi, Yi) = β0Yi + βTXiYi − log
(

1 + eβ0+β
TXi

)
.

β̂0, β̂ does not have a closed-form solution in general so we cannot write down a simple expression of the
estimator. Despite this disadvantage, such a log-likelihood function can be optimized by a gradient ascent
approach such as the Newton-Raphson1.

13.4 Training Classifiers as an Optimization Problem

Even without any probabilistic model, classification problem can be viewed as an optimization problem. The
key element is to replace the risk function E(L(c(X), Y) by the empirical risk

R̂n(c) =
1

n

n∑
i=1

L(c(Xi), Yi).

1some references can be found: https://www.cs.princeton.edu/~bee/courses/lec/lec_jan24.pdf

https://www.cs.princeton.edu/~bee/courses/lec/lec_jan24.pdf

Lecture 13: Classification: Multivariate Approaches 13-5

Consider a collection of classifiers C. Then the goal is to find the best classifier c∗ ∈ C such that the the
empirical risk R̂n(c) is minimized. Namely,

c∗ = argmin
c∈C

R̂n(c).

Ideally, this should work because

E(R̂n(c)) = E

(
1

n

n∑
i=1

L(c(Xi), Yi)

)
= E(L(c(X1), Y1)) = R(c) (13.1)

is the actual risk function. Namely, R̂n(c) is an unbiased estimator of the risk function.

Here are some concrete examples.

Linear classifier. Assume that we consider a linear classifier:

cβ0,β(x) = I(β0 + βTx > 0),

where β0 is a number like the intercept and β is the vector like the slope of each covariate/feature. Namely,
how we assign the class label purely depends on the value of β0 + βTx. If this value is positive, then we give
it a label 1. If the value is negative, then we give it a label 0. Then the set

Clin = {cβ0,β : β0 ∈ R, β ∈ Rd}

is a collection of all linear classifier. The idea of empirical risk minimization is to find the classifier in Clin
such that the empirical risk R̂n(·) is minimized. Because every classifier is indexed by the two quantities
(parameters) β0, β, finding the one that minimizes the empirical risk is equivalent to finding the best β0, β

minimizing R̂n(·).

Logistic regression. Similar to the linear classifier, the logistic regression can be viewed as a classifier of
the form

c̃β0,β(x) = I

(
eβ0+β

T x

1 + eβ0+βT x
>

1

2

)
.

Then we can define the set
Clogistic = {c̃β0,β : β0 ∈ R, β ∈ Rd}

as the collection of all classifiers from a logistic regression model. The MLE approach becomes an empirical
risk minimization method using a particular loss function – the log-likelihood function.

Decision tree (fixed k, fixed leaves). The decision tree classifier ĉDT can be viewed as a classifier from
the empirical risk minimization as well. For simplicity, we assume that the regions/leaves of the decision
trees R1, · · · , Rk are fixed. Then any decision tree classifier can be written as

cDT(x) =

k∑
j=1

αjI(x ∈ Rj),

where α1, · · · , αk are quantities/parameters that determine how we will predict the class label of region
R1, · · · , Rk, respectively. And the collection of all possible classifiers will be

CDT = {cDT(x) : αj ∈ {0, 1}, j = 1, · · · , k}.

Note that there are only 2k classifiers in the set CDT. The estimator ĉDT is just the one that minimizes the
empirical loss R̂n(·) with a 0− 1 loss.

13-6 Lecture 13: Classification: Multivariate Approaches

Decision tree (fixed k, non-fixed leaves). When the regions/leaves are not fixed, the collection of
all possible decision tree classifiers is much more complex. Here is an abstract way of describing such a
collection. Recall that at each split of the tree, we pick one feature and a threshold (e.g., x1 > 10 versus
x1 ≤ 10), every split can be represented by two indices: the feature index (which feature is this split occurs),
and the threshold index (what is the split level). Thus, a split is characterized by a pair (m,λ), where
m ∈ {1, 2, · · · , d} and λ ∈ R. If a tree has k leaves, there will be k − 1 splits. So any decision tree classifier
is indexed by

α1, · · · , αk, (m1, λ1), · · · , (mk−1, λk−1).

Namely, given a set of these values, we can construct a unique decision tree classifier. Thus, the collection
of all decision tree with k leaves can be written as

CDT(k) = {cDT(x) = cα,m,λ(x) : αj ∈ {0, 1}, (m`, λ`) ∈ {1, 2, · · · , d} × R, j = 1, · · · , k, ` = 1, · · · , k − 1}.

In reality, when we train a decision tree classifier with a fixed number k, the regions are also computed from
the data. Thus, we are actually finding ĉDT such that

ĉDT = argmin
c∈CDT(k)

R̂n(c).

Decision tree (both k and leaves are non-fixed). If we train the classifier with k being un-specified,
then we are finding ĉDT from

⋃
k∈N CDT(k) that minimizes the empirical risk. However, if we really consider

all possible k, such an optimal decision tree is not unique and may be problematic. When k > n, we can make
each leave contains at most and the predicted label is just the label of that observation. Such a classifier
has 0 empirical risk but it may have very poor performance in future prediction because we are overfitting
the data. Overfitting the data implies that R̂n(c) and R(c) are very different, even if R̂n(c) is an unbiased
estimator of R(c)!

Why will this happen? R̂n(c) is just the sample-average version of R(c), right? Is this contradict to the law

of large number that R̂n(c) converges to R(c)?

It is true that R̂n(c) is an unbiased estimator of R(c) and yes indeed the law of large number is applicable
in this case. BUT a key requirement for using the law of large number is that we assume c is fixed. Namely,
if the classifier c is fixed, then the law of large number guarantees that the empirical risk R̂n(c) converges
to the true risk function R(c).

However, when we are finding the best classifier, we are consider many many many possible classifiers c.
Although for a given classifier c the law of large number works, it may not work when we consider many
classifiers. The empirical risk minimization works if

sup
c∈C

∣∣∣R̂n(c)−R(c)
∣∣∣ P→ 0

Namely, the convergence is uniform for all classifiers in the collection that we are considering. In the next
few lectures we will be talking about how the above uniform convergence may be established.

Remark.

• Regression problem. The empirical risk minimization method can also be applied to regression
problem. We just replace the classifier by the regression function and the loss function can be chosen
as the L2 loss (squared distance). In this formulation, we obtain

R(m) = E
(
‖Y −m(X)‖2

)

Lecture 13: Classification: Multivariate Approaches 13-7

and

R̂n(m) =
1

n

n∑
i=1

‖Yi −m(Xi)‖2.

Estimating a regression function can thus be written as an empirical risk minimization – we minimizes
R̂n(m) for m ∈ M to obtain our regression estimator. The set M is a collection of many regression
functions. Similar to the classification problem, we need a uniform convergence of the empirical risk
to make sure we have a good regression estimator.

• Penalty function. Another approach to handle the difference supc∈C |R̂n(c) − R(c)| is to add an

extra quantity to R̂n(c) so that such a uniform difference is somewhat being controlled. Instead of

minimizing R̂n(c), we minimizes

R̂n(c) + Pλ(c),

where Pλ is a penalty function. This is just the penalized regression approach but now applying it to
a classification problem. When the penalty function is chosen in a good way, we can make sure the
optimal classifier/regression estimator from the (penalized) empirical risk minimization indeed has a
very small risk.

	k-NN approach
	Decision Tree
	Logistic Regression
	Training Classifiers as an Optimization Problem

