STAT 516: Stochastic Modeling of Scientific Data

Autumn 2018

Lecture 2: A Brief Introduction to Graphical Model

Instructor: Yen-Chi Chen

These notes are partially based on those of Mathias Drton.

2.1 Conditional Independence

2.1.1 Independence Revisited

Recall that two random variables X and Y are independent if

$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y).$$

In this case, we write it as $X \perp \!\!\! \perp Y$. Let p_X and p_Y denote the PDF or PMF of X and Y, respectively. Then independence also implies

$$p_{XY}(x,y) = p_X(x)p_Y(y) \Leftrightarrow p_{X|Y}(x|y) = p_X(x).$$

Consider a special case where both X and Y are categorical variables such that $X \in \{1, 2, \dots, m\}$ and $Y \in \{1, 2, \dots, n\}$. We further define

$$q_{ij} = P(X = i, Y = j)$$
 $q_{i+} = P(X = i)$ $q_{+j} = P(Y = j)$.

Then $X \perp \!\!\!\perp Y$ if and only if

$$q_{ij} = q_{i+} \cdot q_{+j}$$
 for all i, j .

Lemma 2.1 Let Q be an $m \times n$ matrix such that $Q_{ij} = q_{ij}$. Then $X \perp \!\!\! \perp Y$ if and only if the matrix Q has rank 1.

Proof:

⇒:

This direction is easy to see because $q_{ij} = q_{i+} \cdot q_{+j}$ implies that $Q = uv^T$, where $u = (q_{1+}, q_{2+}, \dots, q_{n+})$ and $v = (q_{+1}, q_{+2}, \dots, q_{+m})$.

⇐:

If Q has rank 1, there exists vectors $u \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$ such that $Q = uv^T$. Because $q_{ij} \geq 0$, we may choose every elements of u and v to be non-negative, i.e., $u_j \geq 0$ and $v_j \geq 0$ for every i and j.

Since $Q_{ij} = p_{ij} = u_i v_j$,

$$p_{i+} = \sum_{j=1,\dots,m} p_{ij} = \sum_{j=1}^{m} u_i v_j = u_i v_+,$$

where $v_{+} = \sum_{j=1}^{m} v_{j} > 0$. Similarly,

$$p_{+j} = u_+ v_j, \quad u_+ = \sum_{i=1}^n u_i.$$

Therefore, we obtain

$$u_i = \frac{p_{i+}}{v_+}, \quad v_j = \frac{p_{+j}}{u_+}$$

and

$$p_{ij} = u_i v_j = \frac{p_{i+} p_{+j}}{v_+ u_+} = p_{i+} p_{+j}$$

because $v_+u_+=\sum_{j=1}^m v_j\sum_{i=1}^n u_i=\sum_{i,j}u_iv_j=\sum_{i,j}p_{ij}=1.$

2.1.2 Conditional Independence

For three RVs X, Y, and Z, we say X, Y are conditional independent given Z if

$$P(X \le x, Y \le y | Z = z) = P(X \le x | Z = z)P(Y \le y | Z = z)$$

for every x and y and P_Z -almost everywhere of z. P_Z -almost everywhere of z means that the above equality holds for all z except for a set of values that has 0 probability. It is a slightly weaker notion than 'for every z'. We use the notation

$$X \perp\!\!\!\perp Y|Z$$

for denote the case where X, Y are conditional independent given Z.

Note that $X \perp \!\!\!\perp Y | Z$ also implies

$$P(X \le x | Y = y, Z = z) = P(X \le x | Z = z)$$

for every x and $P_{Y,Z}$ -almost everywhere of (y,z).

Theorem 2.2 Let p_{XYZ} be the joint PDF/PMF of X, Y, and Z. Then the followings are equivalent:

- (i) $X \perp \!\!\!\perp Y|Z$.
- (ii) $p_{XY|Z}(x, y|z) = p_{X|Z}(x|z)p_{Y|Z}(y|z)$ a.e.
- (iii) $p_{X|YZ}(x|y,z) = p_{X|Z}(x|z)$ a.e.
- (iv) $p_{XYZ}(x, y, z) = \frac{p_{XZ}(x, z)p_{YZ}(y, z)}{p_{Z}(z)}$ a.e.
- (v) $p_{XYZ}(x, y, z) = g(x, z)h(y, z)$, where g and h are some (measurable) functions.
- (vi) $p_{X|YZ}(x|y,z) = w(x,z)$, where w is some (measurable) function.

Proof: The equivalence between (i), (ii), (iii), and (iv) are trivial so we focus on case (v) and (vi).

 $(ii) \Rightarrow (v)$:

Because

$$p_{XY|Z}(x, y|z) = p_{X|Z}(x|z)p_{Y|Z}(y|z),$$

we have

$$\frac{p_{XYZ}(x,y,z)}{p_Z(z)} = \frac{p_{XZ}(x,z)}{p_Z(z)} \frac{p_{YZ}(y,z)}{p_Z(z)}$$

so

$$p_{XYZ}(x, y, z) = \frac{p_{XZ}(x, z)p_{YZ}(y, z)}{p_{Z}(z)} = h(x, z)g(y, z),$$

which proves (v).

 $(v) \Rightarrow (vi)$:

Based on (v), we have

$$p_{YZ}(y,z) = \int p_{XYZ}(x,y,z)dx = h(y,z) \int g(x,z)dx = h(y,z)q(z).$$

Thus,

$$p_{X|YZ}(x|y,z) = \frac{p_{XYZ}(x,y,z)}{p_{YZ}(y,z)} = \frac{g(x,z)h(y,z)}{h(y,z)q(z)} = \frac{g(x,z)}{q(z)} = w(x,z).$$

Finally, we show that $(vi) \Rightarrow (iii)$:

$$\begin{split} p_{X|Z}(x|z) &= \int p_{XY|Z}(x,y|z) dy = \int p_{X|YZ}(x|y,z) p_{Y|Z}(y|z) dy \\ &= w(x,z) \int p_{Y|Z}(y|z) dy = w(x,z) = p_{X|YZ}(x|y,z). \end{split}$$

To see the power of the above theorem, we now consider the problem of a Gaussian random vector $X = (X_1, X_2, \dots, X_p) \in \mathbb{R}^p$ with a mean vector μ and a covariance matrix Σ . Assume that Σ is positive definite, then the joint PDF can be written as

$$p_X(x) = \frac{1}{\sqrt{(2\pi)^p \det(\Sigma)}} \exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\},\,$$

where $x = (x_1, \cdots, x_p)$.

In this model, there are two parameters μ and Σ . What does the conditional independence $X_1 \perp \!\!\! \perp X_2 | X_3, \cdots, X_p$ tell us about the underlying parameters?

Applying the property (v) in the above theorem, we can factorize p_X into

$$p_X(x) = g(x_1, x_3, x_4, \cdots, x_p)h(x_2, x_3, \cdots, x_p).$$

Therefore,

$$\log p_X(x) = \tilde{g}(x_1, x_3, x_4, \cdots, x_p) + \tilde{h}(x_2, x_3, \cdots, x_p) = -\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu) + C_0,$$

where C_0 is a constant with respect to x.

Using the fact that

$$(x - \mu)^T \Sigma^{-1} (x - \mu) = \sum_{i,j=1}^p (x_i - \mu_i) (x_j - \mu_j) (\Sigma^{-1})_{ij},$$

we conclude that $(\Sigma^{-1})_{12} = 0$. Namely, for a Gaussian random vector, if we see the (i, j)-th element of the inverse covariance matrix (also known as the precision matrix) is 0, we have the conditional independence of X_i and X_j given the other elements.

Here are five important properties of conditional independence. Let X, Y, Z, W be RVs.

- (C1) (symmetry) $X \perp \!\!\!\perp Y | Z \Longleftrightarrow Y \perp \!\!\!\perp X | Z$.
- (C2) (decomposition) $X \perp\!\!\!\perp Y|Z \Longrightarrow h(X) \perp\!\!\!\perp Y|Z$ for any (measurable) function h. A special case is: $(X,W) \perp\!\!\!\perp Y|Z \Longrightarrow X \perp\!\!\!\perp Y|Z$.
- (C3) (weak union) $X \perp\!\!\!\perp Y|Z \Longrightarrow X \perp\!\!\!\perp Y|Z, h(X)$ for any (measurable) function h. A special case is: $(X,W) \perp\!\!\!\perp Y|Z \Longrightarrow X \perp\!\!\!\perp Y|(Z,W)$
- (C4) (contraction)

$$X \perp\!\!\!\perp Y \mid Z \text{ and } X \perp\!\!\!\perp W \mid (Y, Z) \iff X \perp\!\!\!\perp (W, Y) \mid Z.$$

(C5) If the joint PDF $p_{XYZW}(x, y, z, w)$ satisfies $f_{YZW}(y, z, w) > 0$ almost everywhere. Then

$$X \perp\!\!\!\perp Y | (W, Z)$$
 and $X \perp\!\!\!\perp W | (Y, Z) \iff X \perp\!\!\!\perp (W, Y) | Z$.

2.2 Graphical Model

The conditional independence can be represented using a graph. Suppose that $X \perp \!\!\! \perp Y|Z$ so by (v) of Theorem 2.2,

$$p_{XYZ}(x, y, z) = g(x, z)h(y, z)$$

for some functions g and h. We then use the following graph to represent it their relation:

The edge X - Z is drawn because the density factorization has a factor, namely g(x, z), that depends on both x and z. Similarly, the edge Z - Y is drawn because of factor h(y, z).

Note that there is no edge between X - Y. The only path from X to Y passes through Z. Later we will see that in the graphical model, this implies conditional independence of X and Y given Z.

Formally, a graph G = (V, E) is a pair consisting of a (finite) vertex set V and an edge set $E \subset V \times V$. Here, we consider undirected graphs where an edge v - w is represented by the fact that (v, w) and (w, v) are both in E. We assume no self-loops, so $(v, v) \notin E$ for all $v \in V$.

Example 1: If $V = \{1, 2, 3, 4\}$ and

$$E = \{(1,2), (2,1), (2,3), (3,2), (2,4), (4,2), (3,4), (4,3)\}$$

then the picture is

A non-empty subset of nodes $A \subseteq V$ is *complete* if there is an edge v-w between any pair of nodes $v, w \in A$. Complete sets are also called *cliques*. Sometimes, clique refers to an inclusion-maximal complete set. We denote the family of all complete sets as $\mathcal{C}(G)$.

In the above example, complete sets are

$$\{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{2,3\}, \{2,4\}, \{3,4\}, \{2,3,4\}.$$

And inclusion maximal complete sets are $\{1, 2\}$, $\{2, 3, 4\}$.

A graphical model uses a graph to represent the conditional independence between a set of RVs. Let G = (V, E) be a graph. Let $X = (X_v : v \in V)$ be a random vector, with coordinates indexed by the nodes of G. The distribution of X is said to factorize according to G if it has a density $p_X(x)$ such that

$$p_X(x) = \prod_{C \in \mathcal{C}(G)} \psi_C(x_v : v \in C), \quad x \in \mathbb{R}^V.$$

Here, $\psi_C : \mathbb{R}^C \to [0, \infty)$ are the potential functions.

Example 2: If the following graph is a graphical model of random variables $X = (X_1, X_2, X_3, X_4)$:

then

$$p_X(x_1, x_2, x_3, x_4) = \psi_{12}(x_1, x_2) \times \psi_{23}(x_2, x_3) \psi_{34}(x_3, x_4) \psi_{14}(x_1, x_4).$$

A path in G is a sequence of distinct nodes v_0, v_1, \ldots, v_n s.t. there is an edge between any two consecutive nodes, $v_{i-1} - v_i$ for $i = 1, \ldots, n$. Let $A, B, C \subset V$ be subsets of nodes. Then C separates A and B if every path from a node $v \in A$ to a node $w \in B$ intersects C. For instance, in example 1, X_2 separates X_1 and (X_3, X_4) and in example 2, (X_2, X_4) separates X_1 and X_3 .

In graphical model, the notion of separation and conditional independence are related via the following theorem.

Theorem 2.3 Suppose the distribution of $X = (X_v : v \in V)$ factorizes over G = (V, E). Let $A, B, C \subset V$ be subsets of nodes. Then

$$C$$
 separates A and $B \implies X_A \perp \!\!\! \perp X_B \mid X_C$.

The above is a gentle introduction on the graphical model. There will be more about it in the 517, including the famouse Hammersley-Clifford theorem that describes the sufficient and necessary conditions of undirected graphical model.