
STAT/Q SCI 403: Introduction to Resampling Methods Spring 2017

Lecture 8: Nonparametric Regression
Instructor: Yen-Chi Chen

8.1 Introduction

Let (X1, Y1), · · · , (Xn, Yn) be a bivariate random sample. In the regression analysis, we are often interested
in the regression function

m(x) = E(Y |X = x).

Sometimes, we will write
Yi = m(Xi) + εi,

where εi is a mean 0 noise. The simple linear regression model is to assume that m(x) = β0 + β1x, where
β0 and β1 are the intercept and slope parameter. In this lecture, we will talk about methods that direct
estimate the regression function m(x) without imposing any parametric form of m(x).

Given a point x0, assume that we are interested in the value m(x0). Here is a simple method to estimate
that value. When m(x0) is smooth, an observation Xi ≈ x0 implies m(Xi) ≈ m(x0). Thus, the response
value Yi = m(Xi) + εi ≈ m(x0) + εi. Using this observation, to reduce the noise εi, we can use the sample
average. Thus, an estimator of m(x0) is to take the average of those responses whose covariate are close to
x0.

To make it more concrete, let h > 0 be a threshold. The above procedure suggests to use

m̂loc(x0) =

∑
i:|Xi−x0|≤h Yi

nh(x0)
=

∑n
i=1 YiI(|Xi − x0| ≤ h)∑n
i=1 I(|Xi − x0| ≤ h)

, (8.1)

where nh(x0) is the number of observations where the covariate X : |Xi − x0| ≤ h. This estimator, m̂loc,
is called the local average estimator. Indeed, to estimate m(x) at any given point x, we are using a local
average as an estimator.

The local average estimator can be rewritten as

m̂loc(x0) =

∑n
i=1 YiI(|Xi − x0| ≤ h)∑n
i=1 I(|Xi − x0| ≤ h)

=

n∑
i=1

I(|Xi − x0| ≤ h)∑n
`=1 I(|X` − x0| ≤ h)

· Yi =

n∑
i=1

Wi(x0)Yi, (8.2)

where

Wi(x0) =
I(|Xi − x0| ≤ h)∑n
`=1 I(|X` − x0| ≤ h)

(8.3)

is a weight for each observation. Note that
∑n
i=1Wi(x0) = 1 and Wi(x0) > 0 for all i = 1, · · · , n; this implies

that Wi(x0)’s are indeed weights. Equation (8.2) shows that the local average estimator can be written as
a weighted average estimator so the i-th weight Wi(x0) determines the contribution of response Yi to the
estimator m̂loc(x0).

In constructing the local average estimator, we are placing a hard-thresholding on the neighboring points–
those within a distance h are given equal weight but those outside the threshold h will be ignored completely.
This hard-thresholding leads to an estimator that is not continuous.
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To avoid problem, we consider another construction of the weights. Ideally, we want to give more weights
to those observations that are close to x0 and we want to have a weight that is ‘smooth’. The Gaussian
function G(x) = 1√

2π
e−x

2/2 seems to be a good candidate. We now use the Gaussian function to construct

an estimator. We first construct the weight

WG
i (x0) =

G
(
x0−Xi

h

)∑n
`=1G

(
x0−X`

h

) .
The quantity h > 0 is the similar quantity to the threshold in the local average but now it acts as the
smoothing bandwidth of the Gaussian. After constructing the weight, our new estimator is

m̂G(x0) =

n∑
i=1

WG
i (x0)Yi =

n∑
i=1

G
(
x0−Xi

h

)∑n
`=1G

(
x0−X`

h

)Yi =

∑n
i=1 YiG

(
x0−Xi

h

)∑n
`=1G

(
x0−X`

h

) . (8.4)

This new estimator has a weight that changes more smoothly than the local average and is smooth as we
desire.

Observing from equation (8.1) and (8.4), one may notice that these local estimators are all of a similar form:

m̂h(x0) =

∑n
i=1 YiK

(
x0−Xi

h

)∑n
`=1K

(
x0−X`

h

) =

n∑
i=1

WK
i (x0)Yi, WK

i (x0) =
K
(
x0−Xi

h

)∑n
`=1K

(
x0−X`

h

) , (8.5)

where K is some function. When K is a Gaussian, we obtain estimator (8.4); when K is a uniform over
[−1, 1], we obtain the local average (8.1). The estimator in equation (8.5) is called the kernel regression
estimator or Nadaraya-Watson estimator1. The function K plays a similar role as the kernel function in
the KDE and thus it is also called the kernel function. And the quantity h > 0 is similar to the smoothing
bandwidth in the KDE so it is also called the smoothing bandwidth.

8.2 Cross-Validation

The smoothing bandwidth h has to be chosen to construct our estimator. But in practice, how can we choose
it? A good news is that–unlike the density estimation problem, there is a simple approach to choose h: the
cross-validation (CV)2.

Before we discuss the details of CV, we first introduce the predictive risk. Let m̂h be the kernel regression
using the n observations. Let Xn+1, Yn+1 be a new observation (from the same population). We define the
predictive risk of our regression estimator as

R(h) = E (Yn+1 − m̂h(Xn+1))
2
. (8.6)

Namely, the quantity R(h) is the expected square error of predicting the next observation using the kernel
regression.

CV is a collection of approaches that tries to estimate the predictive risk R(h) using a data-splitting approach.
A classical version of CV is the leave-one out cross-validation (LOO-CV):

R̂(h) =
1

n

n∑
i=1

(Yi − m̂h,−i(Xi))
2,

1https://en.wikipedia.org/wiki/Kernel_regression
2https://en.wikipedia.org/wiki/Cross-validation_(statistics)

https://en.wikipedia.org/wiki/Kernel_regression
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
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where m̂h,−i(Xi) is the kernel regression using all observations except i-th observation Xi, Yi. Namely, LOO-
CV leaves each observation out once at a time and use the remaining observations to train the estimator and
evaluate the quality of the estimator using the left out observation. The main reasoning of such a procedure
is to make sure we do not use the data twice.

Another popular version of CV is the K-fold CV. We randomly split the data into K equal size groups. Each
time we leave out one group and use the other K-1 groups to construct our estimator. Then we use the left
out group to evaluate the risk. Repeat this procedure many times and take the average as the risk estimator
R̂(h).

K-fold Cross-Validation.

1. Randomly split D = {(X1, Y1), · · · , (Xn, Yn)} into K groups: D1, · · · ,DK .

2. For `-th group, construct the estimator m̂
(`)
h using all the data except `-th group.

3. Evaluate the error by

R̂(`)(h) =
1

n`

∑
(Xi,Yi)∈D`

(Yi − m̂(`)
h (Xi))

2

4. Compute the average error

R̂(h) =
1

K

K∑
`=1

R̂(`)(h).

5. Repeat the above 4 steps N times, leading to N average errors

R̂∗(1)(h), · · · , R̂∗(N)(h).

6. Estimate R(h) via

R̂∗(h) =
1

N

N∑
`=1

R̂∗(`)(h).

The CV provides a simple approach of estimating the predictive errors. To choose the smoothing bandwidth,
we pick

h∗ = argminh>0R̂(h).

In practice, we apply the CV to various values of h and choose the one with the minimal predictive risk.
Generally, we will plot R̂(h) versus h and determine if the minimal value makes sense. Sometimes there
might be no well-defined minimum value (like a flat region).

Why do we want to split the data into two parts and construct the estimator on one part and evaluate the
risk on the other part? The main reason is to obtain a reliable estimate of the predictive risk. If we use the
same set of data to construct our estimator and evaluate the errors, the estimated predictive risk will be
smaller than the actual predictive risk. To see this, consider the local average estimator with h ≈ 0. When
h is very very small, m̂loc(Xi) = Yi because the neighborhood only contain this single observation. In this
case, the estimated predictive risk will be

∑n
i=1(Yi − Yi)2 = 0. This is related to the so-called overfitting3.

3https://en.wikipedia.org/wiki/Overfitting

https://en.wikipedia.org/wiki/Overfitting
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8.3 Theory

Now we study some statistical properties of the estimator m̂h. We skip the details of derivations4.

Bias. The bias of the kernel regression at a point x is

bias(m̂h(x)) =
h2

2
µK

(
m′′(x) + 2

m′(x)p′(x)

p(x)

)
+ o(h2),

where p(x) is the probability density function of the covariates X1, · · · , Xn and µK =
∫
x2K(x)dx is the

same constant of the kernel function as in the KDE.

The bias has two components: a curvature component m′′(x) and a design component m′(x)p′(x)
p(x) . The

curvature component is similar to the one in the KDE; when the regression function curved a lot, kernel
smoothing will smooth out the structure, introducing some bias. The second component, also known as the
design bias, is a new component compare to the bias in the KDE. This component depends on the density
of covariate p(x). Note that in some studies, we can choose the values of covariates so the density p(x) is
also called the design (this is why it is known as the design bias).

Variance. The variance of the estimator is

Var(m̂h(x)) =
σ2 · σ2

K

p(x)
· 1

nh
+ o

(
1

nh

)
,

where σ2 = Var(εi) is the error of the regression model and σ2
K =

∫
K2(x)dx is a constant of the kernel

function (the same as in the KDE). This expression tells us possible sources of variance. First, the variance
increases when σ2 increases. This makes perfect sense because σ2 is the noise level. When the noise level
is large, we expect the estimation error increases. Second, the density of covariate p(x) is inversely related
to the variance. This is also very reasonable because when p(x) is large, there tends to be more data points
around x, increasing the size of sample that we are averaging from. Last, the convergence rate is O

(
1
nh

)
,

which is the same as the KDE.

MSE and MISE. Using the expression of bias and variance, the MSE at point x is

MSE(m̂h(x)) =
h4

4
µ2
K

(
m′′(x) + 2

m′(x)p′(x)

p(x)

)2

+
σ2 · σ2

K

p(x)
· 1

nh
+ o(h4) + o

(
1

nh

)
and the MISE is

MISE(m̂h) =
h4

4
µ2
K

∫ (
m′′(x) + 2

m′(x)p′(x)

p(x)

)2

dx+
σ2 · σ2

K

nh

∫
1

p(x)
dx+ o(h4) + o

(
1

nh

)
. (8.7)

Optimizing the major components in equation (8.7) (the AMISE), we obtain the optimal value of the smooth-
ing bandwidth

hopt = C∗ · n−1/5,
where C∗ is a constant depending on p and K.

8.4 Uncertainty and Confidence Intervals

How do we asses the quality of our estimator m̂h(x)? We can use the bootstrap to do it. In this case,
empirical bootstrap, residual bootstrap, and wild bootstrap all can be applied. But note that each of them

4if you are interested in the derivation, check http://www.ssc.wisc.edu/~bhansen/718/NonParametrics2.pdf and http:

//www.maths.manchester.ac.uk/~peterf/MATH38011/NPR%20N-W%20Estimator.pdf

http://www.ssc.wisc.edu/~bhansen/718/NonParametrics2.pdf
http://www.maths.manchester.ac.uk/~peterf/MATH38011/NPR%20N-W%20Estimator.pdf
http://www.maths.manchester.ac.uk/~peterf/MATH38011/NPR%20N-W%20Estimator.pdf
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relies on slightly different assumptions. Let (X∗1 , Y
∗
1 ), · · · , (X∗n, Y ∗n ) be the bootstrap sample. Applying the

bootstrap sample to equation (8.5), we obtain a bootstrap kernel regression, denoted as m̂∗h. Now repeat the
bootstrap procedure B times, this yields

m̂
∗(1)
h , · · · , m̂∗(B)

h ,

B bootstrap kernel regression estimator. Then we can estimate the variance of m̂h(x) by the sample variance

V̂arB(m̂h(x)) =
1

B − 1

B∑
`=1

(
m̂
∗(`)
h (x)− ¯̂m

∗
h,B(x)

)
, ¯̂m

∗
h,B(x) =

1

B

B∑
`=1

m̂
∗(`)
h (x).

Similarly, we can estimate the MSE as what we did in Lecture 5 and 6. However, when using the bootstrap
to estimate the uncertainty, one has to be very careful because when h is either too small or too large, the
bootstrap estimate may fail to converge its target.

When we choose h = O(n−1/5), the bootstrap estimate of the variance is consistent but the bootstrap
estimate of the MSE might not be consistent. The main reason is: it is easier for the bootstrap to estimate
the variance than the bias. Thus, when we choose h in such a way, both bias and the variance contribute a
lot to the MSE so we cannot ignore the bias. However, in this case, the bootstrap cannot estimate the bias
consistently so the estimate of the MSE is not consistent.

Confidence interval. To construct a confidence interval of m(x), we may use the following property of the
kernel regression:

√
nh (m̂h(x)− E(m̂h(x)))

D→ N

(
0,
σ2 · σ2

K

p(x)

)
m̂h(x)− E(m̂h(x)

Var(m̂h(x))

D→ N(0, 1).

Thus, using a bootstrap variance estimate, we may construct a 1− α CI of m(x) as

m̂h(x)± z1−α/2 ·
√
V̂arB(m̂h(x)).

Similar to the CI of the KDE, this CI is for E(m̂h(x)) rather than m(x). However, when we undersmooth
the data (choose a small h), the bias will be much smaller than the stochastic variation so that the CI will
be valid for m(x) as well.

We can also use the quantile method to construct a CI. Let

Qα = α-quantile of
{
m̂
∗(1)
h (x), · · · , m̂∗(B)

h (x)
}
.

Then a 1− α CI of m(x) is

[Qα/2, Q1−α/2].

Here is another quantile approach of constructing a CI of m(x). Let

Sα = α-quantile of
{
|m̂∗(1)h (x)− m̂h(x)|, · · · , |m̂∗(B)

h (x)− m̂h(x)|
}
.

Then a 1− α CI of m(x) can be constructed using

m̂h(x)± S1−α.
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8.5 ♦ : Advanced Topics

♦ Similarity to KDE. Many theoretical results of the KDE apply to the nonparametric regression. For
instance, we can generalize the MISE into other types of error measurement between m̂h and m. We
can also use derivatives of m̂h as estimators of the corresponding derivatives of m. Moreover, when we
have a multivariate covariate, we can use either a radial basis kernel or a product kernel to generalize
the kernel regression to multivariate case.

♦ KDE and kernel regression. The KDE and the kernel regression has a very interesting relationship.
Using the given bivariate random sample (X1, Y1), · · · , (Xn, Yn), we can estimate the joint PDF p(x, y)
as

p̂n(x, y) =
1

nh2

n∑
i=1

K

(
Xi − x
h

)
K

(
Yi − y
h

)
.

This joint density estimator also leads to a marginal density estimator of X:

p̂n(x) =

∫
p̂n(x, y)dy =

1

nh

n∑
i=1

K

(
Xi − x
h

)
.

Now recalled that the regression function is the conditional expectation

m(x) = E(Y |X = x) =

∫
yp(y|x)dy =

∫
y
p(x, y)

p(x)
dy =

∫
yp(x, y)dy

p(x)
.

Replacing p(x, y) and p(x) by their corresponding estimators p̂n(x, y) and p̂n(x), we obtain an estimate
of m(x) as

m̂n(x) =

∫
yp̂n(x, y)dy

p̂n(x)

=

∫
y 1
nh2

∑n
i=1K

(
Xi−x
h

)
K
(
Yi−y
h

)
dy

1
nh

∑n
i=1K

(
Xi−x
h

)
=

∑n
i=1K

(
Xi−x
h

)
·
∫
y ·K

(
Yi−y
h

)
dy
h∑n

i=1K
(
Xi−x
h

)
=

∑n
i=1K

(
Xi−x
h

)
Yi∑n

i=1K
(
Xi−x
h

)
=

∑n
i=1 YiK

(
Xi−x
h

)∑n
i=1K

(
Xi−x
h

)
= m̂h(x).

Note that when K(x) is symmetric,
∫
y ·K

(
Yi−y
h

)
dy
h = Yi. Namely, we may understand the kernel

regression as an estimator inverting the KDE of the joint PDF into a regression estimator.

♦ Other approaches. Nonparametric regression is a very important topic in statistics. There are
many other approaches such as the local polynomial regression5, spline approach6, basis approach7,
regression trees8 ...etc9.

5http://www.maths.manchester.ac.uk/~peterf/MATH38011/NPR%20local%20Linear%20Estimator.pdf
6https://en.wikipedia.org/wiki/Smoothing_spline
7http://www.biostat.umn.edu/~johnh/pubh8422/notes/Basis_Approaches.pdf and http://www.cs.columbia.edu/

~jebara/4771/tutorials/regression.pdf
8http://www.stat.cmu.edu/~cshalizi/350-2006/lecture-10.pdf
9a brief introduction: http://wwwf.imperial.ac.uk/~bm508/teaching/AppStats/Lecture7.pdf

http://www.maths.manchester.ac.uk/~peterf/MATH38011/NPR%20local%20Linear%20Estimator.pdf
https://en.wikipedia.org/wiki/Smoothing_spline
http://www.biostat.umn.edu/~johnh/pubh8422/notes/Basis_Approaches.pdf
http://www.cs.columbia.edu/~jebara/4771/tutorials/regression.pdf
http://www.cs.columbia.edu/~jebara/4771/tutorials/regression.pdf
http://www.stat.cmu.edu/~cshalizi/350-2006/lecture-10.pdf
http://wwwf.imperial.ac.uk/~bm508/teaching/AppStats/Lecture7.pdf
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