STAT 425: Introduction to Nonparametric Statistics

Lecture 0: Review on Probability and Statistics

Instructor: Yen-Chi Chen

0.1 Random Variables

Here we will ignore the formal mathematical definition of a random variable and directly talk about it property. For a random variable X, the cumulative distribution function ($C D F$) of X is

$$
P_{X}(x)=F(x)=P(X \leq x)
$$

Actually, the distribution of X is completely determined by the CDF $F(x)$, regardless of X being a discrete random variable or a continuous random variable (or a mix of them).

If X is discrete, its probability mass function (PMF) is

$$
p(x)=P(X=x)
$$

If X is continuous, its probability density function (PDF) is

$$
p(x)=F^{\prime}(x)=\frac{d}{d x} F(x)
$$

Moreover, the CDF can be written as

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} p\left(x^{\prime}\right) d x^{\prime}
$$

Generally, we write $X \sim F$ or $X \sim p$ indicating that the random variable X has a CDF F or a PMF/PDF p.

For two random variables X, Y, their joint CDF is

$$
P_{X Y}(x, y)=F(x, y)=P(X \leq x, Y \leq y)
$$

The corresponding joint PDF is

$$
p(x, y)=\frac{\partial^{2} F(x, y)}{\partial x \partial y}
$$

The conditional PDF of Y given $X=x$ is

$$
p(y \mid x)=\frac{p(x, y)}{p(x)}
$$

where $p(x)=\int_{-\infty}^{\infty} p(x, y) d y$ is sometimes called the marginal density function. Note that you can definition the joint PMF and conditional PMF using a similar way.

0.2 Expected Value

For a function $g(x)$, the quantity $g(X)$ will also be a random variable and its expected value is

$$
\mathbb{E}(g(X))=\int g(x) d F(x)= \begin{cases}\int_{-\infty}^{\infty} g(x) p(x) d x, & \text { if } X \text { is continuous } \\ \sum_{x} g(x) p(x), & \text { if } X \text { is discrete }\end{cases}
$$

When $f(x)=x$, this reduces to the usual definition of expected value.
Here are some useful properties and quantities related to the expected value:

- $\mathbb{E}\left(\sum_{j=1}^{k} c_{j} g_{j}(X)\right)=\sum_{j=1}^{k} c_{j} \cdot \mathbb{E}\left(g_{j}\left(X_{i}\right)\right)$.
- We often write $\mu=\mathbb{E}(X)$ as the mean (expectation) of X.
- $\operatorname{Var}(X)=\mathbb{E}\left((X-\mu)^{2}\right)$ is the variance of X.
- If X_{1}, \cdots, X_{n} are independent, then

$$
\mathbb{E}\left(X_{1} \cdot X_{2} \cdots X_{n}\right)=\mathbb{E}\left(X_{1}\right) \cdot \mathbb{E}\left(X_{2}\right) \cdots \mathbb{E}\left(X_{n}\right)
$$

- If X_{1}, \cdots, X_{n} are independent, then

$$
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i}^{2} \cdot \operatorname{Var}\left(X_{i}\right)
$$

- For two random variables X and Y with their mean being μ_{X} and μ_{Y} and variance being σ_{X}^{2} and σ_{Y}^{2}. The covariance

$$
\operatorname{Cov}(X, Y)=\mathbb{E}\left(\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)\right)=\mathbb{E}(X Y)-\mu_{x} \mu_{y}
$$

and the (Pearson's) correlation

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{x} \sigma_{y}}
$$

The conditional expectation of Y given X is the random variable $\mathbb{E}(Y \mid X)=g(X)$ such that when $X=x$, its value is

$$
\mathbb{E}(Y \mid X=x)=\int y p(y \mid x) d y
$$

where $p(y \mid x)=p(x, y) / p(x)$.

0.3 Common Distributions

0.3.1 Discrete Random Variables

Bernoulli. If X is a Bernoulli random variable with parameter p, then $X=0$ or, 1 such that

$$
P(X=1)=p, \quad P(X=0)=1-p
$$

In this case, we write $X \sim \operatorname{Ber}(p)$.

Binomial. If X is a binomial random variable with parameter (n, p), then $X=0,1, \cdots, n$ such that

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

In this case, we write $X \sim \operatorname{Bin}(n, p)$. Note that if $X_{1}, \cdots, X_{n} \sim \operatorname{Ber}(p)$, then the sum $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ is a binomial random variable with parameter (n, p).
Poisson. If X is a Poisson random variable with parameter λ, then $X=0,1,2,3, \cdots$ and

$$
P(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

In this case, we write $X \sim \operatorname{Poi}(\lambda)$.

0.3.2 Continuous Random Variables

Uniform. If X is a uniform random variable over the interval $[a, b]$, then

$$
p(x)=\frac{1}{b-a} I(a \leq x \leq b)
$$

where I (statement) is the indicator function such that if the statement is true, then it outputs 1 otherwise 0 . Namely, $p(x)$ takes value $\frac{1}{b-a}$ when $x \in[a, b]$ and $p(x)=0$ in other regions. In this case, we write $X \sim \operatorname{Uni}[a, b]$.
Normal. If X is a normal random variable with parameter $\left(\mu, \sigma^{2}\right)$, then

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} .
$$

In this case, we write $X \sim N\left(\mu, \sigma^{2}\right)$.
Exponential. If X is an exponential random variable with parameter λ, then X takes values in $[0, \infty)$ and

$$
p(x)=\lambda e^{-\lambda x}
$$

In this case, we write $X \sim \operatorname{Exp}(\lambda)$. Note that we can also write

$$
p(x)=\lambda e^{-\lambda x} I(x \geq 0)
$$

0.4 Useful Theorems

We write $X_{1}, \cdots, X_{n} \sim F$ when X_{1}, \cdots, X_{n} are IID (independently, identically distributed) from a CDF F. In this case, X_{1}, \cdots, X_{n} is called a random sample.

For a sequence of random variables $Z_{1}, \cdots, Z_{n}, \cdots$, we say Z_{n} converges in probability to a fixed number μ if for any $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\left|Z_{n}-\mu\right|>\epsilon\right)=0
$$

and we will write

$$
Z_{n} \xrightarrow{P} \mu .
$$

In other words, Z_{n} converges in probability implies that the distribution is concentrating at the targeting point.

Let $F_{1}, \cdots, F_{n}, \cdots$ be the corresponding CDFs of $Z_{1}, \cdots, Z_{n}, \cdots$. For a random variable Z with CDF F, we say Z_{n} converges in distribution to Z if for every x,

$$
\lim _{n \rightarrow \infty} F_{n}(x)=F(x)
$$

In this case, we write

$$
Z_{n} \xrightarrow{D} Z .
$$

Namely, the CDF's of the sequence of random variables converge to a the CDF of a fixed random variable.

Theorem 0.1 (Weak) Law of Large Number. Let $X_{1}, \cdots, X_{n} \sim F$ and $\mu=\mathbb{E}\left(X_{1}\right)$. If $\mathbb{E}\left|X_{1}\right|<\infty$, then the sample average

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

converges in probability to μ. i.e.,

$$
\bar{X}_{n} \xrightarrow{P} \mu .
$$

Theorem 0.2 Central Limit Theorem. Let $X_{1}, \cdots, X_{n} \sim F$ and $\mu=\mathbb{E}\left(X_{1}\right)$ and $\sigma^{2}=\operatorname{Var}\left(X_{1}\right)<\infty$. Let \bar{X}_{n} be the sample average. Then

$$
\sqrt{n}\left(\frac{\bar{X}_{n}-\mu}{\sigma}\right) \xrightarrow{D} N(0,1) .
$$

Note that $N(0,1)$ is also called standard normal random variable.

0.5 Estimators and Estimation Theory

Let $X_{1}, \cdots, X_{n} \sim F$ be a random sample. Here we can interpret F as the population distribution we are sampling from (that's why we are generating data from this distribution). Any numerical quantity (or even non-numerical quantity) of F that we are interested in is called the parameter of interest. For instance, the parameter of interest can be the mean of F, the median of F, standard deviation of F, first quartile of F, \ldots etc. The parameter of interest can even be $P(X \geq t)=1-F(t)=S(t)$. The function $S(t)$ is called the survival function, which is a central topic in biostatistics and medical research.

When we know (or assume) that F is a certain distribution with some parameters, then the parameter of interest can be the parameter describing that distribution. For instance, if we assume F is an exponential distribution with an unknown parameter λ. Then this unknown parameter λ might be the parameter of interest.

Most of the statistical analysis is concerned with the following question:
"given the parameter of interest, how can I use the random sample to infer it?"

Let $\theta=\theta(F)$ be the parameter of interest and let $\hat{\theta}_{n}$ be a statistic (a function of the random sample X_{1}, \cdots, X_{n}) that we use to estimate θ. In this case, $\hat{\theta}_{n}$ is called an estimator. For an estimator, there are two important quantities measuring its quality. The first quantity is the bias:

$$
\operatorname{Bias}\left(\hat{\theta}_{n}\right)=\mathbb{E}\left(\hat{\theta}_{n}\right)-\theta
$$

which captures the systematic deviation of the estimator from its target. The other quantity is the variance $\operatorname{Var}\left(\hat{\theta}_{n}\right)$, which measures the size of stochastic fluctuation.
Example. Let $X_{1}, \cdots, X_{n} \sim F$ and $\mu=\mathbb{E}\left(X_{1}\right)$ and $\sigma^{2}=\operatorname{Var}(X)$. Assume the parameter of interest is the population mean μ. Then a natural estimator is the sample average $\hat{\mu}_{n}=\bar{X}_{n}$. Using this estimator, then

$$
\operatorname{bias}\left(\hat{\mu}_{n}\right)=\mu-\mu=0, \quad \operatorname{Var}\left(\hat{\mu}_{n}\right)=\frac{\sigma^{2}}{n}
$$

Therefore, when $n \rightarrow \infty$, both bias and variance converge to 0 . Thus, we say $\hat{\mu}_{n}$ is a consistent estimator of μ. Formally, an estimator $\hat{\theta}_{n}$ is called a consistent estimator of θ if $\hat{\theta}_{n} \xrightarrow{P} \theta$.

The following lemma is a common approach to prove consistency:

Lemma 0.3 Let $\hat{\theta}_{n}$ be an estimator of θ. If $\operatorname{bias}\left(\hat{\theta}_{n}\right) \rightarrow 0$ and $\operatorname{Var}\left(\hat{\theta}_{n}\right) \rightarrow 0$, then $\hat{\theta}_{n} \xrightarrow{P}$. i.e., $\hat{\theta}_{n}$ is a consistent estimator of θ.

In many statistical analysis, a common measure of the quality of the estimator is the mean square error (MSE), which is defined as

$$
\operatorname{MSE}\left(\hat{\theta}_{n}\right)=\operatorname{MSE}\left(\hat{\theta}_{n}, \theta\right)=\mathbb{E}\left(\left(\hat{\theta}_{n}-\theta\right)^{2}\right)
$$

By simple algebra, the MSE of $\hat{\theta}_{n}$ equals

$$
\begin{aligned}
\operatorname{MSE}\left(\hat{\theta}_{n}, \theta\right) & =\mathbb{E}\left(\left(\hat{\theta}_{n}-\theta\right)^{2}\right) \\
& =\mathbb{E}\left(\left(\hat{\theta}_{n}-\mathbb{E}\left(\hat{\theta}_{n}\right)+\mathbb{E}\left(\hat{\theta}_{n}\right)-\theta\right)^{2}\right) \\
& =\underbrace{\mathbb{E}\left(\left(\hat{\theta}_{n}-\mathbb{E}\left(\hat{\theta}_{n}\right)\right)^{2}\right)}_{=\operatorname{Var}\left(\hat{\theta}_{n}\right)}+2 \underbrace{\mathbb{E}\left(\hat{\theta}_{n}-\mathbb{E}\left(\hat{\theta}_{n}\right)\right)}_{=0} \cdot\left(\mathbb{E}\left(\hat{\theta}_{n}\right)-\theta\right)+\underbrace{\mathbb{E}\left(\hat{\theta}_{n}\right)-\theta}_{=\operatorname{bias}\left(\hat{\theta}_{n}\right)})^{2} \\
& =\operatorname{Var}\left(\hat{\theta}_{n}\right)+\operatorname{bias}^{2}\left(\hat{\theta}_{n}\right)
\end{aligned}
$$

Namely, the MSE of an estimator is the variance plus the square of bias. This decomposition is also known as the bias-variance tradeoff (or bias-variance decomposition). By the Markov inequality,

$$
\operatorname{MSE}\left(\hat{\theta}_{n}, \theta\right) \rightarrow 0 \Longrightarrow \hat{\theta}_{n} \xrightarrow{P} \theta
$$

i.e., if an estimator has MSE converging to 0 , then it is a consistent estimator. The convergence of MSE is related to the L_{2} convergence in probability theory.
Note that we write $\theta=\theta(F)$ for the parameter of interest because θ is a quantity derived from the population distribution F. Thus, we may say that the parameter of interest θ is a 'functional' (function of function; the input is a function, and the output is a real number).

- : There are two common methods of finding an estimator: the first one is called the MLE (maximum likelihood estimator), the other one is called the MOM (method of moments) ${ }^{1}$. You can google these two terms and you will find lots of references about them.
Question to think: if the parameter of interest is $F(x)=P(X \leq x)$, what will be the estimator of it?

[^0]
$0.6 \quad O_{P}$ and o_{P} Notations

For a sequence of numbers a_{n} (indexed by n), we write $a_{n}=o(1)$ if $a_{n} \rightarrow 0$ when $n \rightarrow \infty$. For another sequence b_{n} indexed by n, we write $a_{n}=o\left(b_{n}\right)$ if $a_{n} / b_{n}=o(1)$.

For a sequence of numbers a_{n}, we write $a_{n}=O(1)$ if for all large n, there exists a constant C such that $\left|a_{n}\right| \leq C$. For another sequence b_{n}, we write $a_{n}=O\left(b_{n}\right)$ if $a_{n} / b_{n}=O(1)$.

Examples.

- Let $a_{n}=\frac{2}{n}$. Then $a_{n}=o(1)$ and $a_{n}=O\left(\frac{1}{n}\right)$.
- Let $b_{n}=n+5+\log n$. Then $b_{n}=O(n)$ and $b_{n}=o\left(n^{2}\right)$ and $b_{n}=o\left(n^{3}\right)$.
- Let $c_{n}=1000 n+10^{-10} n^{2}$. Then $c_{n}=O\left(n^{2}\right)$ and $c_{n}=o\left(n^{2} \cdot \log n\right)$.

Essentially, the big O and small o notation give us a way to compare the leading convergence/divergence rate of a sequence of (non-random) numbers.

The O_{P} and o_{P} are similar notations to O and o but are designed for random numbers. For a sequence of random variables X_{n}, we write $X_{n}=o_{P}(1)$ if for any $\epsilon>0$,

$$
P\left(\left|X_{n}\right|>\epsilon\right) \rightarrow 0
$$

when $n \rightarrow \infty$. Namely, $P\left(\left|X_{n}\right|>\epsilon\right)=o(1)$ for any $\epsilon>0$. Let a_{n} be a nonrandom sequence, we write $X_{n}=o_{P}\left(a_{n}\right)$ if $X_{n} / a_{n}=o_{P}(1)$.

In the case of O_{P}, we write $X_{n}=O_{P}(1)$ if for every $\epsilon>0$, there exists a constant C such that

$$
P\left(\left|X_{n}\right|>C\right) \leq \epsilon
$$

We write $X_{n}=O_{P}\left(a_{n}\right)$ if $X_{n} / a_{n}=O_{P}(1)$.

Examples.

- Let X_{n} be an R.V. (random variable) from a Exponential distribution with $\lambda=n$. Then $X_{n}=O_{P}\left(\frac{1}{n}\right)$
- Let Y_{n} be an R.V from a normal distribution with mean 0 and variance n^{2}. Then $Y_{n}=O_{P}(n)$ and $Y_{n}=o_{P}\left(n^{2}\right)$.
- Let A_{n} be an R.V. from a normal distribution with mean 0 and variance $10^{100} \cdot n^{2}$ and B_{n} be an R.V. from a normal distribution with mean 0 and variance $0.1 \cdot n^{4}$. Then $A_{n}+B_{n}=O_{P}\left(n^{2}\right)$.

If we have a sequence of random variables $X_{n}=Y_{n}+a_{n}$, where Y_{n} is random and a_{n} is non-random such that $Y_{n}=O_{P}\left(b_{n}\right)$ and $a_{n}=O\left(c_{n}\right)$. Then we write

$$
X_{n}=O_{P}\left(b_{n}\right)+O\left(c_{n}\right)
$$

Examples.

- Let A_{n} be an R.V. from a uniform distribution over the interval $\left[n^{2}-2 n, n^{2}+2 n\right]$. Then $A_{n}=$ $O\left(n^{2}\right)+O_{P}(n)$.
- Let X_{n} be an R.V from a normal distribution with mean $\log n$ and variance 10^{100}, then $X_{n}=O(\log n)+$ $O_{P}(1)$.

The following lemma is an important property for a sequence of random variables X_{n}.

Lemma 0.4 Let X_{n} be a sequence of random variables. If there exists a sequence of numbers a_{n}, b_{n} such that

$$
\left|\mathbb{E}\left(X_{n}\right)\right| \leq a_{n}, \quad \operatorname{Var}\left(X_{n}\right) \leq b_{n}^{2}
$$

Then

$$
X_{n}=O\left(a_{n}\right)+O_{P}\left(b_{n}\right)
$$

Examples.

- Let X_{1}, \cdots, X_{n} be IID from $\operatorname{Exp}(5)$. Then the sample average

$$
\bar{X}_{n}=O(1)+O_{P}(1 / \sqrt{n})
$$

- Let Y_{1}, \cdots, Y_{n} be IID from $N(5 \log n, 1)$. Then the sample average

$$
\bar{Y}_{n}=O(\log n)+O_{P}(1 / \sqrt{n}) .
$$

The following is a useful method for obtaining bounds on O_{P} :

Lemma 0.5 Let X be a non-negative random variable. Then for any positive number t,

$$
P(X \geq t) \leq \frac{\mathbb{E}(X)}{t}
$$

Application.

- Let X_{n} be a sequence of random variables that are uniformly distributed over $\left[-n^{2}, n^{2}\right]$. It is easy to see that $\left|X_{n}\right| \leq n^{2}$ so $\mathbb{E}\left(\left|X_{n}\right|\right) \leq n^{2}$. Then by Markov's inequality,

$$
P\left(\left|X_{n}\right| \geq t\right) \leq \frac{\mathbb{E}\left(\left|X_{n}\right|\right)}{t} \leq \frac{n^{2}}{t}
$$

Let $Y_{n}=\frac{1}{n^{2}} X_{n}$. Then

$$
P\left(\left|Y_{n}\right| \geq t\right)=P\left(\frac{1}{n^{2}}\left|X_{n}\right| \geq t\right)=P\left(\left|X_{n}\right| \geq n^{2} \cdot t\right) \leq \frac{n^{2}}{n^{2} \cdot t}=t
$$

for any positive t. This implies $Y_{n}=O_{P}(1)$ so $X_{n}=O_{P}\left(n^{2}\right)$.

[^0]: ${ }^{1}$ https://en.wikipedia.org/wiki/Method_of_moments_(statistics) and MIT open course

