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Lecture 4: Discrete-Time Markov Chain – Part 2
Instructor: Yen-Chi Chen

These notes are partially based on those of Mathias Drton.

4.1 Limiting behavior

We have learned the conditions for the existence of a stationary distribution of a Markov chain. The
stationary distribution characterizes the behavior of a Markov chain in a steady state, which will be something
we expect when running the chain for a long time.

Now consider an interesting case. If we obtain a sequence of RVs from a Markov chain and try to calculate
some statistics based on these RVs, what will we get? This is the case when we are running the famous
MCMC (Markov Chain Monte Carlo) approach to evaluate some quantity from a distribution. Because the
stationary distribution characterizes the steady behavior of a Markov chain, we would expect the computed
statistics to be related to the stationary distribution. To understand how stationary distribution and the
statistics are related, we begin a journey on investigating the limiting behavior of a Markov chain. To
simplify the problem, we consider the most common statistic – the sample average. We will show that when
averaging the output from a Markov chain, the average will converges almost surely to the average of the
stationary distribution! This is also known as the Ergodic theorem.

Before we proceed, we first introduce a very useful lemma.

Lemma 4.1 (Regenerative Cycles) Let 0 be a recurrent state of the homogeneous Markov chain {Xn},
and let τ0 = 0, τ1, τ2, . . . be the successive times of return to 0. Define Zk = {Xτk , Xτk+1, . . . , Xτk+1−1}.

Then the trajectories Z1, Z2, · · · are IID. In particular, the times between returns τ1, τ2 − τ1, τ3 − τ2, . . . are
i.i.d.

Proof: Follows from the strong Markov property.

The Regenerative Cycles lemma shows that for a Markov chain, each time when we return to the initial
state, the chain behaves ‘as if’ we are starting over again.

The Regenerative Cycles lemma gives us some hint on why the sample average of a Markov chain converges
– the chunk of the chain within each return time behaves like independent chain so when averaging over the
entire chain, we can view the average as averaging across several independent components.

To make our argument more concrete, let X1, · · · , XN be a Markov chain and we consider the average

1

N

N∑
i=1

f(Xi), (4.1)

where f is some function. Note that if X1, · · · , XN are IID and E|f(X1)| < ∞, the strong law of large
number states that

1

N

N∑
i=1

f(Xi)
a.s.→ E(f(X1)).
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We would like to know if the same convergence occurs for a Markov chain.

Proposition 4.2 Let {Xn} be an irreducible, recurrent, and homogeneous Markov chain and y be an in-
variant measure of {Xn} with

yi = E0

[ ∞∑
n=1

I(Xn = i)I(n ≤ T0)

]
.

Let ν(n) =
∑n
k=1 I(Xk = 0). If f : S → R with

∑
i∈S |f(i)|yi <∞, then

1

ν(N)

N∑
j=1

f(Xj)
a.s.→
∑
i∈S

f(i)yi when N →∞.

Note that this is not the usual average we calculate, since we are dividing by the number of returns to state
0 in N steps, which explains the yi (rather than πi) on the RHS.

Proof: Let τj be the j-th time that the Markov chain returns to 0. Note that τ1 = T0 is the return time
and τ0 = 0 by definition.

We consider the time between τj + 1, · · · , τj+1. Define

Uj =

τj∑
n=τj−1+1

f(Xn).

By the Regenerative Cycles lemma, U1, U2, · · · are IID.

To see the convergence, we first study the expectation:

E(U1) = E0

(
τ1∑

n=τ0+1

f(Xn)

)

= E0

(
T0∑
n=1

f(Xn)

)

= E0

(
T0∑
n=1

∑
i∈S

f(i)I(Xn = i)

)

=
∑
i∈S

f(i)E0

(
T0∑
n=1

I(Xn = i)

)

=
∑
i∈S

f(i)E0

( ∞∑
n=1

I(Xn = i)I(n ≤ T0)

)
=
∑
i∈S

f(i)yi.

By the strong law of large number and the fact that U1, U2, · · · , are IID,

1

n

n∑
j=1

Uj
a.s.→
∑
i∈S

f(i)yi.
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Using the fact that Uj =
∑τj
n=τj−1+1 f(Xn), we conclude that

1

n

n∑
j=1

Uj =
1

n

τn∑
i=1

f(Xi)
a.s.→
∑
i∈S

f(i)yi. (4.2)

This is still not quiet yet what we want because we want the denominator to be ν(N) and the summation
upper bound to be N .

Because ν(N) =
∑N
i=1 I(Xi = 0) is the number of visits of state 0, τν(N) ≤ N ≤ τν(N)+1 and thus,

τν(N)∑
i=1

f(Xi) ≤
N∑
i=1

f(Xi) ≤
τν(N)+1∑
i=1

f(Xi)

and

1

ν(N)

τν(N)∑
i=1

f(Xi) ≤
1

ν(N)

N∑
i=1

f(Xi) ≤
1

ν(N)

τν(N)+1∑
i=1

f(Xi).

To finish the proof, we need to show that the middle one converges almost surely to
∑
i∈S f(i)yi. We prove

this by showing that the left and the right terms (lower and upper bound) converge almost surely. Note that
the fact that the chain is recurrent (P0(T0 <∞) = 1) implies that ν(N)→∞ almost surely. For the lower
bound, by identifying n = ν(N), equation (4.2) implies

1

ν(N)

τν(N)∑
i=1

f(Xi)
a.s.→
∑
i∈S

f(i)yi

so we only need to work on the upper bound.

For the upper bound, note that the Markov chain is recurrent so P0(T0 <∞) = 1 so

1

ν(N)

T0∑
i=1

f(Xi)
a.s.→ 0.

Thus,

1

ν(N)

τν(N)+1∑
i=1

f(Xi) =
1

ν(N)

τν(N)∑
i=1

f(Xi) +
1

ν(N)

τν(N)+1∑
i=τν(N)+1

f(Xi)

=
1

ν(N)

τν(N)∑
i=1

f(Xi) +
1

ν(N)

T0∑
i=1

f(Xi)

a.s.→
∑
i∈S

f(i)yi + 0,

which proves that the upper bound also converges to the same limit so the result follows.

With the above proposition, we are able to derive the Ergodic theorem of a Markov chain.

Theorem 4.3 (Ergodic Theorem) Let {Xn} be an irreducible, homogeneous, and positive recurrent Markov
chain on state-space S with stationary distribution π. Let f : S → R such that

∑
i∈S |f(i)|πi <∞.
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Then, for any initial distribution,

1

N

N∑
j=1

f(Xj)
a.s.→
∑
i∈S

f(i)πi

as N →∞.

Proof: Applying Proposition 4.2 with f(x) = 1, we obtain

1

ν(N)

N∑
j=1

f(Xj) =
N

ν(N)

a.s.→
∑
i∈S

yi.

Thus,

1

N

N∑
j=1

f(Xj) =
ν(N)

N

1

ν(N)

N∑
j=1

f(Xj)

a.s.→ 1∑
`∈S y`

∑
i∈S

f(i)yi

=
∑
i∈S

f(i)πi

because positive recurrence implies πi = yi∑
`∈S y`

.

Ergodic theorem is also called the strong law of large number of Markov chain, which shows that the empirical
average converges to the average of the stationary distribution.

4.1.1 Convergence of the entire distribution

The Ergodic theorem is very powerful – it tells us that the empirical average of the output from a Markov
chain converges to the ‘population’ average that the population is described by the stationary distribution.

However, convergence of the average statistic is not the only quantity that the Markov chain can offer us.
Under suitable condition, the Markov chain behaves like RVs from the stationary distribution regardless of
the initial state.

Let X and Y be two random variables on the state space S with probability mass functions pX and pY . We
define the total variation norm between the distributions of X and Y as

dTV (pX , pY ) =
1

2

∑
i∈S
|pX(i)− pY (i)|.

Theorem 4.4 (Basic Limit Theorem) Let {Xn} be irreducible, positive recurrent and aperiodic homoge-
neous Markov chain with transition probability matrix P. Then, for any initial distributions µ and ν

lim
n→∞

dTV (µTPn, νTPn) = 0.

In particular, if µ(k) = I(k = i) for some fixed i and ν = π is the stationary distribution, then

lim
n→∞

∑
j∈S
|p(n)ij − πj | = 0.
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Proof: See Brémaud (1999, p. 130).

The Basic Limit Theorem states that no matter what the initial state is, or how we randomize our starting
point, in the long run the Markov chain will behave like random points from the stationary distribution.

With the Basic Limit theorem, one may be wondering if this implies that the t.p.m. Pn will have some
meaningful limit when n→∞. To investigate this, we first introduce the following proposition.

Proposition 4.5 Let P denote the t.p.m. of a finite Markov chain with state space S = {1, ..., s}. Suppose
that the eigenvalues λ1, ..., λs of P are distinct, with corresponding right (column) eigenvectors µT1 , ..., µ

T
s ;

that is
PµTk = λkµ

T
k , k = 1, ..., s.

Then there exists s× s matrices A1, ..., As such that

Pn =

s∑
k=1

λnkAk, n = 0, 1, ...

Proof: Define s× s matrices,

U = [µ1|µ2|...|µs] , Λ = diag[λ1, ..., λs],

so that
Pµk = λkµk ⇒ PU = UΛ ⇒ P = UΛU−1,

since distinct λk’s ensure that the µk’s are linearly independent and hence that U is non-singular.

Therefore,
Pn = (UΛU−1)× (UΛU−1)× ...× (UΛU−1) ⇒ Pn = UΛnU−1,

for n = 0, 1, 2, ... where Λn = diag[λn1 , ..., λ
n
s ].

Let νTk denote the k-th row of µ−1 so that

Pn = [µ1|µ2|...|µs]


λn1

λn2
. . .

λns



νT1
νT2
...
νTs


= λn1µ1ν

T
1 + · · ·+ λnsµsν

T
s

= λn1A1 + · · ·+ λnsAs,

say, where Ak = µkν
T
k for k = 1, · · · , s is a fixed s× s matrix.

With the above proposition, we obtain the following theorem, which quantifies the convergence rate of Pn

toward a t.p.m. formed by the stationary distribution.

Theorem 4.6 If P is a transition probability matrix of an irreducible and aperiodic Markov chain on a
finite state-space, then

Pn = 1πT +O
(
nm2−1|λ2|n

)
,

where 1 = λ1 > |λ2| ≥ · · · ≥ |λs| are eigenvalues of P and m2 is the multiplicity of λ2.

Proof: Follows directly from Perron-Frobenius theorem (see Brémaud, 1999, p. 197).

The above theorem says that irreducible and aperiodic Markov chains on finite state-spaces converge to the
stationary distribution at a geometric rate, determined by the second largest eigenvalue modulus.
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4.1.2 Example: Two-State Markov Chains

Let

P =

[
1− α α
β 1− β

]
a stochastic matrix with α, β ∈ (0, 1). The eigenvalues of P are the solutions of det(P− λI) = 0; i.e.∣∣∣∣ 1− α− λ α

β 1− β − λ

∣∣∣∣ = 0⇒ (λ− 1)[λ− (1− α− β)] = 0,

so we can take λ1 = 1 and λ2 = 1− α− β.

Let 1T = (1, 1). Any stochastic matrix must have a unit eigenvalue since P1 = 1. If we exclude the trivial
case α = β = 0 (for which P = I and the unit eigenvalue is repeated), then λ1 6= λ2 and the proposition
implies that

Pn = A1 + (1− α− β)nA2, n = 0, 1, ...

where A1 and A2 are 2× 2 matrices. We can determine A1 and A2 by setting

n = 0 ⇒ I = A1 +A2

n = 1 ⇒ P = A1 + (1− α− β)A2

and solving.

Hence,

Pn =
1

α+ β

[
β α
β α

]
+

(1− α− β)n

α+ β

[
α −α
−β β

]
.

We have shown previously that

πT =

[
β

α+ β
,

α

α+ β

]
is the stationary distribution of the corresponding Markov chain, which is confirmed by the expression for
Pn above. Since −1 < −β < 1− α− β < 1,

lim
n→∞

Pn =
1

α+ β

[
β α
β α

]
= 1πT .

Consider the case:

P =

[
1− α α

0 1

]
so that state 1 is absorbing. State 0 is transient since it can occur finitely many times before absorption into
state 1. Let Z be the time to absorption. Then we can find E0[Z] by first-step analysis (iterated expectation
conditioning on first move):

E0[Z] = E[Z|X0 = 0] = E0 {E[Z|X1, X0 = 0]}
= P0(X1 = 0)E[Z|X1 = 0, X0 = 0] + P0(X1 = 1)E[Z|X1 = 1, X0 = 0]

= (1− α){1 + E[Z|X1 = 0]}+ α× 1

= (1− α){1 + E0[Z]}+ α× 1

so E0[Z] = 1/α.

First-step analysis can determine the entire distribution of Z via its moment generating function (mgf),
ψ(t) = E[tZ |X0 = 0] (note that this is the same as E(esZ |X0 = 0) with s = log t):

ψ(t) = P0(X1 = 0)E0[tZ |X1 = 0] + P0(X1 = 1)E0[tZ |X1 = 1]

= (1− α)E0[t1+Z ] + αt1

= (1− α)tψ(t) + αt,
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so

ψ(t) =
αt

1− (1− α)t
= αt+ (1− α)αt+ (1− α)αt2 + (1− α)2αt3 + ...

which is the mgf of a Geometric(α) distribution. Thus, the time to absorption follows a Geometric(α)
distribution.

4.2 Reversibility

Reversibility is a property of Markov chain such that it has some reversible properties with respect to its
transition probability matrix and stationary distribution. This property involves the concept of being detailed
balance, which is related to the global balance property we have encountered. Recall that a probability vector
π over state space S satisfies global balance if

πT = πTP.

A probability vector π satisfies detailed balance if

πipij = πjpji for all i, j. (4.3)

The detailed balance and the global balance are linked by the following proposition.

Proposition 4.7 Detailed balance ⇒ global balance.

Proof: ∑
j

πjpji =
∑
j

πipij = πi
∑
j

pij = πi

for every i, j so the global balance property is satisfied.

A Markov chain with a stationary distribution satisfying the detailed balance is called a reversible Markov
chain. Note that there are some disagreements among textbook authors about reversibility; some requires
that the reversible chain needs to have a initial distribution that is the same as the stationary distribution;
some requires the chain to be irreducible.

To see why we called it a reversible Markov chain, consider a homogeneous Markov chain {X0, · · · , Xn} that
is irreducible and positive recurrent with a t.p.m. P and a stationary distribution π. Now assume that the
initial distribution X0 ∼ π, note that this implies that Xt ∼ π (marginal distribution of Xt is π) for every
t = 0, 1, · · · , n because π is the stationary distribution.

Now we define Yk = Xn−k for k ≤ n. The chain {Y0, · · · , Yn} is the chain in a reversing time. Note
that {Yt : t = 0, · · · , n} is also a Markov chain (using the graphical representation). Then the conditional
probability

P (Yk = i|Yk−1 = j) = P (Xn−k = i|Xn−k+1 = j)

=
P (Xn−k = i,Xn−k+1 = j)

P (Xn−k+1 = j)

=
πipij
πj

.

Now consider the conditional probability of the chain {X0, · · · , Xn}:

P (Xk = i|Xk−1 = j) = pji.



4-8 Lecture 4: Discrete-Time Markov Chain – Part 2

The detailed balance property requires pji =
πipij
πj)

, which implies

P (Yk = i|Yk−1 = j) = P (Xk = i|Xk−1 = j).

Here you see how the chain is ‘reversible’.

In the above example, you see that we require the chain to have an initial distribution being the stationary
distribution and is an irreducible chain. This is why some authors would argue that we should add these
properties into the definition of a reversible chain. However, the Basin Limit Theorem shows that under
suitable assumptions, the (marginal) distribution of Xn from a Markov chain will eventually converge to the
stationary distribution. Thus, the future part of the chain behaves just like the chain starting with an initial
distribution being the stationary distribution. So even if we do not assume the initial distribution to be the
stationary one, the chain will have the reversible property asymptotically.

In addition to making a chain to be reversible, the detailed balance provides an alternative way to find the
stationary distribution as illustrated in the following two examples.

Example: Ehrenfest Model of Diffusion. Recall that Ehrenfest model’s transition probabilities are

pij =

{
i
N if j = i− 1

1− i
N if j = i+ 1.

{Xn} is an irreducible Markov chain on a finite state space, so the chain is positive recurrent with a unique
stationary distribution. However, we do not know the stationary distribution. One way to find this stationary
distribution is to solve the global balance equations πTP = πT . Alternatively, we can try to “guess” that
at equilibrium Xn ∼ Bin(N, 12 ) and verify this candidate stationary distribution via the detailed balance
equation. Notice we do not know whether the Ehrenfest chain is reversible, but we’ll go ahead with the
detailed balance check anyway. Entries of our candidate probability vector are

πi =

(
N

i

)(
1

2

)i(
1− 1

2

)N−i
=

(
N

i

)
1

2N
(4.4)

Since Xn can only increase or decrease by one at each time step, we need to check detailed balance only for
i and j = i+ 1.

πipi,i+1 =
1

2N

(
N

i

)
N − i
N

=
1

2N
N !

i!(N − i)!
N − i
N

=
1

2N
N !

(i+ 1)!(N − i− 1)!

i+ 1

N

=

(
N

i+ 1

)
1

2N
i+ 1

N
= πi+1pi+1,i,

confirming our guess.

Example: Random Walk on a Graph. Let G = (V, E) be a graph, where V is the vertex set (assumed to
be finite) and E = {(i, j) : i, j ∈ V} is the edge set. Let d(i) be the degree of note i; the degree is the number
of edges connecting to vertex i. Assume that there is no edge from a node to itself. A common model for a
random walk on a graph is a Markov chain on V with the transition probabilities

pij =

{
1
d(i) , if (i, j) ∈ E
0, if (i, j) /∈ E .

Note that a random walk on a graph model is used to spectral analysis; it is related to the spectral clustering,
a popular clustering method. If we assume that the graph is connected, then the chain {Xn} is irreducible
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and positive recurrent because V is finite. To find the stationary distribution, again we use the detailed
balance. For (i, j) ∈ E ,

πipij = πjpji ⇒ π
1

d(i)
= πj

1

d(j)
⇒ πi

d(i)
= c

for some constant c. To find c,

πi = c · d(i)⇒ 1 =
∑
i

πi = c
∑
i

d(i)⇒ c =
1

2m
,

where m = |E| is the total number of edges. Thus, the stationary distribution is

πi =
d(i)

2m
.

4.3 Fundamental matrices

Finally, we introduce the concept of fundamental matrices. Fundamental matrices can be defined for both
absorbing and irreducible Markov chains and are powerful tools in deriving certain properties.

• For absorbing Markov chain, fundamental matrices can be used to compute the probabilities of ab-
sorption of recurrent states.

• For irreducible Markov chains, fundamental matrices can be used to calculate Ei(Tj), the mean return
time to state j from state i, and the asymptotic variance of an ergodic estimator (equation (4.1)).

4.3.1 Absorbing Markov chain

Let {Xn} be a Markov chain with state space S = {1, 2, · · · , s} and we assume that T,A are a partition of
S such that

• T = {1, 2, · · · ,m} are the transient states, and

• A = {m+ 1,m+ 2, · · · , s} are absorbing states.

Namely, pij = 0 for all i ∈ A and j ∈ T and for every i ∈ T , there exists j ∈ A such that i→ j but j 8 j.

Because S = {T,A}, we can write the transition probability matrix in block matrix form as

P =

[
Q R
0 S

]
, (4.5)

where Q is an m×m matrix, R is an m× (s−m) matrix, and S is an (s−m)× (s−m) matrix.

Example: Gambler’s ruin. Consider a gambler’s ruin problem with a + b = 4. Recall that Xn is the
amount of money that the first player has at turn n. In this case, S = {0, 1, 2 · · · , 4} so there are totally
5 states. States 0 and 4 are absorbing and 1, 2, 3 are transient. The transition probability matrix can be
expressed as

P =

↗ 1 2 3 0 4
1
2
3
0
4


0 p 0 q 0
q 0 p 0 0
0 q 0 0 p
0 0 0 1 0
0 0 0 0 1

 =

[
Q R
0 S

]
,
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We are often interested in the probability of starting from a transient state to an absorbing state. For
instance, in gambler’s ruin problem, we are interested the probability of player 1 wins with certain amount
of starting money. The winning probability can be viewed as the probability of starting from a transient
state (the initial amount of money) to the absorbing state a+ b (total amount of money).

Let i ∈ T be a transient state and j ∈ A be an absorbing sate and hij = P (Aj |X0 = i, i ∈ T ), where Aj is
the event “absorbed through j”. Using the first-step analysis, we can decompose hij :

hij = P (Aj |X0 = i, i ∈ T )

= P (Aj |X1 = j,X0 = i, i ∈ T )P (X1 = j|X0 = i, i ∈ T )

+
∑
k 6=j

P (Aj |X1 = k,X0 = i, i ∈ T )P (X1 = k|X0 = i, i ∈ T )

= 1 · pij +
∑
k 6=j

P (Aj |X1 = k)pik

= pij +

m∑
k=1

P (Aj |X1 = k)pik (since the first m states are transient)

= pij +

m∑
k=1

pikhkj .

Using the matrices Q,R, and P, we can reexpress the above equality as

H = R + QH⇒ H = (Is −Q)−1R,

where H = {hij} is an m× (s−m) matrix.

In the right-handed side we use the fact that (Is −Q)−1 exists. Will the inverse always exists? The follow
proposition provides a condition for the existence of the inverse.

Proposition 4.8 Let Q be an s × s square matrix with limn→∞Qn = 0. Then (Is − Q)−1 exists and
(Is −Q)−1 =

∑∞
n=0 Qn.

Proof: Since
(Is −Q)(IS + Q + · · ·+ Qn−1) = Is −Qn, (4.6)

taking determinant in both sides, we obtain

det(Is −Q) · det(IS + Q + · · ·+ Qn−1) = det(Is −Qn).

Because determinant is a continuous function, we have

lim
n→∞

det(Is −Qn) = det
(

lim
n→∞

(Is −Qn)
)

= det(Is − 0) = 1.

Since the limit of determinant is non-zero, there exists some k such that det(Is − Qk) 6= 0 which implies
det(Is −Q) 6= 0 so (Is −Q)−1 exists. Moreover, taking limits in both sides of equation (4.6),

(Is −Q) ·
∞∑
n=0

Qn = lim
n→∞

Is −Qn = Is,

which implies

(Is −Q)−1 =

∞∑
n=0

Qn.
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Now we come back to our Markov chain with both transient and absorbing states. Can we apply the above
proposition? The answer is yes! To see this, we need to show that limn→∞Qn = 0. Recall that in equation
(4.5), the transition probability matrix has a block form. It turns out that the n-step transition probability
matrix also has a block form with

Pn =

[
Qn R(n)

0 Sn

]
,

where R(n) is some complex matrix (think about why we obtain the above form). Therefore, for each i, j ∈ T ,

p
(n)
ij = q

(n)
ij with Qn = {q(n)ij }. Recall that if j is a transient state, limn→∞ pnij = 0 so q

(n)
ij → 0 for every

j ∈ T , which implies limn→∞Qn = 0. Therefore, the equation H = (Is −Q)−1R is well-defined.

The quantity (Is −Q)−1 =
∑∞
n=0 Qn is called the fundamental matrix of the absorbing Markov chain.

The fundamental matrix can also be used to solve the hitting time problem. Let tij be the expected number
of visits to transient state j from transient state i. Namely,

tij = Ei

( ∞∑
n=0

I(Xn = j)

)

for i, j ∈ T . Using the first step analysis, we obtain

tij = I(i = j) +

m∑
k=1

piktkj = I(i = j) +

m∑
k=1

qiktkj .

Using the matrix form T = {tij}, we obtain

T = Is + QT⇒ T = (Is −Q)−1.

Also, if we are thinking about the expected number of steps to get absorbed from transient state i, we can
also use the fundamental matrix to help. Note that ti =

∑m
j=1 tij is the expected number of steps to get

absorbed (think about why). Let tT = (t1, · · · , tm). Then

t = T1s = (1−Q)−11s,

where 1Ts = (1, 1, · · · , 1) ∈ Rs.

Example: Gambler’s ruin.
Consider the gambler’s ruin problem with a+ b = 4 (we have discussed about the block matrix form of this
problem). Assume further p = q = 1/2. Then

Q =

 0 1/2 0
1/2 0 1/2
0 1/2 0

 , R =

1/2 0
0 0
0 1/2

 , S =

[
1 0
0 1

]

so that

Is −Q =

 1 −1/2 0
−1/2 1 1/2

0 −1/2 1


and

T = (Is −Q)−1 =

3/2 1 1/2
1 2 1

1/2 1 3/2
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So, for example, t11 = 3/2 is the expected number of visits to state 1 starting from 1 and t13 = 1/2 is the
expected number of visits to state 3 starting from state 1. The hitting probabilities are

H = (Is −Q)−1R =

3/2 1 1/2
1 2 1

1/2 1 3/2

1/2 0
0 0
0 1/2

 =

3/4 1/4
1/2 1/2
1/4 3/4


Hence, if we start in state 1 there is a probability of 3/4 that we are absorbed through state 0 and 1/4
through 4.

Example: Monitoring Deaths in the SIS model.
Suppose an individual in a population has four possible states: S, susceptible, I, infectious, DD, dead from
disease complications, DO, dead from other causes. The individual moves between these over the state-space
E = {S, I,DO, DD} according to a Markov chain with the following transition probability matrix:

P =


p11 p12 p13 0
p21 p22 0 p24
0 0 1 0
0 0 0 1

 .
In our absorbing Markov chain notation

Q =

[
p11 p12
p21 p22

]
, R =

[
p13 0
0 p24

]
, S =

[
1 0
0 1

]
.

The fundamental matrix is

(I−Q)−1 =
1

(1− p11)(1− p22)− p12p21

[
1− p22 p12
p21 1− p11

]
.

The hitting probabilities can be computed as

H = (I−Q)−1
[
p13 0
0 p24

]
and hitting times as T = (I−Q)−1. The transient visit probabilities are collected in the matrix

F = T [diag(T)]
−1

=

[
1 t12

t22
t21
t11

1

]
.

4.3.2 Irreducible Markov chain

Now we consider the Markov chain {Xn} to be irreducible. Moreover, we will assume that {Xn} is also
aperiodic and has a finite state space. Note that an irreducible and aperiodic Markov chain is also called an
ergodic Markov chain. Let P be its transition matrix and π be its stationary distribution. Then the vector

Z = (Is −P + 1sπ
T )−1 (4.7)

is called the fundamental matrix of the irreducible Markov chain {Xn}.

Proposition 4.9 The fundamental matrix Z of the above is well-defined and can be expressed as

Z = Is +

∞∑
n=1

(Pn − 1sπ
T ).
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Proof: Before proceeding to the proof, we first note the following fact about the matrix 1sπ
T :

1sπ
TP = 1sπ

T

P1sπ
T = 1sπ

T ⇒ Pk1sπ
T = 1sπ

T

1sπ
T1sπ

T = 1sπ
T ⇒ (1sπ

T )k = 1sπ
T .

Because 1sπ
TP = P1sπ

T , we can expand

(P− 1sπ
T )n =

n∑
k=1

(
n

k

)
(−1)n−kPk(1sπ

T )n−k

= Pn +

n−1∑
k=1

(
n

k

)
(−1)n−k︸ ︷︷ ︸

=1

Pk1sπ
T︸ ︷︷ ︸

=1sπT

(1sπ
T )n−k−1︸ ︷︷ ︸

=1sπT

= Pn − 1sπ
T .

(4.8)

Note that we use the fact that

0 = (1− 1)n =

n∑
k=1

(
n

k

)
(−1)n−k =

n−1∑
k=1

(
n

k

)
(−1)n−k − 1.

Using the fact that for any square matrix A,

(Is −A)(Is +A+ · · ·+An−1) = Is −An,

we conclude

(Is − (P− 1sπ
T ))(Is + (P− 1sπ

T ) + · · ·+ (P− 1sπ
T )n−1) = Is − (P− 1sπ

T )n = Is −Pn + 1sπ
T .

Because limn→∞Pn + 1sπ
T = 0, taking limn→∞ in both sides, we conclude

(Is − (P− 1sπ
T ))

(
Is +

∞∑
k=1

(P− 1sπ
T )k

)
= Is.

Therefore, using equation (4.8),

Z = Is − (P− 1sπ
T )−1 = Is +

∞∑
k=1

(P− 1sπ
T )k = Is +

∞∑
n=1

(Pn + 1sπ
T ).

The fundamental matrix allows us to compute some useful quantities as described in the following two
theorems.

Theorem 4.10 Let {Xi} be a ergodic Markov chain with a finite state space and let Z be the fundamental
matrix defined in equation (4.7). Then for all i 6= j, the mean return time to state j from state i is

Ei(Tj) =
Zjj − Zij

πj
.
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Proof: See Brémaud, 1999, p. 231 (Theorem 6.4).

Theorem 4.11 Let {Xi} be a ergodic Markov chain with a finite state space and let Z be the fundamental
matrix defined in equation (4.7). For any function f : S 7→ R, define fi = f(i) for each i ∈ S. Then
regardless of the initial distribution,

lim
N→∞

Var

(
1

N

N∑
i=1

f(Xi)

)
= 2

∑
i,j

πiZijfifj −
∑
i,j

πi(Is − 1sπ
T )ijfifj .

Proof: See Brémaud, 1999, p. 232 (Theorem 6.5).
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