
STAT 516: Stochastic Modeling of Scientific Data Autumn 2018

Lecture 2: A Brief Introduction to Graphical Model
Instructor: Yen-Chi Chen

These notes are partially based on those of Mathias Drton.

2.1 Conditional Independence

2.1.1 Independence Revisited

Recall that two random variables X and Y are independent if

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y).

In this case, we write it as X ⊥⊥ Y . Let pX and pY denote the PDF or PMF of X and Y , respectively. Then
independence also implies

pXY (x, y) = pX(x)pY (y)⇔ pX|Y (x|y) = pX(x).

Consider a special case where both X and Y are categorical variables such that X ∈ {1, 2, · · · ,m} and
Y ∈ {1, 2, · · · , n}. We further define

qij = P (X = i, Y = j) qi+ = P (X = i) q+j = P (Y = j).

Then X ⊥⊥ Y if and only if

qij = qi+ · q+j for all i, j.

Lemma 2.1 Let Q be an m× n matrix such that Qij = qij. Then X ⊥⊥ Y if and only if the matrix Q has
rank 1.

Proof:

⇒:

This direction is easy to see because qij = qi+ · q+j implies that Q = uvT , where u = (q1+, q2+, · · · , qn+) and
v = (q+1, q+2, · · · , q+m).

⇐:

If Q has rank 1, there exists vectors u ∈ Rn and b ∈ Rm such that Q = uvT . Because qij ≥ 0, we may choose
every elements of u and v to be non-negative, i.e., uj ≥ 0 and vj ≥ 0 for every i and j.

Since Qij = pij = uivj ,

pi+ =
∑

j=1,··· ,m
pij =

m∑
j=1

uivj = uiv+,
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where v+ =
∑m

j=1 vj > 0. Similarly,

p+j = u+vj , u+ =

n∑
i=1

ui.

Therefore, we obtain

ui =
pi+
v+

, vj =
p+j

u+

and
pij = uivj =

pi+p+j

v+u+
= pi+p+j

because v+u+ =
∑m

j=1 vj
∑n

i=1 ui =
∑

i,j uivj =
∑

i,j pij = 1.

2.1.2 Conditional Independence

For three RVs X,Y, and Z, we say X,Y are conditional independent given Z if

P (X ≤ x, Y ≤ y|Z = z) = P (X ≤ x|Z = z)P (Y ≤ y|Z = z)

for every x and y and PZ-almost everywhere of z. PZ-almost everywhere of z means that the above equality
holds for all z except for a set of values that has 0 probability. It is a slightly weaker notion than ‘for every
z’. We use the notation

X ⊥⊥ Y |Z

for denote the case where X,Y are conditional independent given Z.

Note that X ⊥⊥ Y |Z also implies

P (X ≤ x|Y = y, Z = z) = P (X ≤ x|Z = z)

for every x and PY,Z-almost everywhere of (y, z).

Theorem 2.2 Let pXY Z be the joint PDF/PMF of X,Y, and Z. Then the followings are equivalent:

(i) X ⊥⊥ Y |Z.

(ii) pXY |Z(x, y|z) = pX|Z(x|z)pY |Z(y|z) a.e.

(iii) pX|Y Z(x|y, z) = pX|Z(x|z) a.e.

(iv) pXY Z(x, y, z) = pXZ(x,z)pY Z(y,z)
pZ(z) a.e.

(v) pXY Z(x, y, z) = g(x, z)h(y, z), where g and h are some (measurable) functions.

(vi) pX|Y Z(x|y, z) = w(x, z), where w is some (measurable) function.

Proof: The equivalence between (i), (ii), (iii), and (iv) are trivial so we focus on case (v) and (vi).

(ii) ⇒ (v):
Because

pXY |Z(x, y|z) = pX|Z(x|z)pY |Z(y|z),
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we have
pXY Z(x, y, z)

pZ(z)
=
pXZ(x, z)

pZ(z)

pY Z(y, z)

pZ(z)

so

pXY Z(x, y, z) =
pXZ(x, z)pY Z(y, z)

pZ(z)
= h(x, z)g(y, z),

which proves (v).

(v) ⇒ (vi):
Based on (v), we have

pY Z(y, z) =

∫
pXY Z(x, y, z)dx = h(y, z)

∫
g(x, z)dx = h(y, z)q(z).

Thus,

pX|Y Z(x|y, z) =
pXY Z(x, y, z)

pY Z(y, z)
=
g(x, z)h(y, z)

h(y, z)q(z)
=
g(x, z)

q(z)
= w(x, z).

Finally, we show that (vi) ⇒ (iii):

pX|Z(x|z) =

∫
pXY |Z(x, y|z)dy =

∫
pX|Y Z(x|y, z)pY |Z(y|z)dy

= w(x, z)

∫
pY |Z(y|z)dy = w(x, z) = pX|Y Z(x|y, z).

To see the power of the above theorem, we now consider the problem of a Gaussian random vector X =
(X1, X2, · · · , Xp) ∈ Rp with a mean vector µ and a covariance matrix Σ. Assume that Σ is positive definite,
then the joint PDF can be written as

pX(x) =
1√

(2π)pdet(Σ)
exp

{
−1

2
(x− µ)T Σ−1(x− µ)

}
,

where x = (x1, · · · , xp).

In this model, there are two parameters µ and Σ. What does the conditional independenceX1 ⊥⊥ X2|X3, · · · , Xp

tell us about the underlying parameters?

Applying the property (v) in the above theorem, we can factorize pX into

pX(x) = g(x1, x3, x4, · · · , xp)h(x2, x3, · · · , xp).

Therefore,

log pX(x) = g̃(x1, x3, x4, · · · , xp) + h̃(x2, x3, · · · , xp) = −1

2
(x− µ)T Σ−1(x− µ) + C0,

where C0 is a constant with respect to x.

Using the fact that

(x− µ)T Σ−1(x− µ) =

p∑
i,j=1

(xi − µi)(xj − µj)
(
Σ−1

)
ij
,
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we conclude that
(
Σ−1

)
12

= 0. Namely, for a Gaussian random vector, if we see the (i, j)-th element of the
inverse covariance matrix (also known as the precision matrix) is 0, we have the conditional independence
of Xi and Xj given the other elements.

Here are five important properties of conditional independence. Let X,Y, Z,W be RVs.

(C1) (symmetry) X ⊥⊥ Y |Z ⇐⇒ Y ⊥⊥ X|Z.

(C2) (decomposition) X ⊥⊥ Y |Z =⇒ h(X) ⊥⊥ Y |Z for any (measurable) function h.
A special case is: (X,W ) ⊥⊥ Y |Z =⇒ X ⊥⊥ Y |Z.

(C3) (weak union) X ⊥⊥ Y |Z =⇒ X ⊥⊥ Y |Z, h(X) for any (measurable) function h.
A special case is: (X,W ) ⊥⊥ Y |Z =⇒ X ⊥⊥ Y |(Z,W )

(C4) (contraction)
X ⊥⊥ Y |Z and X ⊥⊥W |(Y,Z)⇐⇒ X ⊥⊥ (W,Y )|Z.

(C5) If the joint PDF pXY ZW (x, y, z, w) satisfies fY ZW (y, z, w) > 0 almost everywhere. Then

X ⊥⊥ Y |(W,Z) and X ⊥⊥W |(Y, Z)⇐⇒ X ⊥⊥ (W,Y )|Z.

2.2 Graphical Model

The conditional independence can be represented using a graph. Suppose that X ⊥⊥ Y |Z so by (v) of
Theorem 2.2,

pXY Z(x, y, z) = g(x, z)h(y, z)

for some functions g and h. We then use the following graph to represent it their relation:

X YZ

The edge X − Z is drawn because the density factorization has a factor, namely g(x, z), that depends on
both x and z. Similarly, the edge Z − Y is drawn because of factor h(y, z).

Note that there is no edge between X − Y . The only path from X to Y passes through Z. Later we will see
that in the graphical model, this implies conditional independence of X and Y given Z.

Formally, a graph G = (V,E) is a pair consisting of a (finite) vertex set V and an edge set E ⊂ V ×V . Here,
we consider undirected graphs where an edge v−w is represented by the fact that (v, w) and (w, v) are both
in E. We assume no self-loops, so (v, v) /∈ E for all v ∈ V .

Example 1: If V = {1, 2, 3, 4} and

E = {(1, 2), (2, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3)}

then the picture is

1 32
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A non-empty subset of nodes A ⊆ V is complete if there is an edge v−w between any pair of nodes v, w ∈ A.
Complete sets are also called cliques. Sometimes, clique refers to an inclusion-maximal complete set. We
denote the family of all complete sets as C(G).

In the above example, complete sets are

{1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {2, 4}, {3, 4}, {2, 3, 4}.

And inclusion maximal complete sets are {1, 2}, {2, 3, 4}.

A graphical model uses a graph to represent the conditional independence between a set of RVs. Let
G = (V,E) be a graph. Let X = (Xv : v ∈ V ) be a random vector, with coordinates indexed by the
nodes of G. The distribution of X is said to factorize according to G if it has a density pX(x) such that

pX(x) =
∏

C∈C(G)

ψC(xv : v ∈ C), x ∈ RV .

Here, ψC : RC → [0,∞) are the potential functions.

Example 2: If the following graph is a graphical model of random variables X = (X1, X2, X3, X4):

1

3

2

4

then
pX(x1, x2, x3, x4) = ψ12(x1, x2)× ψ23(x2, x3)ψ34(x3, x4)ψ14(x1, x4).

A path in G is a sequence of distinct nodes v0, v1, . . . , vn s.t. there is an edge between any two consecutive
nodes, vi−1 − vi for i = 1, . . . , n. Let A,B,C ⊂ V be subsets of nodes. Then C separates A and B if every
path from a node v ∈ A to a node w ∈ B intersects C. For instance, in example 1, X2 separates X1 and
(X3, X4) and in example 2, (X2, X4) separates X1 and X3.

In graphical model, the notion of separation and conditional independence are related via the following
theorem.

Theorem 2.3 Suppose the distribution of X = (Xv : v ∈ V ) factorizes over G = (V,E). Let A,B,C ⊂ V
be subsets of nodes. Then

C separates A and B =⇒ XA ⊥⊥ XB | XC .

The above is a gentle introduction on the graphical model. There will be more about it in the 517, including
the famouse Hammersley-Clifford theorem that describes the sufficient and necessary conditions of undirected
graphical model.
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