STAT 516: Stochastic Modeling of Scientific Data Autumn 2018

Lecture 2: A Brief Introduction to Graphical Model
Instructor: Yen-Chi Chen

These notes are partially based on those of Mathias Drton.

2.1 Conditional Independence

2.1.1 Independence Revisited

Recall that two random variables X and Y are independent if
P(X<z,Y<y)=PX <z)PY <y).

In this case, we write it as X 1L Y. Let px and py denote the PDF or PMF of X and Y, respectively. Then
independence also implies

pxy (7, y) = px(2)py (y) & px|y (zly) = px ().

Consider a special case where both X and Y are categorical variables such that X € {1,2,---,m} and
Y €{1,2,--- ,n}. We further define

Gi; = P(X =4,Y =j) q+=PX =i) qu =P =)
Then X 1 Y if and only if

¢ij = Qi+ - q+; forall z,j.

Lemma 2.1 Let Q be an m x n matriz such that Q;; = q;5. Then X 1LY if and only if the matriz Q) has
rank 1.

Proof:

=

This direction is easy to see because ¢;; = g;+ - ¢+; implies that Q = uv”, where u = (q14,¢24,** ,qn+) and
v = (Q-‘rla q+2,° 7q+m)~

=

If Q has rank 1, there exists vectors u € R” and b € R™ such that Q = uv’. Because ¢i; > 0, we may choose
every elements of u and v to be non-negative, i.e., u; > 0 and v; > 0 for every ¢ and j.

Since Qij = Pij = U;Vy,

m
bit = E bij = E UiVj = UiV,

j=1,-,m j=1
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where vy =377, v; > 0. Similarly,

n
Ptj = U4V, Ut = E Ui
i=1

Therefore, we obtain

Pi+ P+j
U; = s ’l}j = —
’UJ,_ U+
and
- _ Di+P+;
Pij = Uivj = ——— = Pi+P+j
’U+U+

because vy uy = Y00 vy D wp = D0, s uvy = >, i pij = L.

2.1.2 Conditional Independence

For three RVs XY, and Z, we say X,Y are conditional independent given Z if
PX<z,Y<y|Z=2)=PX<z|Z=2)P(Y <y|Z=2)

for every x and y and Pz-almost everywhere of z. Pz-almost everywhere of z means that the above equality
holds for all z except for a set of values that has 0 probability. It is a slightly weaker notion than ‘for every

z’. We use the notation
X1Y|Z

for denote the case where X, Y are conditional independent given Z.
Note that X 1L Y|Z also implies
PX<zlY=yZ=2)=PX<z|Z=2)

for every x and Py, z-almost everywhere of (y, z).

Theorem 2.2 Let pxyz be the joint PDF/PMF of X,Y, and Z. Then the followings are equivalent:

(i) X LY|Z.
(1) pXY|Z($»y|Z) :pX|Z(fE|z)pY|Z(y|Z) a.e.

(iii) pxvz(xly, 2) = px|z(z|2) a.e.

_ pxz@2)pvz(y.2)

vz (2) e

() pxyz(x,y,2)
(v) pxvyz(x,y,z) = g(z, 2)h(y, z), where g and h are some (measurable) functions.

(vi) px|yz(zly,z) = w(z,2), where w is some (measurable) function.

Proof: The equivalence between (i), (ii), (iii), and (iv) are trivial so we focus on case (v) and (vi).

(ii) = (v):
Because
pxwz(%?/\z) = pX|Z($\Z)PY|Z(y\Z)7
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we have
Pxyz(z,y,2) _ pxz(%,2) pyz(y, 2)

pz(2) pz(2)  pz(2)

SO

_ pxz(%, 2)pyz(y, 2) — Wz 2 5
pXYZ(xvyvz)* pz(Z) *h( ) )g(y’ )a

which proves (v).

(v) = (vi):
Based on (v), we have

py2(y.7) = / pxy 2.y, 2)de = h(y, 2) / gz, 2)dz = h(y, 2)q(2).

Thus,
_ pXYZ($,y7Z) _ g(x,z)h(y,z) _ g(a:,z) —wlz. 2
O e e T BT R

Finally, we show that (vi) = (iii):

pxiz(z]z) = /pXle(x7y|Z)dy = /pX\YZ(x|yuz>pY|Z(ylz)dy

= w(x,z) /py|Z(y|z)dy = w(z, 2) = px|yz(zly, 2).

To see the power of the above theorem, we now consider the problem of a Gaussian random vector X =
(X1,X2,--+,X,) € RP with a mean vector p and a covariance matrix X. Assume that ¥ is positive definite,
then the joint PDF can be written as

1 1 Ty—1
PX(Z’):WWGXP{—2($—M) by (x—u)},

where z = (z1,- -+, xp).

In this model, there are two parameters p and X. What does the conditional independence X7 AL X5|X3,--- , X,
tell us about the underlying parameters?

Applying the property (v) in the above theorem, we can factorize px into
pX(CE) = g(xh T3, T4, " 7xp)h($27 T3, - >xp)-

Therefore,

. 1 _
logpx(x) = g(wr, 3,24, ,2p) + h(T2, 23, -+ ,2p) = —5(50 —w)"'S (@ — p) + Co,

where Cy is a constant with respect to x.

Using the fact that
P

(x — /QL)TEfl(x —p) = Z (zi — pi)(xj — ) (Eil)ij J

ij=1
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we conclude that (2_1)12 = 0. Namely, for a Gaussian random vector, if we see the (4, j)-th element of the
inverse covariance matrix (also known as the precision matrix) is 0, we have the conditional independence
of X; and X; given the other elements.

Here are five important properties of conditional independence. Let X, Y, Z, W be RVs.

(C1) (symmetry) X L YV|Z <Y 1 X|Z.

(C2) (decomposition) X Il Y|Z = h(X) 1L Y|Z for any (measurable) function h.
A special case is: (X, W) LY|Z = X L Y|Z.

(C3) (weak union) X Il Y|Z = X 1 Y|Z, h(X) for any (measurable) function h.
A special case is: (X, W) LY|Z =X L Y|(Z,W)

(C4) (contraction)
X L Y|Zand X 1L W|(Y, Z) & X L (W,Y)|Z.

(C5) If the joint PDF pxyzw(x,y, z, w) satisfies fy zw (y, 2z, w) > 0 almost everywhere. Then
X LY|(W,Z) and X 1L W|(Y, Z) < X 1L (W,Y)|Z.

2.2  Graphical Model

The conditional independence can be represented using a graph. Suppose that X 1 Y|Z so by (v) of
Theorem 2.2,

pxyz(,y,2) = g(x, 2)h(y, 2)

for some functions g and h. We then use the following graph to represent it their relation:

®» @ O

The edge X — Z is drawn because the density factorization has a factor, namely g(z, z), that depends on
both z and z. Similarly, the edge Z — Y is drawn because of factor h(y, z).

Note that there is no edge between X —Y. The only path from X to Y passes through Z. Later we will see
that in the graphical model, this implies conditional independence of X and Y given Z.

Formally, a graph G = (V, E) is a pair consisting of a (finite) vertex set V' and an edge set E C V x V. Here,
we consider undirected graphs where an edge v — w is represented by the fact that (v, w) and (w, v) are both
in E. We assume no self-loops, so (v,v) ¢ E for all v € V.

Example 1: If V = {1,2,3,4} and
E={(1,2),(2,1),(2,3),(3,2),(2,4),(4,2),(3,4),(4,3)}

then the picture is

O—~0 3
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A non-empty subset of nodes A C V' is complete if there is an edge v — w between any pair of nodes v, w € A.
Complete sets are also called cligues. Sometimes, clique refers to an inclusion-maximal complete set. We
denote the family of all complete sets as C(G).

In the above example, complete sets are
{13, {2}, {3} {4}, {12}, {2,3}, {2,4}, {3,4},{2,3,4}.
And inclusion maximal complete sets are {1,2}, {2,3,4}.

A graphical model uses a graph to represent the conditional independence between a set of RVs. Let
G = (V,E) be a graph. Let X = (X, : v € V) be a random vector, with coordinates indexed by the
nodes of G. The distribution of X is said to factorize according to G if it has a density px (z) such that

px(@)= J] ¢cle,:veC), zeR".
cec(a)

Here, 1o : RE — [0, 00) are the potential functions.

Example 2: If the following graph is a graphical model of random variables X = (X7, X5, X3, X4):

Px (@1, 02,23, 24) = P12(21, T2) X Po3(w2, £3)1034 (w3, T4)14(T1, 24).

then

A path in G is a sequence of distinct nodes vg, vy, ..., v, s.t. there is an edge between any two consecutive
nodes, v;_1 —v; for i =1,...,n. Let A, B,C C V be subsets of nodes. Then C separates A and B if every
path from a node v € A to a node w € B intersects C. For instance, in example 1, X5 separates X; and
(X3, X4) and in example 2, (Xo, X,) separates X; and X3.

In graphical model, the notion of separation and conditional independence are related via the following
theorem.

Theorem 2.3 Suppose the distribution of X = (X, : v € V) factorizes over G = (V,E). Let A,B,C CV
be subsets of nodes. Then
C separates A and B — X, 1 Xp| Xc¢.

The above is a gentle introduction on the graphical model. There will be more about it in the 517, including
the famouse Hammersley-Clifford theorem that describes the sufficient and necessary conditions of undirected
graphical model.
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