
STAT 516: Stochastic Modeling of Scientific Data Autumn 2018

Lecture 6: Inference on Markov Chain
Instructor: Yen-Chi Chen

These notes are partially based on those of Mathias Drton.

6.1 Introduction

We have learned a lot about properties of a Markov chain – when we know the transition probability matrix,
we can do a lot of analysis. In data analysis, we often do not know the transition probability matrix so we
need to estimate it. As long as we have a transition probability matrix, we can use our knowledge about
Markov chain to make inference. In this lecture, we will be thinking about how to recover the transition
probability matrix and make related statistical inference.

Let X0, · · · , Xn be a set of RVs denoting our data/observations. Now we will assume that these RVs form a
Markov chain. Moreover, we assume that each observation Xi ∈ S = {1, 2, · · · , s}. Namely, the state space
is finite.

In both Frequentist and Bayesian approaches, the likelihood function plays a key role in inference. Let
P = {pij} be the transition probability matrix and νi = P (X0 = i) be the initial probability. The likelihood
function can be written as

Ln(ν,P) = νX0

n∏
i=1

pXi−1,Xi
.

Generally, we cannot estimate the initial distribution ν unless we observed several different Markov chains.
So we will make our inference condition on X0.

Recalled that the joint PMF can be written as

p(x0, · · · , x1; P, ν) = p(x1, · · · , xn; P|x0)× p(x0; ν),

we then use the likelihood function

Ln(P) = p(X1, · · · , Xn; P|x0) =

s∏
i=1

s∏
j=1

p
nij

ij ,

where nij =
∑n−1
k=0 I(Xk = i,Xk+1 = j) is the number of transition from state i to state j.

6.2 Frequentist Approach

With the likelihood function, we first consider the Frequentist approach to estimate P. We find the MLE of
P.

The log-likelihood function will be

`n(P) = logLn(P) =

s∑
i=1

s∑
j=1

nij log pij .
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To find the MLE, note that there are constraints on P:

s∑
j=1

pij = 1

for every i = 1, · · · , s. These constraints only applies to each row of P, so we can separate the maximization
of `b(P) into s different maximizations:

p̂i = argmax∑s
j=1 pij=1`n(pi1, · · · , pis) = argmax∑s

j=1 pij=1

s∑
j=1

nij log pij .

It turns out that this is the MLE of the multinomial distribution so

p̂ij =
nij
ni+

,

where ni+ =
∑s
j=1 nij is the number of observations from starting at state i.

So now we have the MLE but does this MLE has the usual properties such as statistical consistency and
asymptotic normality? We cannot directly apply our conventional statistical knowledge here because each
transition from state i to state j may not be independent from each other. We need some theories of MLE
under the Markov chain structure.

To derive the theory of MLE for Markov chain, we first introduce the concept of snake chain and state two
useful lemmas. Let {Xn} be a homogeneous Markov chain with a state space S and a transition probability
matrix P. Define Yn = (Xn, Xn+1). Then {Yn} is called the snake chain and it is also a homogeneous
Markov chain with a state space SY = {(i0, i1) ∈ S2 : pi0,i1 > 0}.

Lemma 6.1 The transition probability matrix of {Yn} has entries q(i,j),(k,`) = pk`I(j = k) . In addition,
if {Xn} is irreducible, so is {Yn}. Moreover, if {Xn} has a stationary distribution π, then {Yn} has a
stationary distribution ν with νij = πipij.

Going back to our data analysis problem, the snake chain provides a useful framework for analyzing the
quantity

nij =

n∑
k=1

I(Xk−1 = i,Xk = j) =

n∑
k=1

I(Yk−1 = (i, j))

can be written as summation of indicator function with snake chains.

Another problem we need to address in our MLE is that the ‘sample size’ for estimating pij is ni+ (see the
denominator), which is also random. So the conventional central limit theorem cannot be applied. Here we
introduce another useful lemma (sometimes it is called Anscombe Lemma) for handling this case.

Lemma 6.2 Suppose Y1, Y2, · · · are IID with E(Y1) = 0 and Var(Y1) = σ2 < ∞. Let Sn =
∑n
i=1 Yi and

suppose that W1,W2, · · · are random positive integers with Wn/n
P→ c for some constant c. Then

SWn√
σ2Wn

D→ N(0, 1).

Proof: See Anscombe (1952, Proceedings of the Cambridge Philosophical Society) or Theorem 11.6.1 in
Shorack (2000, Probability for Statisticians).
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Note that there are modified version of this lemma and is often related to the Poissonization techniques. It
is particularly useful when we are trying to derive the central limit theory of an integrated error of a function
estimation1.

With these two lemmas, we can show that the MLE also works in Markov chain.

Proposition 6.3 Let {Xn} be an irreducible homogeneous Markov chain defined on a finite state space.
Then the MLE satisfies

1. Statistical consistency: p̂ij
a.s.→ pij.

2. Asymptotic normality:
p̂ij−pij√

pij(1−pij)/(nπi)

D→ N(0, 1),

where π = (π1, · · · , πs) is the stationary distribution.

Before proceeding to the proof, we first compare this asymptotic normality to the one for multinomial
distribution. In multinomial case, we have

p̂i − pi√
pi(1− pi)/n

D→ N(0, 1).

Here you see that the difference is that the sample size changes from n to nπi. So we can say that nπi
behaves like the effective sample size. This quantity makes sense because we know that the stationary
distribution characterizes the long run proportion of each state. The transition probability pij is estimated
by the proportion of transiting from state i to state j over the the total number of transiting from state i.
So the long run proportion of state i determines how much transition from state i we will observe.

Proof: Consistency:
We construct a snake chain Yn = (Xn+1, Xn) with a state space SY = {(i0, i1) ∈ S2 : pi0i1 > 0}. Using the
snake chain lemma along with the fact that {Xn} is irreducible, {Yn} is also irreducible with a transition
probability matrix PY with element

P (Yn = (in, jn) | Yn−1 = (in−1, jn−1)) = pinjnI(in = jn−1)

and stationary distribution ν(i, j) = πipij .

Then we apply the Ergodic theorem to {Yn} and {Xn}, leading to

nij
n

=
1

n

n−1∑
k=0

I(Yk = (i, j))
a.s.→ πipij

ni+
n

=
1

n

n−1∑
k=0

I(Xk = i)
a.s.→ πi.

Thus,

p̂ij =
nij/n

ni+/n

a.s.→ π1pij
πi

= pij .

Asymptotic normality:
We will use Anscombe’s lemma to prove it. Here the trick is to identify the random variable Ym and Wn.

1see, e.g., section 2 of Gine et. al. (2004) “The L1-Norm Density Estimator Process” (https://projecteuclid.org/
download/pdf_1/euclid.aop/1048516534)

https://projecteuclid.org/download/pdf_1/euclid.aop/1048516534
https://projecteuclid.org/download/pdf_1/euclid.aop/1048516534
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When we focus on the state i, you can easily see that a natural choice of Wn is Wn = ni+ since it serves as
an effective sample size.

How about Ym? We want to construct SWn
= Sni+

= Y1 + · · · + Yni+
to be related to the denominator

p̂ij − pij ∝ nij − ni+pij . So it turns out that a possible choice is

Ym =

{
1− pij if Xτm+1 = j

−pij if Xτm+1 6= j
,

where τm is the m-th visit to state i. This choice leads to

E(Ym) = (1− pij)pij − pij(1− pij) = 0

E(Y 2
m) = (1− pij)2pij + p2

ij(1− pij)
= pij(1− pij).

Moreover,
SWn = Y1 + · · ·+ Yni+ = nij(1− pij) + (ni+ − nij)(−pij) = nij − ni+pij .

Thus, Ancombe’s lemma implies that

Sni+√
pij(1− pij)ni+

=
nij − ni+pij√
pij(1− pijni+)

=
p̂ij − pij√

pij(1− pij)/ni+
D→ N(0, 1).

Finally, observing that ni+

nπi

a.s.→ 1 we then conclude the result.

With Proposition 6.3, we are able to construct a confidence interval of each pij . Also, we can do a hypothesis
test on the transition probability matrix P to see if there are interesting structures inside.

6.3 Bayesian Approach

When we adopt a Bayesian approach in the Markov chain, we need to put a prior distribution for the
transition probability matrix P. Essentially, we need to put a prior on each pij with the constraint that∑s
j=1 pij = 1.

Note that the constraints are on each row of P so one possibility is to put a prior on each row of P. Here
we will use the Dirichlet prior.

The Dirichlet distribution is a multivariate distribution over the simplex
∑K
i=1 xi = 1 and xi ≥ 0. Its

probability density function is

p(x1, · · · , xK ;α1, · · · , αK) =
1

B(α)

K∏
i=1

xαi−1
i ,

where B(α) =
∏K

i=1 Γ(α)

Γ(
∑K

i=1 αi)
and α = (α1, · · · , αK) are the parameters of this distribution. The Dirichlet

distribution generates a random vector with length K and each element of this vector is non-negative and
summation of elements is 1, meaning that it generates a random probability vector. You can view it as a
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generalization of the Beta distribution. For Z = (Z1, · · · , ZK) ∼ Dirch(α1, · · · , αK), E(Zi) = αi∑K
j=1 αj

and

the mode of Zi is αi−1∑K
j=1 αj−K

so each parameter αi determines the relative importance of category (state)

i. Because it is a distribution putting probability over K categories, Dirchlet distribution is very popular in
social sciences and linguistics analysis.

Going back to our data analysis problem, by choosing K = s, the Dirchlet distribution can be used as a
prior distribution for each row of P. For each pi = (pi1, · · · , pis), we use the Dirchlet prior with parameter
αi = (αi1, · · · , αis) such that

pi ∼ Dirch(pi;αi).

The posterior distribution can then be written as

π(P|X1, · · · , Xn) ∝
s∏
i=1

s∏
j=1

p
nij

ij

s∏
k=1

p(pk;αk)

∝
s∏
i=1

s∏
j=1

p
nij

ij

(
s∏

k=1

pαk1−1
k1 × · · · × pαks−1

ks

)

=

s∏
i=1

(
pni1+αi1−1
i1 × · · · × pnis+αis−1

is

)
,

which is a product of each row.

So the posterior distribution of pi given the data is

π(pi|X1, · · · , Xn) = pni1+αi1−1
i1 × · · · × pnis+αis−1

is ,

which is the PDF of Dirch(ni1 + αi1, · · · , nis + αis). This implies that the posterior mean and MAP are

p̂ij,π =
nij + αij∑s
k=1 nik + αik

, p̂ij,MAP =
nij + αij − 1∑s

k=1 nik + αik −K
.

The credible interval can be constructed using the level sets of the posterior distribution. In hypothesis test,
we can use the Bayes factor and compare it with our prior on the hypotheses to decide if we can reject the
null hypothesis or not.

6.4 When P = P(θ)

In some cases, the transition probability matrix P = P(θ) is determined by the parameter θ ∈ RL (namely,
each pij = pij(θ)). And our goal is to estimate θ from our data. We will talk about how to make inference
in this case using the Frequentist approach (you can use Bayesian as well). Here we first look at a specific
example about genetic drift.

Wright-Fisher Model with Mutation. Let m be the size of the population and assume that each there
are two possible alleles A and a. Let {Xn} be the number of A alleles in the population at generation n. We
assume that from one generation to the next generation, each individual is randomly mated so the transition
probability from state i to state j is

pij =

(
2m

j

)
qji (1− qi)

2m−j , (6.1)
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where qi = i
2m when there is no mutation. Now we model the mutation using a simple probability model:

u = P (a → A) and v = P (A → a), where → here denotes the mutation. Then equation (6.1) will be
modified with

qi =
i

2m
(1− v) +

(
1− i

2m

)
u.

Thus, the transition probability matrix P = P(u, v). Our goal is to estimate parameters of interest u, v after
observing generations X1, · · · , Xn.

This scenario–the parameters of a distribution is controlled by another set of parameters– is very common
in real data analysis. When the parametric family is from an exponential family, this model is also known
as the curved exponential family. Here we briefly mention a few results about the case of P = P(θ). Note
that in this case, the log-likelihood function is

`n(θ) =

s∑
i,j=1

nij log pij(θ)

and the score equations (score function = 0) are

∂`n(θ)

∂θk
=

s∑
i,j=1

nij
pij(θ)

∂pij(θ)

∂θk
= 0

for k = 1, · · · , L and the Fisher’s information matrix I1(θ) = {Ikm(θ)} is

Ikm(θ) =

s∑
i,j=1

πi(θ)

pij(θ)

∂pij(θ)

∂θk

∂pij(θ)

∂θm
,

where πi(θ) is the stationary distribution of state i.

Proposition 6.4 Let {X}n be a Markov chain with a transition probability matrix P(θ) satisfying

1. SY = {(i, j) : pij > 0} does not change with θ.

2. Each pij(θ) is at least three times continuously differentiable.

3. For each k = 1, · · · , L, the |SY | × L matrix
{
∂pij(θ)
∂θk

}
has rank L.

4. For each θ, the chain is irreducible and aperiodic.

Let θ0 be the true value of the parameter of interest. Then

1. Statistical consistency: θ̂MLE
a.s.→ θ0.

2. Asymptotic normality:
√
n(θ̂ − θ0)

D→ N(0, I−1
1 (θ0)).

3. Variance estimation: Let Î1(θ) = 1
n

∂2

∂θ∂θT

∑s
i,j=1 nij log pij(θ). Then Î1

(
θ̂
)

P→ I1(θ0).

Proof: Sections I.2 and I.5 in Billingsley (1961, Statistical Inference for Markov Processes)

With Proposition 6.4, we know that the MLE will be a good estimator of θ0 and we can use the MLE with
the variance estimator to construct an asymptotically valid confidence interval.

Note that if we are using a Bayesian approach for the problem of P = P(θ), we need to find a prior
distribution of θ. In the case of Wright-Fisher model with mutation, a possible choice of the prior will be
the Beta distribution (for both u and v) since it is a conjugate prior fro the binomial distribution.
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6.5 Testing the Independence VS Markov Dependence

When we observe a sequence of RVs X0, · · · , Xn. Sometimes we are not sure if they are IID or they form a
Markov chain. We can do a hypothesis test to examine which assumption is more plausible. Determining if
the sequence is IID is very important because if they are IID, we have a lot more statistical tools to analyze
the underlying population.

In this case, the null and the alternative hypotheses are

H0 : X1, · · · , Xn | X0 are IID.

H1 : X1, · · · , Xn | X0 form a Markov chain with a t.p.m. of non-identical rows.

Under H0, the observations are like IID from a PMF pi = P (X1 = i) whereas under H1, the underlying
probability model is described by the transition probability matrix P = {pij}.

An interesting fact is – even under H0, we can still write the model using the transition probability matrix
but with the requirement that every row is the same. Namely, we can use the quantity P = {pij}, where
pij = P (Xn = j | Xn−1 = i) to describe the case of both H0 and H1. In this scenario,

H0 : pij = pj for all i, j ∈ S. (6.2)

Note that identifying a common quantity that both H0 and H1 is very important in hypothesis testing
because we can then transform the problem of testing a ‘statement/property’ into testing some parameters
of interest.

There are multiple ways to test equation (6.2). We use likelihood ratio test (LRT) and the Bayes factor in
this case.

LRT:
Recall that the likelihood ratio test would use the MLE under H0 and H0 ∪H1 to perform the test. Under
H0, p̂ij,H0 = p̂j =

n+j

n while under H1, p̂ij =
nij

ni+
. Thus, the test statistic is

Tn = 2(`n(P̂MLE)− `n(P̂MLE,H0))

= 2

s∑
i,j=1

nij log

(
p̂ij
p̂j

)

= 2

s∑
i,j=1

nij log

(
nij · n
ni+ · n+j

)
.

To compute the p-value using LRT, we use the χ2 distribution as a reference distribution of Tn. Now here
comes the question: what is the degree of freedom in this case? First, we think about H1. There are totally
s2 parameters in P. Each row has to sum to 1 so there are s constraints. Thus, under H1, there are s2 − s
degrees of freedom. What about H0? Under H0, all rows are identical so there are at most s parameters.
But all these s numbers have to sum to 1, leading to one constrain so there are totally s − 1 degrees of
freedom. Thus, the remaining degrees of freedom is (s2 − s)− (s− 1) = (s− 1)2. So Tn ∼ χ2

(s−1)2 .

Bayes Factor:
To use the Bayes factor, we need to put priors on the parameters pi = (pi1, · · · , pis). As we have mentioned,
the Dirichlet piror seems to be a good choice. Under H1, although we can use different priors on different
rows, here we use the same prior for every row. Moreover, we would use the same prior for both H0 and H1.
This choice reflects the fact that we do not have any different believes of P under the two hypotheses. So
our prior is

pi ∼ Dirichlet(α1, · · · , αs)
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for some given hyperparameters α1, · · · , αs. The Bayes factor is

BF =

∫
p(Data|P)π(P|H0)dP∫
p(Data|P)π(P|H1)dP

=

1
B(α)

∫ ∏s
j=1 p

n+j

j p
αj−1
j dpj

1
Bs(α)

∫ ∏s
i,j=1 p

nij

ij p
αj−1
ij dpij

=

1
B(α)

∏s
j=1

∫
p
n+j+αj−1
j dpj

1
Bs(α)

∏s
i,j=1

∫
p
nij−αj−1
ij dpij

=
B(n+1 + α1, · · · , n+s + αs)/B(α1, · · · , αs)∏s
i=1 [B(ni1 + α1, · · · , nis + αs)/B(α1, · · · , αs)]

.
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