Lecture 2: A Brief Introduction to Graphical Model

Instructor: Yen-Chi Chen

These notes are partially based on those of Mathias Drton.

2.1 Conditional Independence

2.1.1 Independence Revisited

Recall that two random variables X and Y are independent if

$$
P(X \leq x, Y \leq y)=P(X \leq x) P(Y \leq y)
$$

In this case, we write it as $X \Perp Y$. Let p_{X} and p_{Y} denote the PDF or PMF of X and Y, respectively. Then independence also implies

$$
p_{X Y}(x, y)=p_{X}(x) p_{Y}(y) \Leftrightarrow p_{X \mid Y}(x \mid y)=p_{X}(x)
$$

Consider a special case where both X and Y are categorical variables such that $X \in\{1,2, \cdots, m\}$ and $Y \in\{1,2, \cdots, n\}$. We further define

$$
q_{i j}=P(X=i, Y=j) \quad q_{i+}=P(X=i) \quad q_{+j}=P(Y=j)
$$

Then $X \Perp Y$ if and only if

$$
q_{i j}=q_{i+} \cdot q_{+j} \quad \text { for all } i, j
$$

Lemma 2.1 Let Q be an $m \times n$ matrix such that $Q_{i j}=q_{i j}$. Then $X \Perp Y$ if and only if the matrix Q has rank 1.

Proof:
\Rightarrow :
This direction is easy to see because $q_{i j}=q_{i+} \cdot q_{+j}$ implies that $Q=u v^{T}$, where $u=\left(q_{1+}, q_{2+}, \cdots, q_{n+}\right)$ and $v=\left(q_{+1}, q_{+2}, \cdots, q_{+m}\right)$.
$\Leftarrow:$
If Q has rank 1, there exists vectors $u \in \mathbb{R}^{n}$ and $b \in \mathbb{R}^{m}$ such that $Q=u v^{T}$. Because $q_{i j} \geq 0$, we may choose every elements of u and v to be non-negative, i.e., $u_{j} \geq 0$ and $v_{j} \geq 0$ for every i and j.

Since $Q_{i j}=p_{i j}=u_{i} v_{j}$,

$$
p_{i+}=\sum_{j=1, \cdots, m} p_{i j}=\sum_{j=1}^{m} u_{i} v_{j}=u_{i} v_{+},
$$

where $v_{+}=\sum_{j=1}^{m} v_{j}>0$. Similarly,

$$
p_{+j}=u_{+} v_{j}, \quad u_{+}=\sum_{i=1}^{n} u_{i}
$$

Therefore, we obtain

$$
u_{i}=\frac{p_{i+}}{v_{+}}, \quad v_{j}=\frac{p_{+j}}{u_{+}}
$$

and

$$
p_{i j}=u_{i} v_{j}=\frac{p_{i+} p_{+j}}{v_{+} u_{+}}=p_{i+} p_{+j}
$$

because $v_{+} u_{+}=\sum_{j=1}^{m} v_{j} \sum_{i=1}^{n} u_{i}=\sum_{i, j} u_{i} v_{j}=\sum_{i, j} p_{i j}=1$.

2.1.2 Conditional Independence

For three RVs X, Y, and Z, we say X, Y are conditional independent given Z if

$$
P(X \leq x, Y \leq y \mid Z=z)=P(X \leq x \mid Z=z) P(Y \leq y \mid Z=z)
$$

for every x and y and P_{Z}-almost everywhere of z. P_{Z}-almost everywhere of z means that the above equality holds for all z except for a set of values that has 0 probability. It is a slightly weaker notion than 'for every z^{\prime}. We use the notation

$$
X \Perp Y \mid Z
$$

for denote the case where X, Y are conditional independent given Z.
Note that $X \Perp Y \mid Z$ also implies

$$
P(X \leq x \mid Y=y, Z=z)=P(X \leq x \mid Z=z)
$$

for every x and $P_{Y, Z}$-almost everywhere of (y, z).

Theorem 2.2 Let $p_{X Y Z}$ be the joint $P D F / P M F$ of X, Y, and Z. Then the followings are equivalent:
(i) $X \Perp Y \mid Z$.
(ii) $p_{X Y \mid Z}(x, y \mid z)=p_{X \mid Z}(x \mid z) p_{Y \mid Z}(y \mid z)$ a.e.
(iii) $p_{X \mid Y Z}(x \mid y, z)=p_{X \mid Z}(x \mid z)$ a.e.
(iv) $p_{X Y Z}(x, y, z)=\frac{p_{X Z}(x, z) p_{Y Z}(y, z)}{p_{Z}(z)}$ a.e.
(v) $p_{X Y Z}(x, y, z)=g(x, z) h(y, z)$, where g and h are some (measurable) functions.
(vi) $p_{X \mid Y Z}(x \mid y, z)=w(x, z)$, where w is some (measurable) function.

Proof: The equivalence between (i), (ii), (iii), and (iv) are trivial so we focus on case (v) and (vi).
(ii) $\Rightarrow(\mathrm{v})$:

Because

$$
p_{X Y \mid Z}(x, y \mid z)=p_{X \mid Z}(x \mid z) p_{Y \mid Z}(y \mid z)
$$

we have

$$
\frac{p_{X Y Z}(x, y, z)}{p_{Z}(z)}=\frac{p_{X Z}(x, z)}{p_{Z}(z)} \frac{p_{Y Z}(y, z)}{p_{Z}(z)}
$$

so

$$
p_{X Y Z}(x, y, z)=\frac{p_{X Z}(x, z) p_{Y Z}(y, z)}{p_{Z}(z)}=h(x, z) g(y, z)
$$

which proves (v).
$(\mathrm{v}) \Rightarrow(\mathrm{vi}):$
Based on (v), we have

$$
p_{Y Z}(y, z)=\int p_{X Y Z}(x, y, z) d x=h(y, z) \int g(x, z) d x=h(y, z) q(z)
$$

Thus,

$$
p_{X \mid Y Z}(x \mid y, z)=\frac{p_{X Y Z}(x, y, z)}{p_{Y Z}(y, z)}=\frac{g(x, z) h(y, z)}{h(y, z) q(z)}=\frac{g(x, z)}{q(z)}=w(x, z)
$$

Finally, we show that (vi) \Rightarrow (iii):

$$
\begin{aligned}
p_{X \mid Z}(x \mid z)=\int p_{X Y \mid Z}(x, y \mid z) d y & =\int p_{X \mid Y Z}(x \mid y, z) p_{Y \mid Z}(y \mid z) d y \\
& =w(x, z) \int p_{Y \mid Z}(y \mid z) d y=w(x, z)=p_{X \mid Y Z}(x \mid y, z)
\end{aligned}
$$

To see the power of the above theorem, we now consider the problem of a Gaussian random vector $X=$ $\left(X_{1}, X_{2}, \cdots, X_{p}\right) \in \mathbb{R}^{p}$ with a mean vector μ and a covariance matrix Σ. Assume that Σ is positive definite, then the joint PDF can be written as

$$
p_{X}(x)=\frac{1}{\sqrt{(2 \pi)^{p} \operatorname{det}(\Sigma)}} \exp \left\{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right\}
$$

where $x=\left(x_{1}, \cdots, x_{p}\right)$.
In this model, there are two parameters μ and Σ. What does the conditional independence $X_{1} \Perp X_{2} \mid X_{3}, \cdots, X_{p}$ tell us about the underlying parameters?

Applying the property (v) in the above theorem, we can factorize p_{X} into

$$
p_{X}(x)=g\left(x_{1}, x_{3}, x_{4}, \cdots, x_{p}\right) h\left(x_{2}, x_{3}, \cdots, x_{p}\right)
$$

Therefore,

$$
\log p_{X}(x)=\tilde{g}\left(x_{1}, x_{3}, x_{4}, \cdots, x_{p}\right)+\tilde{h}\left(x_{2}, x_{3}, \cdots, x_{p}\right)=-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)+C_{0}
$$

where C_{0} is a constant with respect to x.
Using the fact that

$$
(x-\mu)^{T} \Sigma^{-1}(x-\mu)=\sum_{i, j=1}^{p}\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\left(\Sigma^{-1}\right)_{i j}
$$

we conclude that $\left(\Sigma^{-1}\right)_{12}=0$. Namely, for a Gaussian random vector, if we see the (i, j)-th element of the inverse covariance matrix (also known as the precision matrix) is 0 , we have the conditional independence of X_{i} and X_{j} given the other elements.

Here are five important properties of conditional independence. Let X, Y, Z, W be RVs .
(C1) (symmetry) $X \Perp Y|Z \Longleftrightarrow Y \Perp X| Z$.
(C2) (decomposition) $X \Perp Y|Z \Longrightarrow h(X) \Perp Y| Z$ for any (measurable) function h.
A special case is: $(X, W) \Perp Y|Z \Longrightarrow X \Perp Y| Z$.
(C3) (weak union) $X \Perp Y|Z \Longrightarrow X \Perp Y| Z, h(X)$ for any (measurable) function h.
A special case is: $(X, W) \Perp Y|Z \Longrightarrow X \Perp Y|(Z, W)$
(C4) (contraction)

$$
X \Perp Y \mid Z \text { and } X \Perp W|(Y, Z) \Longleftrightarrow X \Perp(W, Y)| Z
$$

(C5) If the joint PDF $p_{X Y Z W}(x, y, z, w)$ satisfies $f_{Y Z W}(y, z, w)>0$ almost everywhere. Then

$$
X \Perp Y \mid(W, Z) \text { and } X \Perp W|(Y, Z) \Longleftrightarrow X \Perp(W, Y)| Z
$$

2.2 Graphical Model

The conditional independence can be represented using a graph. Suppose that $X \Perp Y \mid Z$ so by (v) of Theorem 2.2,

$$
p_{X Y Z}(x, y, z)=g(x, z) h(y, z)
$$

for some functions g and h. We then use the following graph to represent it their relation:

The edge $X-Z$ is drawn because the density factorization has a factor, namely $g(x, z)$, that depends on both x and z. Similarly, the edge $Z-Y$ is drawn because of factor $h(y, z)$.

Note that there is no edge between $X-Y$. The only path from X to Y passes through Z. Later we will see that in the graphical model, this implies conditional independence of X and Y given Z.

Formally, a graph $G=(V, E)$ is a pair consisting of a (finite) vertex set V and an edge set $E \subset V \times V$. Here, we consider undirected graphs where an edge $v-w$ is represented by the fact that (v, w) and (w, v) are both in E. We assume no self-loops, so $(v, v) \notin E$ for all $v \in V$.

Example 1: If $V=\{1,2,3,4\}$ and

$$
E=\{(1,2),(2,1),(2,3),(3,2),(2,4),(4,2),(3,4),(4,3)\}
$$

then the picture is

A non-empty subset of nodes $A \subseteq V$ is complete if there is an edge $v-w$ between any pair of nodes $v, w \in A$. Complete sets are also called cliques. Sometimes, clique refers to an inclusion-maximal complete set. We denote the family of all complete sets as $\mathcal{C}(G)$.

In the above example, complete sets are

$$
\{1\},\{2\},\{3\},\{4\},\{1,2\},\{2,3\},\{2,4\},\{3,4\},\{2,3,4\} .
$$

And inclusion maximal complete sets are $\{1,2\},\{2,3,4\}$.
A graphical model uses a graph to represent the conditional independence between a set of RVs. Let $G=(V, E)$ be a graph. Let $X=\left(X_{v}: v \in V\right)$ be a random vector, with coordinates indexed by the nodes of G. The distribution of X is said to factorize according to G if it has a density $p_{X}(x)$ such that

$$
p_{X}(x)=\prod_{C \in \mathcal{C}(G)} \psi_{C}\left(x_{v}: v \in C\right), \quad x \in \mathbb{R}^{V}
$$

Here, $\psi_{C}: \mathbb{R}^{C} \rightarrow[0, \infty)$ are the potential functions.
Example 2: If the following graph is a graphical model of random variables $X=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$:

then

$$
p_{X}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \times \psi_{23}\left(x_{2}, x_{3}\right) \psi_{34}\left(x_{3}, x_{4}\right) \psi_{14}\left(x_{1}, x_{4}\right)
$$

A path in G is a sequence of distinct nodes $v_{0}, v_{1}, \ldots, v_{n}$ s.t. there is an edge between any two consecutive nodes, $v_{i-1}-v_{i}$ for $i=1, \ldots, n$. Let $A, B, C \subset V$ be subsets of nodes. Then C separates A and B if every path from a node $v \in A$ to a node $w \in B$ intersects C. For instance, in example 1, X_{2} separates X_{1} and $\left(X_{3}, X_{4}\right)$ and in example $2,\left(X_{2}, X_{4}\right)$ separates X_{1} and X_{3}.

In graphical model, the notion of separation and conditional independence are related via the following theorem.

Theorem 2.3 Suppose the distribution of $X=\left(X_{v}: v \in V\right)$ factorizes over $G=(V, E)$. Let $A, B, C \subset V$ be subsets of nodes. Then

$$
C \text { separates } A \text { and } B \Longrightarrow X_{A} \Perp X_{B} \mid X_{C} .
$$

The above is a gentle introduction on the graphical model. There will be more about it in the 517, including the famouse Hammersley-Clifford theorem that describes the sufficient and necessary conditions of undirected graphical model.

